
A Practical Universal Circuit Construction and
Secure Evaluation of Private Functions

Vladimir Kolesnikov1 and Thomas Schneider2,�

1 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

2 Dept. of Comp. Sci., University of Erlangen-Nuremberg, Germany
thomaschneider@gmail.com

Abstract. We consider general secure function evaluation (SFE) of pri-
vate functions (PF-SFE). Recall, privacy of functions is often most effi-
ciently achieved by general SFE [18,19,10] of a Universal Circuit (UC).

Our main contribution is a new simple and efficient UC construction.
Our circuit UCk, universal for circuits of k gates, has size ∼ 1.5k log2 k
and depth ∼ k log k. It is up to 50% smaller than the best UC (of Valiant
[16], of size ∼ 19k log k) for circuits of size up to ≈ 5000 gates.

Our improvement results in corresponding performance improvement
of SFE of (small) private functions. Since, due to cost, only small circuits
(i.e. < 5000 gates) are practical for PF-SFE, our construction appears
to be the best fit for many practical PF-SFE.

We implement PF-SFE based on our UC and Fairplay SFE system [11].

Keywords: SFE of private functions, universal circuit, privacy.

1 Introduction

We consider two-party secure function evaluation (SFE) of private functions
(PF-SFE). Recall, “regular” SFE techniques allow two parties to evaluate any
function on their respective inputs x and y, while keeping the inputs secret. SFE
is a subject of immense amount of research, e.g. [18,19,10]. Efficient SFE algo-
rithms enable a variety of electronic transactions, previously impossible due to
mutual mistrust of participants. Examples include auctions [12,3,5,1], contract
signing [4], distributed database mining [7,9], etc. As computation and com-
munication resources have increased, SFE became practical for common use.
Fairplay [11] is a full implementation of generic two-party SFE with malicious
players. It demonstrates feasibility and efficiency of SFE of practical functions,
represented as circuits of up to ≈ 106 gates. Today, generic SFE is a relatively
mature technology, and even small improvements are non-trivial and welcome.

In this work, we impose an additional restriction on SFE. Namely, we require
that the evaluated function is known only by one party and needs to be kept
secret (i.e. everything besides the size, the number of inputs and the number of

� The work was done while the author was visiting Bell Laboratories.

G. Tsudik (Ed.): FC 2008, LNCS 5143, pp. 83–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 V. Kolesnikov and T. Schneider

outputs is hidden from the other party). Examples of real-life private functions
include credit evaluation function, background- and medical history checking
function, airport no-fly check function, etc. Full or even partial revelation of
these functions opens vulnerabilities in the corresponding process, exploitable
by dishonest participants (e.g. credit applicants), and should be prevented.

It is well known that the problem of PF-SFE can be reduced to the “regular”
SFE [15,14]. This is done by parties evaluating a Universal Circuit (UC) instead
of a circuit defining the evaluated function. UC can be thought of as a “program
execution circuit”, capable of simulating any circuit C of certain size, given the
description of C as input. Therefore, disclosing the UC does not reveal anything
about C, except its size. At the same time, the SFE computes output correctly
and C remains private, since the player holding C simply treats description of C
as additional (private) input to SFE. This reduction is the most common (and
often the most efficient) way of securely evaluating private functions [15,14].

Our improvement of the UC construction directly results in improvements of
PF-SFE for many practical private functions of interest. Indeed, circuit-based
SFE (e.g. Yao’s garbled circuit [18,19,10]) is still the most efficient SFE method
for many important functions, such as the comparison function. The elegant
and very efficient auction system of Naor, Pinkas and Sumner [12] implements
auction function as a circuit, as well. Further, due to the size of UC constructions,
PF-SFE is practical only for small circuits (UC for 5000-gate circuits has size
106, pushing the general SFE size limit). Therefore, improvements of circuit
representation is particularly relevant for small circuits, and this is the focus
and the result of our work.

1.1 Our Contributions

Our main contribution is a new elegant and efficient universal circuit UCk con-
struction of size ∼ 1.5k log2 k and depth ∼ k log k. For the circuits most relevant
for PF-SFE (of size up to ≈ 5000), our approach results in up to 50% size re-
duction compared to asymptotically optimal construction of Valiant [16]. See
Table 1 in Sect. 5 for detailed comparison. As described above, this immediately
implies improvement in the practical PF-SFE. We expand this discussion and
present additional applications below in Sect. 1.3.

Our constructions are simple and practical. We used them to implement PF-
SFE as an extension of the Fairplay SFE system [11].

The basic building blocks we developed (such as the efficient Su
v selection

blocks of Sect. 4.2) may be of use in other circuit constructions as well.

1.2 Related Work

The most efficient known UCk construction is the celebrated construction of
Valiant [16]. With size ∼ 19k log k, it is asymptotically optimal, with a small
constant factor. It relies on universal graphs. UCk is derived from a universal
graph UGk; UCk is universal for circuits of size k, if UGk is universal for graphs
of k nodes and in- and out-degrees 2. Embedding of the graph representation

A Practical UC Construction and Secure Evaluation of Private Functions 85

of a circuit C into UGk defines the programming of UCk to simulate C. As
noted above, our construction produces smaller UCk for circuits most relevant
for PF-SFE. Further, we believe that implementation of our construction is more
self-contained and straightforward.

