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ABSTRACT | Trusted computing technologies for mobile

devices have been researched, developed, and deployed over

the past decade. Although their use has been limited so far,

ongoing standardization may change this by opening up these

technologies for easy access by developers and users. In this

survey, we describe the current state of trusted computing

solutions for mobile devices from research, standardization,

and deployment perspectives.
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I . INTRODUCTION

The term trusted computing is used to collectively describe

technologies enabling the establishment of trust in local

and remote computing systems by using trustworthy com-

ponents, trust anchors, to ensure the integrity of other

parts of the system. In this paper, we survey recent re-

search and industry efforts in designing and deploying
trusted computing solutions, especially in the context of

mobile systems.

Security in general and trusted computing technologies

in particular have had a very different trajectory in the

history of mobile devices compared to that of personal

computers [54]. Various stakeholders had strict security

requirements, some of which date back two decades ago,

right at the beginning of the explosion of personal mobile

communications. For example, standards specifications re-

quired ensuring that the device identifier resists manipula-

tion and change [1]; regulatory guidance called for secure

storage for radio-frequency parameters calibrated during
manufacture; business requirements necessitated ways of

ensuring that subsidy locks1 cannot be circumvented.

These requirements incentivized mobile device man-

ufacturers, chip vendors, and platform providers to deploy

hardware and platform security mechanisms for mobile

platforms from early on. Hardware-based trusted execu-

tion environments (TEEs) were seen as essential building

blocks in meeting these requirements. A TEE is a secure,
integrity-protected processing environment, consisting of

processing, memory, and storage capabilities. It is isolated

from the ‘‘normal’’ processing environment, sometimes

called the rich execution environment (REE) [39], where

the device operating system and applications run. The

term ‘‘rich’’ refers to the extensive functionality and,

hence, the increased attack surface, in mass market ope-

rating systems today. TEEs enable improved security and
usability for REE applications by ensuring that sensitive

operations are restricted to the TEE and sensitive data,

such as cryptographic keys, never leave the TEE.

The academic research community has been engaged in

research in hardware-based trusted computing, although

not using that specific term, for a long time dating back to

the 1970s [5], [106]. Recent research efforts have focused

on investigating alternative architectures for trusted com-
puting, developing novel trust anchors using physically

unclonable functions (PUFs), and enabling TEEs for

resource-constrained devices [21], [97], [98].

Some of the results of these research activities have led

to implementation proposals and large-scale deployment

via standardization bodies and industry efforts. The

Trusted Computing Group (TCG) [101] has been leading

the standardization efforts in trusted computing. Global
Platform [39] is specifying TEE functionality in mobile

devices. Various application-specific standardization

bodies, such as the Car Connectivity Consortium [67],
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are formulating specifications for using trusted computing

technologies to address security and privacy problems in

specific application areas.

The first mobile phones with hardware-based TEEs

appeared almost a decade ago [96]. A common way to

realize a TEE in mobile devices is implementing a secure

processor mode. An example of such an implementation is
ARM TrustZone [9], which is present in smartphones and

tablets today. Despite TEE deployment in many of these

application areas, there has been no widely available

means for application developers to benefit from existing

TEE functionality apart from research or proprietary

efforts [53].

With emerging standardization, this situation is about

to change [27]. In the near future, we expect to see imple-
mentations of standardized interfaces for accessing and

using TEEs emerging across different platforms. By making

trusted computing technologies widely accessible, such a

change will spur further research into novel trusted com-

puting technologies and their applications in mobile and

embedded devices.

Our goal in writing this survey is to explain the state of

trusted computing solutions for mobile devices from re-
search, standardization, and deployment perspectives.

While we focus on mobile computing platforms, we also

discuss technologies and approaches, such as lightweight

trust establishment mechanisms and PUFs, which are re-

levant to mobile systems. We begin by outlining basic

trusted computing concepts and introducing terminology

(Section II). We then discuss recent research (Section III),

outline current and forthcoming new standard specifica-

tions (Section IV), and discuss various solutions proposed

and deployed by the industry (Section V). Finally, we

conclude by taking a step back and providing a perspective

for the outlook of trusted computing technologies in mo-

bile devices, outlining open issues (Section VI).

II . BASIC CONCEPTS

The trusted computing base (TCB) of a mobile device

consists of hardware and firmware components that need

to be trusted unconditionally. In this survey, we denote

such hardware and firmware components as trust anchors
of the computing system.

Fig. 1, adapted from [27], illustrates trust anchors pre-

sent in a typical mobile device. Individual trust anchors are

shown in gray. The numbered dotted boxes (1–5) repre-

sent common security mechanisms and illustrate the trust

anchors needed to implement each mechanism. In

Sections II-A1–II-A5, we describe the security mechan-

isms. We use bold font whenever we introduce a concept
shown in the figure for the first time.

A. Basic Security Mechanisms

1) Platform Integrity: The integrity of platform code (e.g.,

the device OS) can be verified either during system boot or

at device runtime. This allows device manufacturers and

Fig. 1. Common hardware security concepts in mobile devices (adapted from [27]).
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platform providers to prevent or detect usage of platform
versions that have been modified without authorization.

Two variations of boot time integrity verification are

possible.

In secure boot, the device startup process is stopped if

any modification of the launched platform components is

detected. A common approach to implement secure boot is

to use code signing combined with making the beginning

of the boot sequence immutable by storing it within the
TCB (e.g., in ROM of the mobile device processor chip)

during manufacturing [8]. The processor must uncondi-

tionally start executing from this memory location. Boot

code certificates that contain hashes of booted code, signed

with respect to a verification root, such as the device

manufacturer public key stored on the device, can be used

to verify the integrity of the booted components. The mo-

bile device must be enhanced with cryptographic mechan-
isms to validate the signature of the system component

launched first (e.g., the boot loader) that can in turn verify

the next component launched (e.g., the OS kernel) and so

on. If any of these validation steps fail, the boot process is

aborted. Integrity of the cryptographic mechanisms can be

ensured by storing the needed algorithms in ROM. The

immutable boot sequence and a verification root together

with an integrity-protected cryptographic mechanism
provide the needed trust anchors for secure booting.

In authenticated boot, the started platform compo-

nents are measured but not verified with respect to any

reference values. Instead these measurements are logged

in integrity-protected volatile memory. The boot loader

measures the first component launched which in turn

measures the next one and so on. The recorded measure-

ments represent the state of the platform components after
boot, and can be used for local access control enforcement

or remote attestation (cf., Section II-A5). Two trust

anchors are used to implement authenticated boot:

integrity-protected volatile memory and a cryptographic

mechanism.

Boot time integrity alone is not sufficient if an attacker

can modify the system after it has been booted. In runtime

platform integrity verification, a trusted software (or firm-
ware) component monitors the integrity of the platform

code continuously [76] and repairs modified components

automatically if possible [50]. The integrity of the monitor

itself can be verified using the above described boot in-

tegrity verification techniques.

