HAFIX: Hardware-Assisted Flow Integrity Extension

Lucas Davi, Matthias
Hanreich, Debayan Paul,
Ahmad-Reza Sadeghi
Technische Universitat
Darmstadt, Germany

ABSTRACT

Code-reuse attacks like return-oriented programming (ROP)
pose a severe threat to modern software on diverse proces-
sor architectures. Designing practical and secure defenses
against code-reuse attacks is highly challenging and cur-
rently subject to intense research. However, no secure and
practical system-level solutions exist so far, since a large

number of proposed defenses have been successfully bypassed.

To tackle this attack, we present HAFIX (Hardware-Assisted
Flow Integrity eXtension), a defense against code-reuse at-
tacks exploiting backward edges (returns). HAFIX provides
fine-grained and practical protection, and serves as an en-
abling technology for future control-flow integrity instanti-
ations. This paper presents the implementation and evalu-
ation of HAFIX for the Intel® Siskiyou Peak and SPARC
embedded system architectures, and demonstrates its secu-
rity and efficiency in code-reuse protection while incurring
only 2% performance overhead.

1. INTRODUCTION

Code-reuse attacks have become the state-of-the-art tech-
nique to exploit memory-related vulnerabilities in modern
software. These attacks require no code injection. That
is, they hijack the intended control-flow of applications and
redirect it to unintended but valid code sequences. Hence,
these attacks circumvent non-executable memory protection
against code injection attacks, which is currently deployed
on many computing platforms including Intel®, ARM, and
SPARC.

In particular, code-reuse attacks based on return-oriented
programming (ROP) combine short code sequences (called
gadgets) residing in shared libraries to induce malicious pro-
gram actions [15, 5]. These code sequences typically termi-
nate in a return or indirect jump/call instruction. ROP
attacks have been launched on various architectures such
as Intel® x86, ARM, SPARC, PowerPC, and embedded sys-
tems (e.g., Atmel AVR sensors [9]). Indeed, many of today’s
exploits are based on ROP techniques. This fact has made

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright @ 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2744847.

Patrick Koeberl
Intel Labs

Dean Sullivan, Orlando
Arias, Yier Jin
University of Central Florida,
USA

the design and implementation of practical ROP mitigation
a hot topic of research. The most general solution against
ROP is control-flow integrity (CFI) as it restricts program
execution to a pre-defined control-flow graph (CFG) [3]. Un-
fortunately, the original CFI proposal [3] suffers from practi-
cal deficiencies, most notably performance overhead. Hence,
recent CFI approaches aim at a tradeoff between security
and practicality [18, 13]. In particular, they relax the more
restrictive policies presented in [3] to gain efficiency. How-
ever, these so-called coarse-grained CFI policies can be un-
dermined as shown recently [11, 8]. Until now, the majority
of research on CFI has focused on software-based solutions.

Our goal and contributions.

We take a hardware-based CFI approach that has several
advantages over software-based counterparts: First, it is sig-
nificantly more efficient, as we demonstrate. Second, com-
piler support is simplified by reducing complex CFI checking
code to single CFI instructions. Third, dedicated CFI hard-
ware instructions and separate CFI memory provide strong
protection of critical CFI control-flow data.

We focus on backward-edge CFI, that is, CFI for indirect
branches through function return instructions in the pro-
gram’s CFG. In contrast, forward-edge CFI handles indirect
branches in the CFG that are caused by jumps and function
calls [16]. Forward-edge CFI can be efficiently enforced by
software solutions [16] whereas conventional ROP and many
public real-world code-reuse attacks exploit backward edges.
In terms of performance, protecting backward edges is more
challenging, simply due to the fact that function returns oc-
cur far more frequently than indirect calls and jumps. Ex-
isting backward-edge CFI schemes either suffer from large
performance degradation (when using a shadow stack for
return addresses), or they deploy vulnerable, coarse-grained
CFTI policies as mentioned above.

Our contributions are as follows: We developed and eval-
uated for the first time a fine-grained backward-edge CFI
system in hardware, called HAFIX. We adapt the concep-
tual work by Davi et al. [7] and extend existing processors’
instruction set architectures.