Waksman [17] describes how to construct and program a permutation net-
work, a circuit implementing an arbitrary permutation on n elements. Waks-
man’s construction is asymptotically optimal (size ∼ 2n logn and depth ∼
2 logn). We use this work in an essential way – fundamental building blocks
of our UC construction rely on [17].

1.3 Applications for Universal Circuits

As discussed above, UC is naturally used to extend the functionality or privacy in
numerous practical SFE applications, in particular those based on Yao’s garbled
circuit [18,19,10]. Recall, Yao’s approach views the evaluated function as a binary
circuit known to both parties. The idea is to encrypt the signals on all wires of
the circuit. Then the evaluator (one of the participants of the computation) uses
clever setup and properties of encryption to compute (gate by gate) encryption
of the output wires from the encryptions of input wires. The result of SFE is
obtained by decrypting the values of the output wires of the circuit. We note
that the cost of Yao’s construction depends only on the size of the circuit, and
not on its depth or fan-out. To perform PF-SFE, instead of evaluating the circuit
directly, a UC that is programmed with the original circuit is evaluated. As UC
can be programmed with any circuit, the evaluated function is entirely hidden
from the evaluator.

We discuss natural applications that directly benefit from our improvements.
Frikken et. al [6] show a privacy-preserving credit checking scheme that is

based on the evaluation of a garbled circuit. Their scheme is limited to the
special class of credit-checking policies that can be expressed as the weighted
sum of criteria. By evaluating a universal circuit their scheme can be extended
to arbitrary, more complicated, private credit-checking policies.

Cachin et al. [2] describe autonomous mobile agents which migrate between
several distrusting hosts. Garbled-circuit-based, their scheme ensures the privacy
of the inputs of the visited hosts but not the structure of the mobile agent’s code.
The privacy of the executed code can be guaranteed by evaluating universal
circuits instead.

Ostrovsky and Skeith [13] show how to filter remote streaming data (e.g air-
ports’ passenger lists, on-line news feeds or internet chat-rooms) using secret
keywords and their combinations, such as no-fly lists. Their protocol allows Col-
lector (e.g. airport) to obliviously filter out entries that match the (encrypted)
query, which are then sent back for decryption. Their scheme can be naturally
extended to allow a much finer private matching criteria, additionally preserving
data privacy, as follows. The Collector encrypts each filtered stream element with
a random pad. The querying party thus obtains the list of encrypted matches. In
the second round, the querying party uses PF-SFE (e.g. using our UCk) to search
the matching data with an arbitrary, more detailed private search function.

86 V. Kolesnikov and T. Schneider

2 Definitions and Preliminaries

In this section, we present basic notation and building blocks of our construction.
In the following, a gate is the implementation of a boolean function {0, 1}2 →

{0, 1} that has two inputs and one output. We consider acyclic circuits that
consist of connected gates with arbitrary fanout, i.e. the (single) output of each
gate can be used as input to an arbitrary number of gates. Further, each output
of the circuit C is the output of a gate and not a redirected input of C.

A block Bu
v is a circuit that has u inputs in1, .., inu and v outputs out1, .., outv

(we always associate variable u with inputs and v with outputs). Bu
v computes

a function fB : {0, 1}u → {0, 1}v that maps the input values to the output
values. For simplicity, we identify Bu

v with fB and write: B(in1, . . . , inu) =
(out1, . . . , outv). The size of a block B, size(B), is the number of gates B consists
of; its depth, depth(B), is the maximum number of gates between any input and
any output of B. A block can be a sub-block of a larger block. We construct a
circuit as a collection of functional blocks, as this simplifies presentation.

A programmable block is a block that consists of connected programmable
gates with unspecified function tables. Programming a programmable block is
done by providing a specific function table for each of its gates.

A Universal Circuit UCu,v,k is a programmable block with u inputs and v
outputs that can be programmed to simulate any circuit C with up to u inputs,
v outputs and k gates. UCC denotes UC that is programmed to simulate circuit
C, that is ∀(in1, . . . , inu) : UCC(in1, . . . , inu) = C(in1, . . . , inu).

A one-output switching block Y is a programmable block that computes
(in1, in2) → in1 or in2, as shown in Fig. 1(a). It is implemented by one gate
programmed with the corresponding function table. size(Y) = depth(Y) = 1.

A two-output switching block X is a programmable block shown on Fig. 1(b)
that computes (in1, in2) → (in1, in2) or (in2, in1). It is implemented by using (in
parallel) two Y blocks: one for each of the outputs. size(X) = 2; depth(X) = 1.