2) Secure Storage: A mechanism to store data on the

device to disallow unauthorized access by REE components
is called secure storage. Sensitive data kept in secure storage

should not leak to an attacker even if the REE is com-

promised. A common way to implement secure storage is to

augment the device hardware configuration with a confi-

dential and integrity-protected device-specific key that can

be accessed only by authorized code. Such a device key may

be initialized during manufacturing and stored in a

protected memory area on the processor chip. To protect
against key extraction by physical attacks, manufacturing

techniques like protective coatings may be used. In addition

to the device key, implementation of secure storage re-

quires trusted implementations of necessary cryptographic

mechanisms, such as an authenticated encryption algo-

rithm. Data rollback protection requires the inclusion of

writable nonvolatile memory (e.g., a monotonic counter)

that persists its state across device boots.
To summarize, two trust anchors are needed for secure

storage: a device key and cryptographic mechanisms. Note

that securely storing cryptographic keys is useful only if

cryptographic algorithms using these keys are protected

as well.

3) Isolated Execution: The term ‘‘isolated execution’’ re-

fers to the ability to run security-critical code outside the
control of the untrusted REE. Isolated execution combined

with secure storage constitutes a TEE, which allows imple-

mentation of various security applications that resist REE

compromise. We explain possible TEE architectures in

Section II-B. Here, we introduce the trust anchors needed

to implement a TEE, which are a subset of the mobile

device hardware TCB. Conceptually, the TEE can be seen

as a component of the TCB.
A TEE can expose the functionality of predefined cryp-

tographic mechanisms to the REE with the guarantee that

the cryptographic keys never leave the TEE. While prede-

fined common cryptographic operations are sufficient for

many services, certain applications require isolated execu-

tion of application-specific algorithms. Proprietary one-

time password algorithms for online banking constitute

one such example. To support isolated execution of arbi-
trary code, the device hardware configuration must

provide an interface (TEE entry) through which the exe-

cutable code (trusted applications) can be loaded for

execution using the protected volatile memory.

A TEE code certificate can authorize code execution

within the TEE and authorize trusted applications to access

the device key and other device resources such as con-

fidential data (e.g., digital rights management keys) and
hardware interfaces (e.g., the cellular modem or near-field

communication interface). Furthermore, the access that

any trusted application has to the device key and other

device resources may be controlled based on the platform

state that was measured and saved during an authenticated

boot process.

A software or firmware component called TEE manage-

ment layer provides a runtime environment for trusted
applications and enforces access control to protected re-

sources like the device key (more details in Section II-B).

The integrity of the management layer must be verified

either as part of the boot time platform integrity verifica-

tion (and runtime monitoring) or on demand when trusted

applications are loaded for execution [64]. Realization of

isolated execution can make use of the following trust
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anchors: isolated memory (volatile or nonvolatile), cryp-
tographic mechanisms, and verification root.

4) Device Authentication: An external service provider

can use device authentication to verify the identity of the

mobile device (and its TEE). The identity may include

device manufacturer information that can imply compli-

ance to external service provider requirements.

The mobile device hardware configuration typically has
a unique immutable base identity, which may be a serial

number from a managed namespace or a statistically

unique identifier initialized randomly at manufacture. A

combination of a verification root and the base identity

allows flexible device identification. An identity certificate

that is signed with respect to the aforementioned verifi-

cation root binds an assigned identity to the base identity.

International mobile equipment identifier (IMEI) and
link-layer identities such as Bluetooth and WiFi addresses

are examples of device identities.

A device certificate signed by the device manufacturer

can bind any assigned identity to the public part of the

device key. Signatures over device identities using the de-

vice key provide device authentication toward external

verifiers.

5) Attestation and Provisioning: An externally verifiable

statement about the software configuration running on a

device is called remote attestation. Remote attestation

allows an external service provider to verify that a device is

running a compliant platform version. A common way to

implement remote attestation is to provide statements

signed with the certified device key over authenticated

measurements (e.g., cryptographic hash digests) of the
firmware and software components loaded at boot time.

The process of securely sending secrets and code to the

TEE of the target device is called provisioning. Many

security services require a security association between an

external service provider and the TEE of the correct user

device. For example, a bank might want to provision a key

to the TEE of a customer device for online banking au-

thentication. In some cases, service providers also need to
provision TEE code that operates on the provisioned

secrets, such as proprietary one-time password algorithms.

Device authentication provides the basis for TEE provi-

sioning. Data can be provisioned encrypted under a certi-

fied device key. Device certificates do not include user

identities and thus provisioning user authentication must

be implemented by other means.

Note that all cryptographic keys needed for secure
storage, isolated execution, device authentication, attesta-

tion, and provisioning can be derived from the same de-

vice key.

B. TEE Architecture
The isolation needed for a TEE can be realized in va-

rious ways, ranging from separate security elements to

secure processor modes and virtualization. Depending on

the used isolation technique, different TEE architectures

are possible. Fig. 2, adapted from [39], depicts a generic,

high-level TEE architecture model that applies to different

TEE architecture realizations.

We call a processing environment that is isolated from
the REE device OS as TEE instance. A TEE architecture

realization may support one or more TEE instances. In TEE

architectures that are based on dedicated security chips

[102] and processor modes [9], [96], typically a single TEE

instance is available. Virtualization [63] and emerging

processor architectures [65], [72] are TEE examples in

which each REE application may create its own TEE in-

stance. TEE instances are created (or activated) and ac-
cessed using the TEE entry interface. Applications running

in the REE device OS access TEE services through a TEE

application programming interface (API) that allows REE

applications to execute trusted applications and to read

and write data to and from them.

If only a single TEE instance is available, the same TEE

instance typically allows execution of multiple trusted

applications. The TEE management layer can be im-
plemented in software as a full-fledged embedded OS, a

set of libraries, a small interpreter that runs within the

TEE or in device hardware and firmware. It provides the

interface through which trusted applications communi-

cate with REE applications and invoke cryptographic ope-

rations within the TEE. In terms of size and complexity,

the management layer is likely to be significantly smaller

than the REE device OS, and thus, its attack surface is
smaller. In TEE architectures, where each REE applica-

tion creates its own TEE instance, a management layer

may not be used.

Fig. 2. Generic TEE architecture model (adapted from [39]).

Trusted applications are executed within a TEE instance that is

isolated from the REE device OS. One or more TEE instances may be

supported. Dashed boxes illustrate entities that are not present

in all TEE architectures; gray boxes are not controlled by the REE

device OS.
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III . RESEARCH SOLUTIONS

In the following, we discuss various concepts and research

efforts that continue to extend and improve trusted com-
puting research. Observe that we mainly focus on the

recent research directions in mobile and embedded sys-

tems, while trusted computing following the approach

used by the TCG is covered in Section IV. A detailed survey

on research in traditional trusted computing is available

in [75].

A. Alternative Trusted Computing Designs
One of the earliest works that describe the use of

secure coprocessors to assure isolated execution (cf.,

Section II-A3) is the report on the 4758 Secure Copro-

cessor [24]. It describes the design of a physically isolated,

tamper-resilient execution environment which imple-

ments a TEE that communicates with the central process-
ing unit (CPU) to execute certain tasks securely on a

separate processor and memory [108]. Following this

work, it was investigated how remote parties can gain

assurance that a particular application has been executed

in the TEE of some particular device (cf., Section II-A5). A

trust chain was devised by which the TEE itself can vouch

for the execution of a particular code, which in turn may

load and execute other code [95]. The device key of the
TEE is embedded by its manufacturer, who vouches for the

correct operation of that TEE.