To develop HAFIX, we had to tackle several challenges:
(i) efficient and secure access to CFI control-flow data (i.e.,
label memory), (ii) specifying new CFI instructions that per-
form efficiently in one cycle, and (iii) automatically emitting
these instructions during compilation. Additionally, we also
tackled the challenge of providing CFI protection for recur-
sive function calls in our architecture.

We present real hardware implementations of backward-



edge CFI targeting bare metal code. Specifically, we extend
the processors’ instruction set with new CFI instructions,
and also modify the respective compilers to automatically
emit our new instructions into applications. We show proof-
of-concept implementations on two different processor ar-
chitectures: The first is the Intel® Siskiyou Peak platform
which primarily targets embedded applications [14]. The
second is the open source LEON3 microprocessor which im-
plements the SPARC V8 instruction set and has been de-
veloped by the European Space Agency for avionic applica-
tions [1].

One significant aspect of our work is the performance and
security evaluation of fine-grained hardware-based (backward-
edge) CFI that we conducted on embedded systems under
different security scales. We evaluated our HAFIX imple-
mentation using standard embedded benchmarks (including
Dhrystone and CoreMark), and show that it only adds 2%
of performance overhead on average. Moreover, we provide
a security evaluation to demonstrate that HAFIX reduces
the available gadget space to 19.82% on average compared
to recently proposed defenses in a worst-case setup (cf. Sec-
tion 5.3).

2. SYSTEM MODEL

In this section, we present our target threat model, main
assumptions, and requirements.

Threat Model. Our main goal is to thwart code-reuse at-
tacks launched through backward edges (function returns).
The adversary i) has full control over the program’s stack
and heap to inject new return addresses and overwrite ex-
isting ones, ii) has access to the application’s code including
linked libraries, iii) can exploit a buffer error to instanti-
ate a code-reuse attack, and iv) can bypass any deployed
code randomization (e.g., ASLR), i.e., the adversary has full
knowledge of the application’s memory layout.
Assumptions. As the main scope of this paper are CFG
backward edges, we assume that the target system deploys
software-based CFI protection for forward edges [16] and
leave hardware-assisted support for these edges for future
work. We also assume that the target hardware platform
enforces protection against code injection (e.g., NX-Bit) cur-
rently deployed by default on almost all platforms.
Requirements. The main objectives of our CFI solution
are efficiency, practicality, and enforcing fine-grained CFI
protection on backward edges. Fulfilling these requirements
is highly challenging, since function returns occur frequently
at runtime. Recent research has shown that coarse-grained
CFTI policies for returns, i.e., restricting returns to target
a call-preceded instruction, are insufficient and can be by-
passed [11, 8].

3. DESIGN

Our hardware-assisted CFI solution HAFIX adapts the con-
cept proposed by Davi et al. in [7]. Moreover, we tackle
the problem of recursive function calls. Despite proper de-
sign, we aim at providing a practical implementation of fine-
grained CFI as well as a comprehensive evaluation of our
solution on real embedded systems hardware.

3.1 Backward-Edge CFI Scheme

Fine-grained software-based CFI approaches validate func-
tion returns based on the so-called shadow stack (or return

address stack) paradigm (e.g., [3]): all return addresses that
are pushed on the program’s stack through call instructions
are tracked on a separate, protected shadow stack. Upon
function return, CFI verifies whether the program uses a
return address that is held on the shadow stack. If not,
control-flow is violated; otherwise the program will con-
tinue execution and the used return address is popped off
the shadow stack. Although shadow stacks provide fine-
grained protection, they (i) significantly decrease perfor-
mance and (ii) lead to false positives for certain program-
ming constructs (C++ exceptions with stack unwinding,
setjmp/longjmp). Concurrently to our work, Dang et al. [6]
demonstrate that performance can be increased by leverag-
ing a parallel shadow stack. However, the parallel stack still
resides in the same address space of the target application.

In our solution HAFIX, we adopt the idea of confining
function returns to active call sites [7]. In other words, we
force a return to target a call-preceded instruction inside a
function that is currently executing. As we will show, this
CFI policy can be efficiently implemented in hardware and
requires only minimal changes to the compiler.