Y : = or

(a) Y switching block

X : = or

(b) X switching block

Fig. 1. Switching blocks

A selection block Su
v is a programmable block that selects for each of its v out-

puts one of the u input values (with duplicates). Su
v is programmed according to

the selection mapping (σi)v
i=1, σi ∈ {1..u} that selects the σi-th input as the i-th

output. That is, a programmed Su
v computes S(in1, . . . , inu) = (inσ1 , . . . , inσv).

A Su
1 selection block can be implemented by (u − 1) Y blocks that are pro-

grammed to switch the desired input value inσ1 to the output. Shallow Su
1 is ob-

tained by arranging Y blocks in a tree. Thus, size(Su
1) = u−1; depth(Su

1) = log u.

A Practical UC Construction and Secure Evaluation of Private Functions 87

A naive implementation of Su
v selection block uses a Su

1 selection block for
each of the v outputs, resulting in size(Su

v) = v(u − 1) and depth(Su
v) = log u.

Selection blocks are crucial for our UC construction. We describe much more
efficient Su

v constructions in Sect. 4.2.

3 Our Universal Circuit Construction

In this section, we present our modular UC construction. All of the necessary
building blocks were introduced in Sect. 2; here we show how to assemble them.
Then, in Sect. 4, we design improved versions of some building blocks, which
results in performance improvement of our UC.

In our UC construction, we simulate each gate Gi of the original circuit C.
That is, for each Gi, UCu,v,k has a corresponding programmable Gi-simulation
gate GSim

i . In our construction, we always ensure that inputs, outputs and se-
mantics of GSim

i correspond to Gi. Additionally, we hide the wiring of C by
ensuring that every possible wiring can be implemented in UCu,v,k. This is the
natural method of construction of UC, and is, in fact, employed by Valiant [16].

We design our UC construction recursively (we build a circuit from two cir-
cuits of smaller size). We first note that the input/output interface of UCu,v,k

is different from that of the natural recursion step. This is why we introduce a
universal block Uk. Uk can be viewed as a UC with specific input and output
semantics. Namely, Uk has 2k inputs and k outputs, since this is a maximum
UCu,v,k can have. Further, we restrict that Uk’s inputs in2i−1, in2i are only de-
livered to the simulation gate GSim

i , and Uk’s i-th output comes from GSim
i . (Of

course, input of some gates Gi may come from any other gates’ outputs, and
not from in2i−1 or in2i, which may not be used at all. Uk allows this; it only
restricts that Gi’s input cannot come from other inj). Uk is thus a UC for the
class of circuits of size k with the above input/output restrictions.

Now, given an implementation of Uk, it is easy to construct UCu,v,k (shown
on Fig. 2). We need to provide the input selection block, which directs inputs
of UC to the proper inputs of Uk. Finally, we need the output selection block,
directing outputs of Uk to the proper outputs of UC, and discarding unused
outputs. Both blocks are instances of selection blocks discussed above.

Su

Sk≥v

Uk

2k

k

2k≥u

v

in1, ..., inu

out1, ..., outv

UCuniversal circuit

universal block

input selection block

output selection block

Fig. 2. Modular universal circuit construction

88 V. Kolesnikov and T. Schneider

In the next section, we present our Uk construction. Plugged in the construc-
tion of Fig. 2, it gives a complete UC construction.

3.1 Recursive Universal Block Construction

In this section, we describe the natural divide-and-conquer procedure for con-
structing Uk, capable of simulating any circuit Ck of size k, with the in-
put/output restrictions mentioned above.

In the following, we refer to the gates of the circuit Ck by their index. We
choose a topological order of the gates G1, . . . , Gk, which ensures that the i-th
gate Gi has no inputs that are outputs of a successive gate Gj , where j > i.
Since we only consider acyclic circuits, we can always obtain this ordering by
topological sorting with complexity O(k).

Now, suppose we have two blocks Uk/2, universal for circuits Ck/2 of size k/2.
We wish to combine them to obtain Uk. Clearly, because of their universality, one
of Uk/2 could simulate the “upper” half of Ck (i.e. gates G1 through Gk/2) , and
the other Uk/2 could simulate the lower half (gates Gk/2+1, . . . , Gk). Note, by the
topological ordering, there is no data going into the upper Uk/2 from the lower
one. Thus, Uk must only direct its inputs/outputs and allow implementation
of all possible data paths from the upper Uk/2 to the lower one. This can be
naturally done, as shown on Fig. 3(a). We describe this in detail below.

Uk

k

Uk/2

Mk

Sk/2

Uk/2

in1, ..., ink ink+1, ..., in2k

out1, ..., outk/2 outk/2+1, ..., outk

(a) Recursive construction of Uk

Mk

...

out1, ..., outk

out1 outk

in1, ..., ink
0 0

in1
0 in1

1

Y1 Yk

ink
0 ink

1

in1, ..., ink
1 1

(b) Mixing block Mk

Fig. 3. Recursive universal block construction

The first k inputs to Uk in1, .., ink are directly sent to the upper Uk/2. Note,
the order of the inputs matches the interface perfectly, so no additional manip-
ulation is required. The k/2 outputs of the upper (resp. lower) Uk/2 are sent
directly to the first (resp. second) half of the outputs of Uk. Again, interfaces
match, and no manipulation is required.