Drawbacks of secure coprocessors are the high addi-

tional costs and the generally low computation perfor-

mance. Copilot [76] alleviates this problem by using the

coprocessor only to monitor and assure the integrity of the

actual computation performed by the main CPU. Over-

shadow [20] uses hardware-assisted virtualization to en-
force different views on memory for user applications and

OS kernels, thus ensuring the integrity and confidentiality

of applications despite OS compromise.

Some works have also investigated the extension of the

CPU itself to enable the measurement of executing code

and to establish a TEE. For instance, the AEGIS system

architecture [99] extends the CPU interface with facilities

for loading, measuring, and authenticating software mod-
ules, and uses these facilities to provide authenticated

execution of tasks in real (nonvirtual) memory. Similarly,

it was proposed that a CPU vendor could provide trusted

software modules (TSMs) [23]. The code segments of

TSMs are extended with authentication codes which are

automatically verified when they are loaded into the cache

banks of a CPU during execution.

Leveraging such a trusted loader or regular secure/
authenticated boot (cf., Section II-A1), a minimal security

kernel can be launched which then in turn ensured a

measured and isolated execution of software tasks. In

particular, the PERSEUS system architecture [77] proposes

to leverage a secure microkernel for strong isolation be-

tween a multitude of software security services. The next-

generation secure computing base (NGSCB) [29] proposes

an ultimately trusted security kernel to support secure ap-
plications in a secure world mode, while Terra [34] argues

that a chain of trust must be established from platform

initialization to the hypervisor and the individual executed

applications. Trusted hypervisors such as sHype [85] and

TrustVisor [63] follow this design and use a minimal sec-

urity kernel that provides strong isolation between higher

layer applications.

B. Remote Attestation
Remote attestation (cf., Section II-A5) begins with the

initial measuring of the bootloader and OS [48], [91]. In-

tegrity measurement architecture (IMA) [44], [86] ex-

tends the Linux kernel with facilities to measure loaded

code and data according to predefined policies. During

attestation, the software measurements maintained by

the kernel can then be signed by the device key (cf.,
Section II-A2) and the kernel in turn can be verified based

on the measurements performed by the bootloader and

platform firmware. As an alternative, secure OS kernels

such as PERSEUS or TrustVisor only measure certain iso-

lated security services, which are then used by regular

applications to perform secure transactions on their behalf

[63], [77]. The security services are designed to provide

maximum flexibility while maintaining low internal com-
plexity and external dependencies, thus simplifying the

process of measuring, validating, and establishing trust in a

particular software [3], [88].

When extending a secure channel protocol with remote

attestation, care must be taken that the reported measure-

ments actually originate from the particular platform that

is to be attested [40]. Multiple works have proposed pro-

tocol extensions for secure channels such as SSL and IPsec
[10], [88] and extend the resulting networks into security

domains of assured distributed access control enforcement

(e.g., [17] and [62]).

A general problem in remote attestation is the disclo-

sure of the often privacy-sensitive software state to the

verifying entity (verifier). To address the problems of pri-

vacy but also scalability when dealing with large amounts

of software integrity measurements, property-based attes-
tation [19], [83] proposes to attest concrete properties of

software. For this purpose, the loaded software is equipped

with property certificates which ensure that the software

has certain properties. During attestation, the platform

then proves the existence of the required properties of the

loaded software to the verifier. However, the identification

and extraction of the desired software security properties

from software remains an open problem [70].

C. Low-Cost Trusted Execution Environments
With the rise of resource-constrained embedded sys-

tems as part of complex monitoring and control infra-

structures, a recent line of research investigates the

possibility to perform attestation (cf., Section II-A5) and

isolated execution (cf., Section II-A3) even on such
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low-end devices. These works typically assume that com-
mon approaches like secure coprocessors or complex CPU

modes are too expensive in terms of production cost or

energy consumption. Instead, they aim to provide a limited

trusted computing functionality for the purpose of auto-

mated verification and trust establishment in larger IT

infrastructures.

1) Software-Based Attestation: If the mobile device does
not support a hardware-protected key needed for remote

attestation (as described in Section II-A5), attestation can

be implemented in software. A typical software-based at-

testation scheme exploits the computational constraints of

a device to make statements about its internal software

state [92], [93]. The prover must compute a response to a

given attestation challenge within a certain time. When

receiving the correct response in the expected time, the
verifier has assurance that only a specific attestation algo-

rithm could have been executed within that time frame.

The attestation algorithm is typically implemented as a

specific checksum function that iteratively merges infor-

mation gathered from the device. A formal analysis of

software-based attestation [12] has shown the challenges of

formalizing the underlying assumptions.

Several variations and extensions to software-based
attestation have been proposed, ranging from implementa-

tions for different platforms to more fundamental changes

to the software-based attestation concept, such as repeated

challenge–response procedures [45], [58] or using mem-

ory constraints [33], [104], and self-modifying or obfus-

cated algorithms to prevent manipulation of the attestation

algorithm [37], [92], [94]. Multiple works consider the

combination of software-based attestation with hardware
trust anchors such as TPMs [55], [87] and SIM cards [45]

to authenticate the prover device.

2) Minimal Attestation Hardware: The secure minimal

architecture for root of trust (SMART) [21] is designed to

enable remote attestation and isolated execution at the

lowest possible hardware cost (see also [31]). SMART

realizes this using a custom access control enforcement on
the memory bus, allowing access to a particular secret key

in memory only if the current CPU instruction pointer

(IP) points to a known trusted code region in ROM (sec-

ure storage). This way, the secret key is only accessible

when the CPU is executing that trusted code and can thus

be used to authenticate the execution of that ROM code

to other parties. In particular, by letting the trusted ROM

code measure and execute arbitrary code, the design can
be extended to a freely programmable trusted execution

mechanism or simply be used to attest the local platform.

While SMART is more efficient and easier to validate

than software-based attestation, it suffers from certain

practical drawbacks. In particular, SMART offers no ex-

ception or interrupt handling, requiring a platform reset

and memory clearing in case of unexpected errors. To

prevent interruption of the trusted code, the hardware
access control in SMART assures that the corresponding

code region can only be entered at the first address and

exited at its last address. However, memory protection

based on the CPU instruction pointer may still be exploited

with code reuse attacks, where the semantics of code is

changed based on stack or other data manipulation [30].

3) CPU-Based Task Protection: Another approach to iso-
lated execution and possibly low-cost trusted execution are

self-protected modules (SPMs) [98]. They extend the CPU

instructions to provide trusted execution based on

execution-dependent memory protection, allowing tasks

to request protected memory regions and query the pro-

tection status of other tasks in the system directly from the

CPU. This way, protected tasks can inspect and attest each

other in local memory. For communication and multitask-
ing, protected tasks can declare code entry points which

may be called by other tasks with the desired arguments,

while other portions of code are protected by the platform.

However, when communicating with other tasks on the

local platform, one needs to assure that the other task’s

entry points and protection status have not been changed

since the last local attestation.

Sancus [72] extends an openMSP430 CPU to imple-
ment SPMs in hardware. However, the problem of hand-

ling interrupts and unexpected software faults remains

unsolved, and additional modifications are required to

sanitize the platform memory upon device reset. To assure

to local tasks that a particular other task has not been

modified (e.g., by malware), the CPU provides a number of

cryptographic tokens and secure hashes of individual

loaded tasks. As a result, Sancus imposes relatively high
hardware costs for the targeted low-end systems, imposing

a 100% area increase for providing eight secure modules

[72]. By managing tasks through CPU instructions, Sancus

imposes certain restrictions on the memory layout of a

task, e.g., limiting capabilities for shared memory or peri-

pherals input/output (I/O). Another implementation of

SPMs is provided in the Fides hypervisor [97]. Fides can

provide secure interruption and communication between
processes, which, however, seems to be achievable also

with typical task isolation by trusted hypervisors or

security kernels.

4) Execution-Aware Memory Protection: TrustLite [51]

extends the concepts of SMART [21] and SPM [98] to

provide a programmable, execution-aware memory pro-

tection subsystem for low-cost embedded devices.
TrustLite’s execution-aware memory protection unit

(EA–MPU) allows running a number of protected tasks

(trustlets) in parallel without requiring additional CPU

instructions. Moreover, the EA–MPU can be programmed

to provide individual trustlets with shared memory and

exclusive peripherals access, enabling the construction of

secure device drivers and other platform services.
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TrustLite also proposes a modified CPU exception engine
to prevent information leakage to OS interrupt handlers.

This allows the OS to perform preemptive multitasking of

trustlets similar to regular tasks, thus facilitating integra-

tion of trustlets with existing software stacks.

To address the assumption of SMART and Sancus that

all system memory is cleared on platform reset, TrustLite

deploys a secure loader that initializes the EA–MPU at

boot time, thus allowing an efficient reallocation and
protection of sensitive memory regions prior to REE invo-

cation. Additionally, instead of having the hardware man-

aging identification tokens for secure interprocess

communication (IPC) as in Sancus, TrustLite assumes

that low-cost embedded systems do not require the reallo-

cation or upgrade of TEE tasks at runtime but that TEEs

can remain in memory until platform reset.

D. Physically Unclonable Functions
In many scenarios, emerging low-cost devices are ex-

posed to physical attacks. Thieves or even rightful users

may attempt to extract cryptographic keys, to clone the

device or to manipulate its software. However, protecting

secure storage (cf., Section II-A2) against hardware attacks

requires the integration of expensive physical security

mechanisms that are not economical for low-cost devices.
In this context, PUFs represent a promising new security

primitive, which enables unique device identification and

authentication [78], [84], binding software to hardware

[25], [56], secure storage of cryptographic secrets [59],

and remote attestation protocols [90].

1) PUF Concept, Properties, and Assumptions: A PUF is a

physical object, e.g., an integrated circuit [60] that, when
queried with a challenge, generates a response which de-

pends on both the challenge and the unique device-specific

physical properties of the PUF. PUFs are typically assumed

to be robust, unclonable, unpredictable, and tamper evi-

dent [11]. Informally, robustness means that, when

queried with the same challenge multiple times, the PUF

returns a similar response with high probability. Unclon-

ability demands that it is infeasible to produce two PUFs
that cannot be distinguished based on their challenge–

response behavior. Unpredictability requires that it is

infeasible to predict the PUF response to an unknown

challenge, even if the PUF can be adaptively queried for a

certain number of times. A PUF is tamper evident if any

attempt to physically access the PUF irreversibly changes

its challenge–response behavior.

Since PUFs are affected by operating conditions, such
as ambient temperature variations, they return slightly

different responses when queried with the same challenge

multiple times. Furthermore, PUF responses are not uni-

formly random. Hence, PUFs are typically combined with

fuzzy extractors [22], which map similar PUF responses to

the same value (error correction) and extract full-entropy

bit strings from the PUF response (privacy amplification).

2) PUF Types: There is a variety of PUF implementa-
tions (see [60] and [82] for an overview). The most ap-

pealing ones for the integration into electronic circuits are

electronic PUFs, which come in different flavors. Delay-

based PUFs are based on race conditions or frequency

variations in integrated circuits and include arbiter PUFs

[57] and ring oscillator PUFs [36]. Memory-based PUFs

exploit the instability of volatile memory elements, such as

SRAM cells [41], flip-flops [103], and latches [56].

3) PUF-Based Device Authentication: Device authentica-

tion (cf., Section II-A4) typically relies on a secret key

securely stored in the device. While classical approaches to

secure storage (cf., Section II-A2) may be too expensive or

even technically infeasible for resource-constrained em-

bedded devices, PUFs promise to provide a lightweight

alternative to secure device authentication. The most
common approach [78] of using PUFs for device authen-

tication is that the device manufacturer stores a set of

challenge–response pairs (CRPs) in a database which can

later be used by a verifier to identify the device. However,

a general problem of this approach is that CRPs cannot be

reused since this would enable replay attacks. A more

practical approach is based on standard authentication

protocols and stores the authentication secret in a PUF-
based key storage (cf., Section III-D4).

4) Secure Key Generation and Storage: Classical ap-

proaches to secure storage (cf., Section II-A2) are often not

suitable for low-cost embedded systems. In this context,

PUFs can be used to securely bind secrets (such as cryp-

tographic keys) to a device. Instead of storing the key in

secure nonvolatile memory, the key is extracted from the
physical properties of the underlying hardware each time it

is used [25], [56]. This protects the key against unautho-

rized readout by invasive attacks, such as probing attacks

against nonvolatile memory. Moreover, when using a

tamper-evident PUF, any attempt to physically extract the

key changes the PUF and securely deletes the key.

5) PUF-Based Remote Attestation: Software-based attes-
tation (cf., Sections II-A5 and III-C1) implies that, due to

the lack of secure storage, cryptographic schemes that rely

on secrets cannot be used. However, software-based attes-

tation assumes that the prover device is authenticated to

the verifier, which is hard to achieve without using cryp-

tographic authentication. To overcome this problem, the

attestation algorithm executed by the prover must be

linked to the hardware it was computed on, which can be
achieved by using PUFs [89], [90]. To assure that the

attestation algorithm is not outsourced to another device,

the constraints of the communication interfaces of the

prover are exploited similar to the way the computational

constraints of the prover are exploited by standard

software-based attestation. Due to the uniqueness of the

PUF responses and their tight integration into the
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attestation algorithm, a correct and timely attestation re-
sponse provides assurance of the identity of a remote

device as well as on the integrity of its software state.

6) Security of PUF-Based Solutions: In contrast to most

cryptographic primitives, whose security can be related to

well-established intractability assumptions, the security of

PUFs relies on physical properties. Many PUF security

models exist (see [11] for an overview) that, however, do not
capture the properties of real PUF implementations, which

can lead to attacks on PUF-based systems [81]. A PUF secu-

rity framework that aims to capture the properties of real

PUF implementations and that allows for empirically assess-

ing and quantifying these properties for PUF implementa-

tions has been presented in [11]. A large-scale security

analysis of application-specific integrated circuit (ASIC)

implementations of the most popular electronic PUF types
[13], [47] shows that PUF implementations are sufficiently

robust but not all of them achieve the desired security pro-

perties (e.g., unpredictability).