We now only need to show how the inputs to the lower Uk/2 are provided.
These inputs could come from (any GSim

i gate of) the upper Uk/2. Therefore, we
also wire the outputs of upper Uk/2 into a selection block S

k/2
k . This allows to di-

rect, with duplicates, the output of any gate of upper Uk/2 to any position of the

A Practical UC Construction and Secure Evaluation of Private Functions 89

input interface of lower Uk/2 (and thus to any gate of lower Uk/2). Additionally,
(some of) lower Uk/2’s inputs could come from the Uk inputs ink+1, ...in2k. Since
the lower Uk/2 simulates gates Gk/2+1 through Gk of Ck, inputs ink+1, ...in2k

are already ordered to match lower Uk/2’s interface. Now, for each input of lower
Uk/2, we need to switch between the two input wires: one provided by upper
Uk/2 via S

k/2
k , and the other coming from Uk’s input directly. This is easily

achieved by a Y switching block. On the diagram, for ease of presentation, we
combine the k of these Y blocks into a mixing block Mk, shown on Fig. 3(b) with
size(Mk) = k · size(Y) = k and depth(Mk) = 1.

The base case of the recursive construction is U1, a universal block imple-
menting a single gate. U1 is implemented by a single programmable gate. This
completes the description of the recursive Uk construction.

The above immediately implies efficient methods of UC programming, given
the circuit Ck. In particular, if the first (resp. second) input of a gate Gj in the
lower half of Ck (k/2 < j ≤ k) is connected to an input of Ck, the mixing block
Mk is programmed to select the corresponding input in2j−1 (resp. in2j) of Uk

by programming Y2j−k−1 (resp. Y2j−k) of Mk correspondingly (see Fig. 3(b)).
Otherwise, if Gj is connected to an output of a gate Gi in the upper half of Ck

(1 ≤ i ≤ k/2), Mk and S
k/2
k are programmed to select the corresponding output

from the upper Uk/2 block by programming Y2j−k−1 (resp. Y2j−k) correspond-
ingly and programming S

k/2
k with σ2j−k−1 = i (resp. σ2j−k = i).

We now compute the complexity of our constructions Uk and UC (using se-
lection block constructions of Sect. 4.2). Recall, the cost of Yao’s garbled circuit
depends only on its size, and not on depth. Note, size(U1) = 1; depth(U1) = 1.

size(Uk) = 2size(Uk/2) + size(Sk/2
k) + size(Mk)

= k · size(U1) +
log(k)−1∑

i=0

2i(size(Sk/2i+1

k/2i) + size(Mk/2i))

= k + 3k log2 k − 2k log k − 3k

log(k)−1∑

i=0

i + 3
log(k)−1∑

i=0

2i

= 1.5k log2 k − 0.5k log k + 4k − 3 ;

depth(Uk) = 2depth(Uk/2) + depth(Sk/2
k) + depth(Mk) = . . .

= k log k + k + 4 log k − 12 .

Using the optimization of Sect. 4.3, Uk has complexity size(Uk) =
1.5k log2 k − 1.5k log k + 6k − 5 and depth(Uk) = k log k + 4 log k − 11.

Uk combined with input- and output-selection blocks of Sect. 4.2 as shown in
Fig. 2, results in a UC construction of complexity

size(UC) = 1.5k log2 k + 2.5k log k + 9k + (u + 2k) logu + (k + 3v) log v

−2u − 4v + 1 ;
depth(UC) = k log k + 2k + v + 7 log k + 2 log u + 3 log v − 14 .

90 V. Kolesnikov and T. Schneider

4 Improved Selection Block Constructions

In this section, we present efficient selection block Su
v constructions. They can

be plugged directly in our UC construction. The size and depth computation of
UC presented in Sect. 3.1, uses efficient constructions of this section.

We start the presentation with two useful generalizations of the permutation
blocks of Waksman [17]. Based on these, we construct efficient selection blocks
which are directly used in our UC construction.

4.1 Generalized Permutation Blocks

Pu
u permutation block. A permutation block Pu

u is a programmable block that
can be programmed to output any permutation of the inputs. Formally, given
a permutation (πi)u

i=1, πi ∈ {1, . . . , u}, ∀i �= j : πi �= πj that selects for the i-th
output a unique input πi, Pu

u computes P (in1, .., inu) = (inπ1 , .., inπu).
When u is a power of 2, Waksman [17] describes an efficient recursive Pu

u

construction built from X switching blocks. His Pu
u has size(Pu

u) = 2u logu −
2u + 2 and depth(Pu

u) = 2 logu − 1.
Waksman also gives an efficient recursive algorithm to program the X switch-

ing blocks of his construction. (Fig. 4 describes a slight generalization of Waks-
man’s construction; fixing u = v in Fig. 4 corresponds to Waksman’s Pu

u .) The
programming algorithm takes a u × u permutation matrix for the permutation
(πi) as input. It splits this u × u permutation matrix into two u/2 × u/2 per-
mutation matrices that are recursively implemented by the left and the right
P

u/2
u/2 permutation sub-block and programs the X switching blocks correspond-

ingly. Using a sparse matrix representation for the permutation matrices this
algorithm can be efficiently implemented in O(u log u).