Most known implementations of PUFs can be emulated

in software [57], [80], either by reading them out com-

pletely or by model building attacks. The complexity of

these attacks can be increased by obfuscating the actual

PUF response [35], [61]. However, this requires protecting
the implementation of the algorithms obfuscating the PUF

response against invasive and side-channel attacks. Re-

search on the side-channel analysis of PUF-based systems

has recently started [46], [66], [74].

IV. STANDARDIZATION

Industry standards consortia have recently intensified ef-
forts to standardize TEE functionality and its interfaces.

Standardization aims at agreeing on common APIs for

provisioning and trustworthy execution across devices and

software ecosystems and the ability to subject the TEE to

compliance and security certification. In this section, we

provide a brief overview of relevant standards dealing with

TEE functionality in a bottom–up manner.

Standards that define services which make use of TEE
functionality are important as well. Examples include Car

Consortium [67] and MobeyForum [68]. Due to lack of

space, we do not discuss these standards further.

A. National Institute of Standards and Technology
The U.S. National Institute of Standards and Technol-

ogy (NIST) draft 800.164 [18] provides definitions and

terminology for many aspects of mobile hardware security
ranging from ownership roles to policy enforcement and

usage scenarios like ‘‘bring your own device’’ (BYOD). But

its most significant contribution is its unified categoriza-

tion for roots of trust (RoTs), which is NIST’s term for

hardware trust anchors.

NIST guidelines clearly and concisely collect and de-

scribe RoTs for reporting, verification, storage, and mea-

surement. In particular, NIST identifies a new RoT for
integrity, which was not previously discussed in other

work. This RoT represents the isolated environment where

measurements and trusted state assertions can be securely

stored when the device is active.

The RoTs are one way to agree on a hardware security

foundation for TEEs. Each RoT can be evaluated and

graded according to the level of security it can provide to

the system. More importantly, as we mentioned in Section II,
RoTs are the abstract tools on which the main capabilities

of a TEE system are built: isolation, secure storage, and

integrity.

B. Global Platform (GP)
The Global Platform Device Specifications, in partic-

ular the architecture document [39], have established the

reference model and terminology used for TEE software
architectures we introduced in Section II. The trusted

applications (TAs) that run in the TEE are written using

the TEE internal API [38], which is the reference library

interface for TAs. The internal API includes interfaces for

cryptographic functions, secure storage, and I/O. Espe-

cially the parameter passing paradigm between the REE

device OS and TAs is a significant divergence from what

typically is available for traditional secure elements such as
smart cards. A GP TA gets its input and provides its output

using memory references residing in the address space of

the caller in the REE device OS. This allows TAs to access

and process client-side memory directly, e.g., for in-place

decryption or the processing of vast client-side data struc-

tures, say, for runtime integrity checking.

C. Mobile Hardware Security APIs
Some mobile platforms provide APIs for hardware-

assisted cryptographic operations. Java MicroEdition, widely

used in feature phones, defines JSR 177 [73] as a generic

smartcard-like interface which can be used to expose a

standard cryptographic API (the implementation may be

provided by a mobile phone secure element such as a SIM

card). Recent versions of the Android platform expose an API

for hardware-assisted cryptography [28] in the form of a
standard PKCS 11 interface [79], while in iOS similar

functionality is provided through a proprietary API [7].

These hardware-security APIs have been modeled after

usage paradigms of hardware security modules (HSMs),

cryptographic tokens, and smart cards. A traditional hard-

ware security API allows creation of hardware-protected

keys and common cryptographic operations, such as en-

cryption and signatures, using these keys. To take advant-
age of the programmability of mobile TEEs (isolated

execution), a different kind of API abstraction is needed.

The API should address provisioning of trusted ap-

plications and secrets into the device, authorization of

trusted applications to access provisioned secrets and de-

vice keys, and control which REE application can execute

trusted applications. None of the current standardized or
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de facto proprietary hardware-security APIs provide such
functionality.

D. Trusted Computing Group
The trusted platform module (TPM) [102], defined by

the TCG, is a functional interface for platform security.

TPMs are widely deployed today. A TPM contains func-

tions for key generation and use, mainly with asymmetric

encryption and signature primitives, but also for symmet-
ric cryptography. All TPM processing happens in isolation

from the REE OS and the caller, governed by the RoTs

described in Section IV-A. Furthermore, TPMs provide

primitives for data sealing and unsealing, monotonic

counters, randomness, and some limited amount of non-

volatile storage.

1) Platform Configuration Registers (PCRs): One notable
distinction of TCG specifications is that they provide plat-

form binding as an inherent service for the authorization

and attestation of TPM objects and functions. This feature

sets it apart from other standards such as GP. All TPM

implementations provide some number of PCRs which are

integrity-protected writable volatile memory that reside

within the TPM. PCRs are used to cryptographically ag-

gregate successive measurements of software/hardware
components or configurations originating from the REE.

Aggregating a new measurement to a PCR is known as PCR

extension and is realized using a cryptographic hash func-

tion. If the REE OS consistently provides measurements of

all its code to the TPM, before executing the measured

code, then the set of PCRs serve as a representation of the

state of the currently running REE software. PCRs have

two uses: binding TPM objects to REE state and reporting
REE state to external verifiers as part of remote attestation

(cf., Section II-A5). TPM objects such as keys and stored

data can be associated with an assertion that restricts the

use of the object only when the trusted platform is in a

certain predefined state, expressed as set of predefined

reference values for PCRs. Generating a signed report of

PCR values with a certified TPM-specific key is the essen-

tial step in remote attestation of the REE state.

2) TPM Mobile: TPM mobile specifications [previously

known as mobile trusted module (MTM)] allow a TPM to

be realized in software within a TEE as a TA. This makes it

possible to have more than one active TPM instance in a

device. This multistakeholder model allows different

stakeholders (such as device manufacturers, mobile opera-

tors, enterprises, and users) to run their ‘‘own’’ TPMs and
populate their TPM with measurements relevant to their

needs, independently of other TPMs active on the same

system.

3) TPM2 Authorization: A new revision (v2.0) [102] of

the TPM standards (TPM2) are currently on the road to

publication. The new specifications make improvements in

various aspects, such as algorithm agility and the use of

nonvolatile memory. The most novel aspect of TPM2 is its

enhanced authorization model. In this section, we illus-

trate the power of this model by showing how it can be

used for secure boot, which is a common need for mobile
and embedded devices.

The guiding principle for the authorization model is

separation of policy and mechanism [107]. This allows de-

signing the secure boot of a platform from the OS upward

in a hardware-independent manner, where any binary

relation can be applied as a policy assertion. We will now

explain an example secure boot policy depicted in Fig. 3.

In version 1.x of the TPM specifications, the means of
expressing access control policies is mainly limited to

passwords, and many object operations (e.g., extending

PCRs) cannot be associated with a policy. For example, a

device could conceivably implement secure boot by aggre-

gating a sequence of measurements of launched software

components in a PCR and aborting the boot process if the

PCR does not reach an expected reference value. The

reference value would, however, have to be encoded in
data objects (certificates) outside the TPM. Naturally, this

requires a rigid specification of the mechanism in order to

make it apply across manufacturers and systems.