We note that Waksman’s construction can be naturally generalized to the
cases where u �= v, i.e. the number of inputs and outputs differ. Below we define
the resulting objects (which we call “truncated permutation” and “expanded
permutation” blocks), and present their efficient constructions.

TPu≥v
v truncated permutation block. A TPu≥v

v truncated permutation
block permutes a subset of v of the u inputs to the v ≤ u outputs. The re-
maining u − v input values are discarded. Formally, an output mapping (μi)v

i=1,
μi ∈ {1, . . . , u}, ∀j �= i : μi �= μj selects the μi-th input as the i-ths output. The
truncated permutation block computes TP (in1, . . . , inu) = (inμ1 , . . . , inμv).

The TPu≥v
v block is recursively constructed analogous to Waksman’s permu-

tation network construction as seen in Fig. 4. W.l.o.g we assume u and v are
even at each recursion step (otherwise we introduce an unused dummy input or
output with small overhead). If u ≥ 2 the TPu≥v

v truncated permutation block
is divided into two TP

u/2≥v/2
v/2 truncated permutation sub-blocks. The upper u/2

X switching blocks distribute the inputs of TPu≥v
v to the two sub-blocks. The

lower (v/2 − 1) X switching blocks distribute the outputs of the two sub-blocks
to the outputs of TPu≥v

v as shown in Fig. 4. At the base of the recursion, if
v = 1, a Su

1 selection block selects the intended input.

A Practical UC Construction and Secure Evaluation of Private Functions 91

out1, ..., outv

...X X

out1 out2 out3out4 outv-1outv

... ...

X...XX

inu-1inu

Pu/2
v/2Pu/2

v/2

in1, ..., inu

Pu
v

in3 in4in1 in2

Fig. 4. Recursive construction of a P u
v permutation block

The TPu≥v
v block is programmed using a natural generalization of Waks-

man’s recursive programming algorithm. The intended output mapping (μi) is
expressed as a u × v truncated permutation matrix. In each recursion step the
algorithm splits the u×v matrix into two u/2×v/2 truncated permutation matri-
ces implemented by the left and right sub-block and programs the X switching
blocks accordingly. In the end of the recursion, if the truncated permutation
matrix is a u × 1 matrix with a one in the i-th row, the Su

1 selection block is
programmed to select the i-th input value as output: σ1 = i. This algorithm can
be implemented in O((u + v) log v) using sparse matrix representations.

The complexity of this construction is size(TPu≥v
v) = (u+v) log v+u−3v+2

and depth(TPu≥v
v) = log u + log v − 1.

EPu
v≥u expanded permutation block. An EPu

v≥u expanded permutation
block permutes the u inputs to a subset of u of the v ≥ u outputs. The remain-
ing v − u outputs are allowed to obtain any input value (they are intended to
be later discarded and are called dummy outputs). Formally, an input mapping
(μi)u

i=1, μi ∈ {1, . . . , v}, ∀j �= i : μi �= μj specifies that the i-th input should
be mapped to the μi-th distinct output. The expanded permutation block com-
putes EP (in1, . . . , inu) = (out1, . . . , outv) where (outs = inr) ↔ (μr = s), s ∈
{1, . . . , v}, r ∈ {1, . . . , u}.

The construction of the EPu
v≥u is analogous to the previously described

TPu≥v
v block. At the base of the recursion, if u = 1, the single input in1 is

connected to each of the v outputs. The programming algorithm of EPu
v≥u is

analogous to that of TPu≥v
v as well. The input is a u × v matrix that corre-

sponds to (μi) and it can be implemented in O((u + v) log u). The construction
has complexity size(EPu

v≥u) = (u+v) log u−2u+2 and depth(EPu
v≥u) = 2 logu.

4.2 Efficient Selection Blocks

We use truncated and expanded permutation blocks of the previous section to
build efficient selection blocks Su

v , used directly in the UC construction.

92 V. Kolesnikov and T. Schneider

out1, ..., outv

Pv
v

Y

v≥uSu

v≥uEPu

...Y Y

in1, ..., inu

(a) Su
v≥u selection block

Y ...