In the example in Fig. 3, we use TPM2 authorization to

make secure boot conditioned on the successful comple-

tion of the TPM2 command PCRExtend to extend a speci-

fic PCR. We must, therefore, associate the policy for secure

boot with the ability to perform this operation.
Most TPM2 objects can be associated with a single,

unique object policy digest [cf., Fig. 3(a)], which is perma-

nently stored with the object. In order to get authorization

for object access, the caller must run an authorization

session [cf., Fig. 3(b)] that contains a rollback-protected,

Fig. 3. Secure boot with TPM authorization.
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accumulated session policy digest. The session is updated
using TPM policy commands [cf., Fig. 3(c)] that each im-

plement a policy assertion, which consists of some system

evidence [cf., Fig. 3(d)] that the TPM2 knows about. This

evidence is aggregated into the session digest in a well-

known and well-defined manner. Session policy digests are

aggregated in the same way as PCRs are extended, i.e., by

using a cryptographic hash function.

In our example session, the secure boot process makes
three assertions at the beginning: the first one aggregates

the current state of the system, represented by some

source PCRs; the second assertion binds the exact target

command (PCRExtend), along with its parameters such as

the identity of the target PCR and the value it is going to be

extended with; the third assertion binds the value of a

counter (for example, specifying a bound for the current

version number of the firmware being booted). After all
these assertions have been aggregated, the session policy

digest will end up with a specific value Q. The final asser-

tion in our example (remote assertion) is an external sig-

nature on a structure asserting the expected value Q0 of a

session digest when all prior assertions have been com-

pleted. If this signature can be validated with a public key P
loaded into the TPM and the session digest matches refer-

ence value Q ¼ Q0, then the session digest is replaced with
a unique representation of the public key2 that validated

the signature, say W ¼ HðPÞ. If we had set the reference

object policy for the target PCR [cf., Fig. 3(a)] to be the

same value W , then issuing the PCRExtend command in

the context of the authorization session will succeed as

long as both the digests match [cf., Fig. 3(e)] and deferred

checks on conditions implied by the provided assertions

hold.3 If the policy values do not match or the deferred
assertions fail, then the PCRExtend invocation returns

with a failure code. Based on this, the caller should take

appropriate action, like resetting the device.

In other words, this process effectively allows having a

remotely controlled authorization policy where an external

signature controls which policies are allowed. The remote

controller can issue signed remote assertions for multiple

different session digests, each representing an alternate
acceptable configuration for secure boot. TPM2 also sup-

ports ways of securely mapping accumulated session policy

digests to perform logical access control decisions.

One example is the PolicyOR command. On the condi-

tion that the current policy digest value matches one of a

number of values in a set provided as a PolicyOR param-

eter, then the current digest value is replaced with a re-
presentation of the entire set of values.

All the assertions listed above exist in the published

TPM2 command set: a secure boot process along these

lines is viable with a TPM2. As the caller cannot affect

the contribution of any policy assertion, the only way the

authorization can succeed is that the state described by the

assertions actually is the one represented in the external

signature, thus achieving separation of mechanism and
policy.

Note that TPM2 is a passive entity. To implement sec-

ure boot using TPM2, there has to be an external immu-

table active entity, such as a boot loader, which enforces

secure boot. It is customary for such secure boot imple-

mentations to allow the user to override secure boot [15].

V. INDUSTRY SOLUTIONS

Over the past years, several trusted computing research

concepts have been realized in industry products, and in

many cases such products have fostered new opportunities

to build and research trusted systems. In the following

sections, we review some of the main technologies as well

as standardization efforts.

A. Virtualization and Dynamic Root of Trust
Many mobile and ultramobile laptop platforms feature

hardware-assisted virtualization technology, such as Intel

virtualization technology (Intel VT). A central design goal

of Intel VT was to simplify the implementation of robust

hypervisors. Intel VT adds two new operation modes: VMX

root mode for hypervisors and VMX nonroot mode for

virtual machines. VMX root mode is very similar to the
normal Intel architecture without Intel VT while VMX

nonroot mode provides an Intel architecture environment

controlled by a hypervisor. A virtual-machine control

structure (VMCS) was introduced to facilitate transitions

between VMX root mode and VMX nonroot mode and can

be programmed by the hypervisor to establish boundaries

on a VM, including access to memory, devices, and control

registers. While operating in VMX nonroot mode, the
execution of certain instructions and events causes a tran-

sition to VMX root mode called a VMexit. The hypervisor

can retrieve details as to the cause of the VMexit by read-

ing the VMCS and process the event accordingly [71]. Intel

VT introduced a generalized IO–MMU architecture which

enables system software to define constraints on direct

memory access (DMA) devices, restricting their access to

specific subsets of physical memory allowing for a smaller
TCB [2].

Another major capability of modern systems is the

dynamic root of trust for measurement (DRTM). Avail-

able as Intel trusted execution technology (Intel TXT) or

AMD secure virtual machine, this technique enables a

CPU to perform a runtime reinitialization and establish a

new software TCB (TEE payload), irrespective of the

2The public key used to verify the signature assertion is loaded into
the TPM from the outside by the secure boot process. However, the TPM
will extend the used public key into the session digest which ensures that
the subsequent command will succeed only if the correct public key was
used to verify the signature.

3Some assertions, like, e.g., the target command assertion, cause a
deferred check to be logged in the session and validated during actual
command execution in addition to the update of the session digest at the
time the assertion is made.
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trustworthiness of previously loaded software. For this
purpose, the TCG TPM was extended with a set of DRTM

PCRs which can be reset at runtime by the CPU by sending

a TPM command from the appropriate operation mode

(TPM locality). The Intel GETSECS [SENTER] instruction

initiates the DRTM. The CPU resets the DRTM PCRs and

loads an authenticated code module (ACM) into an iso-

lated execution environment. The ACM performs a series

of platform configuration checks, configures DMA protec-
tion for the TEE payload, and extends the TEE payload

hashes into the TPM PCRs.

DRTM technology has been used to securely execute

critical software payloads such as SSH logins, X.509 e-mail

signatures, or to protect banking secrets [16], [32], [64].

Intel TXT has also been used in combination with Intel VT

to initiate a trusted hypervisor, which in turn provides

multiple TEEs to the individual running VMs [63]. The
generalized IO–MMU allows hypervisors to be ‘‘disen-

gaged,’’ i.e., to only perform an initial configuration of VM

boundaries, thus providing only a minimal external inter-

face and complexity [49]. Alternatively, a ‘‘disaggregated’’

hypervisor may reduce its TCB by delegating drivers for

peripherals control to other VMs [69], or to construct a

trusted path, providing secure user I/O for TEEs [110].

B. Userspace Trusted Execution
Intel software guard extensions (Intel SGX) are a set of

new instructions and memory access changes to the Intel

architecture to support TEEs. The extensions provide the

ability to instantiate one or more TEEs (enclaves) that

reside within an application inside an REE. Accesses to the

enclave memory area against software (not resident in the

enclave) are prevented by hardware. This restriction is
enforced even from privileged software, such as operating

systems, virtual machine monitors, and the basic input/

output system (BIOS).