TPu≥v
v

Su≥v
v

in1, ..., inu

Pv
v

Y Y

out1, ..., outv

(b) Su≥v
v selection block

Fig. 5. Su
v selection blocks

Efficient Su
v≥u selection block. We obtain the Su

v≥u selection block from one
EPu

v≥u expanded permutation block, one P v
v permutation block, and (v − 1) Y

switching blocks as shown in Fig. 5(a).
It is not hard to see that the above Su

v≥u is indeed a selection block, i.e.
it can be programmed with any selection mapping (σi)v

i=1, σi ∈ {1, . . . , u}. To
program Su

v≥u, first count the frequency of occurrence cj of each input value in
the output: cj = #{σi : σi = j; i ∈ {1 . . . v}}; j ∈ {1 . . . u}. Note, 0 ≤ cj ≤ v and∑u

j=1 cj = v. The EPu
v≥u expanded permutation block is programmed to

1) map the needed inputs (cj �= 0) to its (
∑j−1

k=1 ck)-th output and
2) map the unused inputs (cj = 0) to an unused (dummy) output.

The (v − 1) Y switching blocks connected to the outputs of EPu
v≥u duplicate

the needed inputs as necessary and feed them to the P v
v permutation block.

They are programmed as follows. If the right input of a Y block is a needed
output (produced by Step 1), then the Y block selects it as output. Otherwise,
the output of the neighbor Y block is selected. For each j, this construction
inputs cj copies of inj into the P v

v permutation block. P v
v then permutes these

values to the corresponding outputs indicated by the selection mapping (σi). The
complexity of this construction is size(Su

v≥u) = (u+v) log u+2v log v−2u−v+3
and depth(Su

v≥u) = 2 logu + 2 log v + v − 2.

Efficient Su≥v
v selection block. An efficient Su≥v

v selection block can be
constructed and programmed analogously, but using a TPu≥v

v truncated per-
mutation block instead as shown in Fig. 5(b). Its complexity is size(Su≥v

v) =
(u + 3v) log v + u − 4v + 3 and depth(Su≥v

v) = log u + 3 log v + v − 3.

Improved Su
2u selection block. In this section, we optimize the Su

v≥u selection
block construction for the case v = 2u, most frequently used in our recursive
construction of the universal block Uk. We improve by replacing the EPu

v≥u

expanded permutation block in the construction of Su
v≥u in Fig. 5(a) with a

smaller Pu
u permutation block and a different connection of the (v − 1) Y blocks

as shown in Fig. 6. Our construction achieves size(Su
2u) = 6u logu + 3 and

depth(Su
2u) = 4 logu + 2u − 1.

A Practical UC Construction and Secure Evaluation of Private Functions 93

out1, ..., out2u

Su
2u

in1, ..., inu

P2u
2u

uPu

...Y2u-1 Y2u-2 Yu+1Y2u

x1 x2 x3 xu

YuY3Y2 ...

x2 x3 xux1

y1 y2 y3 yu

yu+1y2u-3y2u-2y2u-1y2u

y1, ..., y2u

Fig. 6. Improved Su
2u selection block

Lemma 1. Construction of Fig. 6 is a Su
2u selection block.

Proof. To prove Lemma 1, we only need to show that the upper permutation
block Pu

u together with the layer of Y blocks output the selected values (with
the right number of duplicates each) in some order. (The rest, i.e. imposing the
desired order, is done by the lower permutation block P 2u

2u .)
We use the network of Y blocks to duplicate (or omit) inputs as required

by the selection block specification. The upper permutation block Pu
u can be

programmed to deliver the desired input ini to any Y -layer input xj not already
used by another input. For example, if input ini needs to be duplicated ci times,
this can be achieved by programming the permutation to map ini to xj , and
have blocks Yj through Yj+ci−1 to output xj . This way, as required, the value
ini would be duplicated ci times.

For efficiency reasons, the wiring of the Y -layer is limited. In particular, input
xi is delivered only to blocks Yi and Y2u−i+1, which are in column i. From
there, xi can be propagated “to the right” from Yi (i.e. to blocks Yi+1, ..., in the
lower row) and/or ”to the left“ from Y2u−i+1 (i.e. to blocks Y2u−i+2, ..., in the
upper row). Note, blocks Yi and Y2u−i+1 cannot receive different inputs from
Pu

u . They, however, can produce different outputs, since one or both of them
could be propagating the value of their neighbouring Y block.

It is not immediately clear that the inputs in1...inu can be permuted such
that the Y -layer can provide the right number of duplicates for each input. We
show, that this in fact can be done. We observe that this permutation and the
Y -layer programming can be reduced to the following box-packing problem.

Box-packing. (See Fig. 7 for illustration.) There are u rectangular boxes of
sizes c1, . . . , cu, where ci ∈ {0, . . . , 2u} and

∑u
i=1 ci = 2u. Each non-empty i-th

box consists of a head cell (dark gray), and ci−1 trailing cells (light gray). There

94 V. Kolesnikov and T. Schneider

2 3 1 4 4 5

413122

Fig. 7. Valid arrangement of boxes produced by Algorithm 1 for boxes of size (cj) =
{2, 3, 1, 4, 4, 5, 4, 1, 3, 1, 2, 2, 0, 0, 0, 0}. Dark gray head cells contain size.

is a rectangular 2×u grid of slots that consists of an upper row and a lower row.
A box of size ci occupies ci consecutive slots in one row (one exception is that
the right-most box might wrap around from the lower to the upper row, as seen
on Fig. 7). The boxes in the upper row are oriented with heads to the right, and
the boxes in the lower row are oriented with heads to the left. A collision occurs
when two heads occupy slots in the same column. The arrangement of all u boxes
is called valid, if it contains no collisions. (Note that a valid arrangement leaves
no empty slots.) A solution to the box-packing problem is a valid arrangement.