The enclave lifecycle begins when a protected portion

of an application is loaded into an enclave by system

software. The loading process measures the code and data

of the enclave and establishes a protected linear address

range for the enclave. Once the enclave has been loaded, it
can be accessed by the application as a service or directly as

part of the application. On first invocation, the enclave can

prove its identity to a remote party and be securely pro-

visioned with keys and credentials. To protect its data

persistently, the enclave can request a platform-specific

key unique to the enclave to encrypt data and then use

untrusted services of the REE.

To implement Intel SGX memory protections, new
hardware and structures are required. The enclave page

cache (EPC) is a new region of protected memory where

enclave pages and structures are stored. Inside the EPC,

code and data from many different enclaves can reside.

The processor maintains security and access control infor-

mation for every page in the EPC in a hardware structure

called the enclave page cache map (EPCM). This structure

is consulted by the processor’s page miss handler (PMH)

hardware module, as shown in Fig. 4. The PMH mediates

access to memory by consulting page tables maintained by

system software, range registers, and the EPCM. A mem-
ory encryption engine (MEE) protects the EPC when using

main memory for storage [65].

Enclave binaries are loaded into the EPC using new

instructions. ECREATE starts the loading process and

initializes the Intel SGX enclave control structure (SECS)

which contains global information about the enclave.

EADD loads a page of content into a free EPC page and

records the commitment into the SECS. Once the EPC
page has been loaded, the contents of the page are mea-

sured using EEXTEND. After all the contents of the

enclave have been loaded into the EPC, EINIT completes

the creation process by finalizing the enclave measure-

ment and establishes the enclave identity. Until an EINIT

is executed, enclave entry is not permitted.

Once an enclave has been loaded, it can be invoked by

application software. To enter and exit an enclave prog-
rammatically (e.g., as part of a call/return sequence), new

instructions, EENTER and EEXIT, are provided. While

operating in enclave mode, an interrupt, fault, or excep-

tion may occur. In this case, the processor invokes a special

internal routine called asynchronous exit (AEX) which

saves and clears the enclave register state and translation

lookaside buffer (TLB) entries for the enclave. The

Fig. 4. High-level architecture of Intel SGX PMH. Processor memory

requests are sent to the PMH for translation and access control checks.

As part of Intel SGX, the PMH has been extended to check whether a

memory access was initiated by an enclave. For nonenclave accesses,

the PMH redirects any access to the EPC to nonexistent memory (abort

page). For an enclave access (an access by enclave to its protected

linear address range), the PMH checks that the translated address is an

EPC page. Furthermore, the PMH consults the EPCM to verify that the

EPC page belongs to enclave requesting access, the correct linear

address was used to access the page, and access permissions are

consistent with the request.

Asokan et al.: Mobile Trusted Computing

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1199



ERESUME instruction restores the processor state to allow
the enclave to resume execution.

To enable attestation and sealing, the hardware

provides two additional instructions EREPORT and

EGETKEY. The EREPORT instruction provides an evi-

dence structure that is cryptographically protected using

symmetric keys. EGETKEY provides enclave software with

access to keys used in the attestation and sealing process. A

special quoting enclave is devoted to remote attestation.
The quoting enclave verifies REPORTs from other enclaves

on the platform and creates a signature using a device

specific (private) asymmetric key [4].

Intel SGX minimizes the TCB of trusted applications to

the critical portion of the application and hardware. This

simplifies the creation and validation of remote attestation

reports, as remote verifiers no longer have to understand

multiple TEE management layers and their dependencies.
While requiring CPU extensions, Intel SGX does not re-

quire any dependencies on the TPM, a hypervisor, or a

separate trusted operating system. Further, it is protected

against hardware and software attacks on RAM. Finally,

Intel SGX enables application developers to directly deploy

trusted applications inside REE applications [42].

C. Mobile Architectures Using Secure
Processor Modes

ARM TrustZone [9] and TI M-Shield [96] are system-

wide, mobile security architectures that leverage a secure

execution mode provided by the device main CPU.

TrustZone is deployed to the majority of current smart-

phones, whereas M-Shield is an example of a previous,

similar architecture. In this section, we focus on TrustZone.

The main CPU of the mobile device supports two exe-
cution modes called normal world and secure world.

The processor boots to the secure world which sets up the

necessary runtime environment before switching to the

normal world. Execution can switch back to the secure

world when a special command is executed in the normal

world. This command starts a monitor mode that performs

the processor mode switch. The designer of a mobile

device hardware configuration defines the hardware
components that are accessible in these two modes.

Fig. 5 illustrates an example hardware configuration in

a TrustZone-enabled mobile device [9]. The device main

CPU, small amounts of RAM and ROM, and the cellular

modem are integrated into a system on chip (SoC). These

on-chip components are connected with an internal bus.

The SoC also includes memory controllers for off-chip

memory elements and peripherals.
The access control between these hardware elements

is implemented using a status flag that the SoC internal

bus carries. The status flag indicates the mode of the

master device in bus communication. Bus communica-

tion slaves must enforce access control based on the flag.

Hardware elements can be made aware of the status flag

or dedicated access control hardware can be placed be-

tween the bus and the target hardware element. Access to

memory elements and peripherals is typically controlled

by adding dedicated access control hardware elements be-

tween the bus and the hardware element or its memory
controller.

Typically, on-chip memory is configured for secure

world access only, while the off-chip memory elements

and peripherals can be partitioned between the secure

world and the normal world. Most peripherals are acces-

sible by the normal world. Also interrupt handling can be

configured; the processor can switch execution mode for

dedicated interrupts, if needed.
Typical uses of TrustZone TEE include secure boot,

secure storage, and isolated execution. The underlying

trust anchors (device key, cryptographic mechanism, and

verification root) can be configured during manufacturing

into on-chip memory. The same trust anchors can be used

for device authentication and attestation.

D. Secure Elements
Besides processor modes, smartphones support TEEs in

the form of separate security elements, such as smart

cards. Some mobile devices have extension slots for dedi-
cated smart card TEEs and the majority of mobile devices

are equipped with a SIM card. Smart card TEEs provide

secure storage and isolated execution. Boot integrity veri-

fication, device authentication, and remote attestation are

typically not supported by smart card TEE realizations.

E. Onboard Credentials
Although TEE architectures like TrustZone and

M-Shield have been deployed to smartphones for almost

a decade, and secure elements in the form of SIM cards

are present in many mobile devices, the usage of

Fig. 5. Overview of the ARM TrustZone system architecture [9].

In a typical mobile device, many hardware elements are integrated

into a single SoC. Access control between TrustZone normal world

and secure world can be implemented with a system bus flag and

dedicated access control hardware (gray boxes).
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hardware-security mechanisms by third-party developers
has been limited [27]. Traditionally, mobile device manu-

facturers have leveraged mobile TEE capabilities only for

their internal use cases, such as subsidy lock protection or

secure boot and secure element application development

has not been available for third parties.