A procedure for a valid arrangement of the boxes of sizes c1, . . . , cu gives
the following natural programming of the Pu

u permutation block and the Y -
layer. Associate (1-to-1) each input ini of size ci with a box of same size ci and
compute a valid arrangement. Then, input ini is switched by Pu

u to xj if the
j-th column is occupied by the head of the box associated with ini. Inputs ini

with ci = 0 (unused inputs) are switched to the columns j which have no head
boxes. Both switching blocks Yi and Y2u−i+1 of each column i are programmed as
follows. They select input xi iff the corresponding slot in the valid arrangement
is occupied by the head (otherwise, the output of the neighbored Y switching
block is selected). It is not hard to see that this programming results in the
desired output, given the corresponding valid arrangement of boxes.

Lemma 2 below shows an efficient box-packing procedure. This completes the
proof of Lemma 1. ��

Algorithm 1. (Box-packing)

0. Each box is always put in the leftmost unoccupied slots in the specified row.
1. Sort boxes by size in increasing order.
2. while there is at least one box of size 1, do

(a) if there are at least two boxes of minimal sizes s2 ≥ s1 ≥ 2 left
i. put the box of size s1 in the upper row
ii. put remaining (but no more than s1-2) boxes of size 1 in lower row
iii. put the box of size s2 in the lower row (possibly wrap around)
iv. put remaining (but no more than s2-2) boxes of size 1 in upper row

(b) else // there is only one box of size s1 ≥ 2 left
i. put the remaining boxes of size 1 in the lower row
ii. put the box of size s1 ≥ 2 in the lower row and wrap around

3. while there is at least one box of minimal size s3 ≥ 2 left, do
(a) if there is another box of minimal size s4 ≥ s3 ≥ 2 left

i. put the box of size s3 in the upper row
ii. put the box of size s4 in the lower row (possibly wrap around)

A Practical UC Construction and Secure Evaluation of Private Functions 95

(b) else // there is only one box of size s3 ≥ 2 left
i. put the box of size s3 ≥ 2 in the lower row and wrap around

Lemma 2. Algorithm 1 efficiently produces a valid arrangement for any given
set of u boxes of sizes c1, . . . , cu; 0 ≤ cj ≤ 2u;

∑u
j=1 cj = 2u.

Proof. Note, since
∑

cj = 2u, for each box of size 2 + i, there must be i boxes
of size 1, or i/2 boxes of size 0, or a corresponding combination.

A) Algorithm 1 always puts all boxes and terminates. We first show that Step
2 eliminates all boxes of size 1. Indeed, suppose the contrary, a block of size 1
remains. Then, in each previous execution of Step 2a, we eliminated blocks of
sizes s2 ≥ s1 ≥ 2 and s1 + s2 − 4 blocks of size 1, and in Step 2b we eliminated a
block of size s1 and s1 −2 blocks of size 1. Since

∑
cj = 2u, there could not have

been more blocks of size 1 than we eliminated, and we arrive at contradiction.
Further, Step 3 eliminates all remaining boxes of size ≥ 2. In each iteration,
at least one box of size s3 ≥ 2 is eliminated either in Step 3(a)i or Step 3(b)i,
until all boxes of size ≥ 2 are eliminated. (Observe, at each iteration, upper row
“grows” not more than the lower. Thus, Algorithm’s actions are always legal.)

B) Algorithm 1 produces a valid arrangement. We need to show that no step
of Algorithm 1 causes a collision. It is easy to see that Step 2a and Step 2b never
cause a collision. Further, once Step 2 has finished, the number of occupied slots
in the upper row ωup is less or equal to the number of occupied slots in the lower
row ωdown, with 0 ≤ ωdown−ωup ≤ s2−2 (here s2 is the size of the most recently
put block in Step 2(a)iv). Since the boxes are processed in increasing order, in
Step 3, s3 ≥ s2 ≥ 2. If the box of size s3 is the last remaining one, it is put in the
lower row in Step 3(b)i and, as is easy to see, doesn’t cause a collision. Otherwise,
in Step 3(a)i, the box of size s3 is put in the upper row. The number of occupied
slots in the upper row is now ω′

up = ωup +s3, and the upper row has at least two
more occupied slots than the lower row: ω′

up − ωdown = (ωup + s3) − ωdown ≥ 2.
This implies that the next Step 3(a)ii doesn’t cause a collision when putting
the box of length s4 ≥ s3 into the lower row. After Step 3(a)ii, the number of
occupied slots in the lower row is ω′

down = ωdown + s4. In the end of the current
iteration of Step 3, the number of occupied slots in the upper row is again
less or equal to the number of occupied slots in the lower row: ω′

down − ω′
up =

(ωdown + s4) − (ωup + s3) = (ωdown − ωup) + (s4 − s3) ≥ 0 and hence the length
relationship between the upper and lower rows (0 ≤ ω′

down − ω′
up ≤ s4 − 2) is

the invariant of Step 3. Therefore, no iteration of Step 3 causes a collision. As
no step causes a collision, Algorithm 1 produces a valid arrangement.