Onboard credentials (ObC) [26], [52], [53] is a TEE

architecture developed at Nokia Research Center and cur-

rently available in TrustZone-enabled Nokia Windows
Phone 8 and Symbian phones. The ObC system serves as

an example of TEE architecture that allows developers to

utilize programmability of mobile TEEs.

Fig. 6 illustrates the ObC architecture [27]. Trusted

applications are executed on top of a small virtual machine

called the ObC interpreter (TEE management layer). The

interpreter provides isolation between trusted applications

originating from unknown developers. Trusted application
development can be done in BASIC or using bytecode as-

sembler. The ObC interpreter is implemented as a set of

interacting TEE code components. Depending on the un-

derlying TEE hardware the components may permanently

reside inside the TEE or be loaded on demand.

To execute a trusted application, the ObC scheduler

loads along with its inputs and stored data sealed by pre-

vious invocations. The ObC interpreter executes the
trusted application bytecode. Some execution events will

cause the interpreter to collect its runtime state, encrypt it,

and return to the REE for scheduling. The ObC scheduler

reinvokes the same or different trusted applications, at-

taching possible temporarily stored data or the interpreter

state, and in this manner the bytecode execution continues

to completion. Numerous context switches cause a signi-

ficant execution overhead, but since the system runs on

the mobile device main CPU, the achieved performance is
comparable to solutions without scheduling on slower

security chips, such as smart cards.

The ObC platform supports an open provisioning mod-

el in which any developer can, with the permission of the

device user, deploy trusted applications. A device-specific

and manufacturer-certified public key provides the basis

for remote provisioning; service providers need to handle

user authentication additionally. The certified device key
can transport a provisioner-specific secret that defines a

new security domain. Isolation between security domains

inside the TEE is guaranteed by interleaving execution of

different security domains in time and implementing

local storage with distinct encryption keys.

To develop a complete security service, a service pro-

vider needs to deploy a trusted application that handles the

service-specific security logic within the TEE, and a REE
application that triggers the trusted application execution

(and provides a user interface).

Smartphone-based public transport ticketing is an ex-

ample ObC application that has been deployed in practice

[100]. In nongated transport systems, travel tickets are not

verified at station gates, but instead travelers are requested

to perform ticketing on their own accord but are subject to

ticket inspections. Such a model allows a traveller to stop
his phone from reporting evidence for trips during which

he was not inspected. An ObC trusted application that

implements an authenticated counter bound to identity

verification signatures can address such situations. A

traditional cryptographic API (e.g., PKCS11 [79] or TPM

interface [102]) would not enable implementation of au-

thenticated counters. With a programmable TEE, imple-

mentation of such a ticketing solution is simple, and
deployment to devices already in the field is practical.

F. Physically Unclonable Functions
While PUFs and PUF-based security solutions are still

investigated by the research community, security products

based on PUFs are already announced for the market [43],

[105]. These systems mainly target IP-protection and anti-

counterfeiting applications as well as secure key storage
and device authentication systems.

VI. OUTLOOK AND SUMMARY

The role of trusted computing features in mobile and

embedded devices is at a crossroads. After years of limited

use, the imminent arrival of new standards and increased

interest on the part of the industry to make trusted com-
puting widely accessible has the potential to increase and

change the ways by which application developers and users

benefit from these features. The fact that industry sees new

opportunities in this domain is evident from the arrival of

new products from established companies and the forma-

tion of new companies. With increased use of mobile

devices, new research problems will become apparent.

Fig. 6. Overview of ObC architecture [27]. ObC interpreter is

implemented as TEE code. ObC scheduler controls execution of

dynamically loaded ObC trusted applications and maintains persistent

state. Mobile applications access ObC trusted applications through ObC

API that provides provisioning, execution, and sealing functionality.
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On the other hand, several issues need to be addressed
before such increased use becomes reality. We discuss

some of them below.

Privacy and trust issues: With the improved scalability

and security of modern TEEs, previously raised concerns

[6] regarding privacy and vendor lock-in are becoming

more important. For instance, the implications of combin-

ing TPM2 with secure boot are currently subject of in-

tensive discussions in Europe [14], [109]. This calls for
further research in industry and academia to analyze and

improve the security and privacy implications of this

emerging technology.

Future of PUFs as trust anchor: There are many yet

unsolved challenges with regard to the scalable and secure

integration of PUFs into IT systems. For instance, most

existing PUF implementations can be emulated in software

and require to obfuscate the actual PUF responses to pre-
vent emulation attacks. In particular, side-channel attacks

and invasive hardware attacks can be used to extract PUF

responses. Hence, further research should investigate al-

ternative PUF designs that are resistant to emulation

attacks and/or the secure integration of the PUF and the

logic processing the PUF responses.

Attacker models: Hardware security solutions need to

consider a number of attack vectors such as side-channel
attacks based on memory management and cache manip-

ulation, power consumption analysis, pipeline analysis, or

interface timing attacks. While protections against such

threats are known, they are expensive and unsuitable for

low-cost devices. The impact of possible attacks can be

mitigated by suitable system designs. For example, TEE

implementations that make use of chip-external memory

effectively extend the TEE across multiple components
within a device. Such TEEs are vulnerable to memory prob-

ing attacks using physical probes. If an application protected

by such TEEs is designed to avoid the use of global keys (keys

shared by all devices in the system) or ‘‘class keys’’ (keys

shared by a large group of devices), then the impact of a

successful attack on a single device can be minimized.

Mitigation of software attacks in hardware: One big

challenge is the verification of the runtime integrity of an

IT system. Existing approaches to detect and to prevent
control flow attacks (such as return-oriented programming

attacks) are typically implemented in software and involve

a significant runtime overhead. An important line of re-

search, therefore, is to investigate how mechanisms to

protect the control flow integrity of IT systems can be

effectively realized in hardware to achieve higher

performance.

Provisioning: As discussed in Section V-E, the ability for
developers to freely provision trusted applications and

credentials subject only to user approval (and without

necessarily requiring approval from any third parties like

device manufacturers or mobile operators) has the po-

tential to rapidly expand uses of TEE. Architectures like

ObC (Section V-E) and Intel SGX (Section V-B) facilitate

such open provisioning. Global Platform is working on a

new ‘‘consumer-centric provisioning model’’ with the same
intent.

Scaling down: Just as the popularity and deployment of

smartphones exploded during the last decade, the wide-

spread use of low-cost devices in security and privacy-

critical infrastructures may follow. Remote attestation and

isolated execution are important features impacting the

feasibility and scalability of these emerging systems. We

discussed multiple proposed solutions in Section III-C,
each with their own limitations and cost constraints.

However, currently no comprehensive security architec-

ture exists to facilitate the secure operation of low-cost

embedded systems.

Peripherals: In addition to secure execution and storage

within the TEE, it is necessary to secure their interactions

with peripherals. How this can be done in a flexible, yet

economic manner is an open question.
Usability: How trusted applications and credentials in

a device can be securely and easily backed up or

migrated from one device to another on user demand

are critical to the usability of trusted computing tech-

nologies. Equally important is the consideration of

‘‘usability’’ for developers. What programming para-

digms should be used for the development of trusted

applications? h
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