C) Algorithm 1 is efficient. Sorting of the u boxes in Step 1 costs O(u log u).
Steps 2 and 3 have a runtime of O(u), as in every iteration at least one box is
eliminated. Hence the runtime of Algorithm 1 is in O(u log u). ��

4.3 Optimization of the Universal Circuit Construction

As the order of the two inputs of a gate simulation block G can be swapped by
swapping its function table, we can omit the last row of X blocks in the lower

96 V. Kolesnikov and T. Schneider

P k
k permutation block of the S

k/2
k selection block in the construction of Uk (see

Fig. 3(a), Fig. 6 and Fig. 4) and adapt the programming correspondingly. This
results in a reduction of Δsize(Uk) = k log k − 2k + 2 and Δdepth(Uk) = k − 1.

5 Comparison and Conclusion

We now compare our UC solution to the best previously known Valiant’s UC [16].
Recall, we consider circuits UCu,v,k, universal for circuits of k gates, u inputs and
v outputs. Valiant’s UC has size(UCV aliant

u,v,k) = (19k+9.5u+9.5v) logk+O(k) and
ours has size(UCu,v,k) = 1.5k log2 k+2.5k log k+(u+2k) log u+(k+3v) log v+
O(k). To help visualize the relationship, Table 1 shows sample relative sizes of
our UC compared to Valiant’s: sizerel = size(UCu,v,k)

size(UCV aliant
u,v,k) . The break-even point

keq = k|sizerel=1 is the maximum size of circuits for which our UC is smaller.

Table 1. Comparison between our and Valiant’s UC construction [16]

circuit inputs and outputs break-even relative size sizerel

u v point keq k = 1, 000 k = 5, 000 k = 10, 000
few o(k) o(k) 2, 048 91.8% 110.2% 118.1%

0.5k 0.1k 5, 000 86.0% 100.1% 106.2%
0.5k 0.25k 8, 000 83.1% 96.4% 102.1%
1k 0.5k 117, 000 69.0% 79.5% 84.0%

many 2k 1k 26, 663, 000 53.6% 60.9% 64.1%

While Valiant’s construction is asymptotically better, our UC is up to 50%
smaller for small circuits, due to much lower constant factors. For PF-SFE, small
circuits are of most interest, since only they can be evaluated efficiently today
(indeed, UC for 5000-gate circuits has size ≈ 106). In addition, our construction
is more detailed and seems to be much easier to implement than Valiant’s. Thus,
we think that our UC construction is a good fit for practical PF-SFE. In support
of this, we have successfully implemented FairplayPF [8], an extension of the
Fairplay SFE system [11] for general PF-SFE based on our UC construction.

Acknowledgements. We thank reviewers of FC’08 for helpful comments.

References

1. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing en-
crypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
pp. 206–220. Springer, Heidelberg (2006)

2. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)

A Practical UC Construction and Secure Evaluation of Private Functions 97

3. Di Crescenzo, G.: Private Selective Payment Protocols. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962. Springer, Heidelberg (2001)

4. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

5. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471.
Springer, Heidelberg (2001)

6. Frikken, K., Atallah, M., Zhang, C.: Privacy-preserving credit checking. In: EC
2005: Proceedings of the 6th ACM conference on Electronic commerce, pp. 147–
154. ACM Press, New York (2005)

7. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD 2002) (2002)

8. Kolesnikov, V., Schneider, T.: FairplayPF,
http://thomaschneider.de/FairplayPF

9. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 20–24. Springer, Heidelberg (2000)

10. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Cryptology ePrint Archive, Report 2004/175 (2004)

11. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX (2004)

12. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: 1st ACM Conf. on Electronic Commerce (1999)

13. Ostrovsky, R., Skeith III, W.E.: Private Searching on Streaming Data. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

14. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

15. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
Proc. 40th IEEE Symp. on Foundations of Comp. Science, New York, pp. 554–566.
IEEE, Los Alamitos (1999)

16. Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th ACM Symp.
on Theory of Computing, pp. 196–203. ACM Press, New York (1976)

17. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
18. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foun-

dations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)
19. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on

Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)

http://thomaschneider.de/FairplayPF

	Introduction
	Our Contributions
	Related Work
	Applications for Universal Circuits

	Definitions and Preliminaries
	Our Universal Circuit Construction
	Recursive Universal Block Construction

	Improved Selection Block Constructions
	Generalized Permutation Blocks
	Efficient Selection Blocks
	Optimization of the Universal Circuit Construction

	Comparison and Conclusion
	Acknowledgements.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