Standard HAFIX Label State
Instructions Instructions Memory
° CFIBR
label 2

N
o CFIDEL Ll label
label

CFIRET N
e label.n

Figure 1: Abstract design of HAFIX

The underlying design to enforce this CFI policy is de-
picted in Figure 1. In order to monitor functions that are
currently executing, HAFIX requires the compiler to assign
unique labels to each function. Further, it forces the first
instruction of each function to be a CFIBR. This instruction
loads the label of the function into a dedicated memory area,
called the label state memory, to indicate that the function is
active (Step @). Internally, direct and indirect call instruc-
tions lead to a processor state switch in which the proces-
sor only accepts CFIBR. To deactivate a function, HAFIX
uses the CFIDEL instruction which effectively removes the
label from the label state memory (Step @). Hence, CFI-
DEL instructions are executed just before a function return
instruction.

The critical point of backward-edge CFI is the final func-
tion return instruction of the subroutine, since this indirect
branch instruction can be exploited by the adversary to hi-
jack the program’s control flow based on a malicious return
address. However, in HAFIX, return instructions need to
target an active call site. To enforce this, only returns to the
CFIRET instruction are permitted, in particular those CFIRET
instructions that define a currently active label in the label
state memory (Step ®). The dashed line in Figure 1 indi-
cates that CFIRET does not change the label state, but only
checks whether a label is active. We will give a concrete
code example in Section 4.2.

label_n




Implementation Requirements. We need to define new
hardware instructions CFIBR, CFIDEL, and CFIRET. Further,
we need to implement a state model that switches states on
function call and returns to only accept as next instructions
CFIBR and CFIRET respectively. On the compiler side, we
need to emit these instructions at their corresponding places:
CFIBR at function start, CFIRET at all call sites, and CFIDEL
at function return.

3.2 Recursive Function Calls

Our design and implementation needs to tackle an impor-
tant challenge of handling recursive function calls. These
lead to a number of store operations of the same label, since
a recursive function invokes itself several times before each
instance returns. To solve this problem, we only store the
label once and record the number of invocations in a sep-
arate (hidden) register. For this, we introduce a new CFI
instruction called CFIREC and a new shadow register called
CFIREC_CNTR.

Label State
Memory

label 1

label 2

CFIREC
label

CFIDEL
label

CFIREC_CNTR

CFIREC_CNTR++ CFIREC_CNTR~ —

Figure 2: Recursion handling in HAFIX

The abstract workflow of a recursive call under our new
CFI instrumentation is shown in Figure 2. First, the com-
piler emits CFIREC at the beginning of all recursive functions
(rather than a standard CFIBR). Upon execution, CFIREC ac-
tivates the label of the recursive function but only if the
CFIREC_CNTR is set to zero (Step @). In addition, CFIREC in-
crements the CFIREC_CNTR (Step @). Internally, we also as-
sociate the label of the recursive function to the CFIREC_CNTR
register.

Upon function return, the CFIDEL instruction validates
whether the current label is associated to CFIREC_CNTR. If
the link exists, HAFIX knows that a recursive function is
active and we subsequently check whether CFIREC_CNTR > 1.
If so, we only decrement CFIREC_CNTR (Step @) as more re-
turns from the same function are expected. The label is only
removed from memory if CFIREC_CNTR is equal to 1 (Step @),
indicating the last function instance of the recursive func-
tion returns. Note that our mechanism targets non-nested
recursive functions. Nested recursive functions are rare in
embedded applications, e.g., none of our benchmarks con-
tained them (see Section 5).

4. IMPLEMENTATION OF HAFIX

In this section, we present the implementation of HAFIX on
our target architectures Intel® Siskiyou Peak and SPARC.
We give a short overview on both architectures, present
HAFIX-instrumented code, and finally describe the imple-

|
Siskiyou Peak ! SPARC
|
<funct_a> : <funct_a>
1: cfibr 0x15 ! 1: cfibr 0x15
2: push Jebp | 2: save %sp, -96, %sp
3: mov %ebp, %esp ! 3: sparc_ins ...
4: call <funct_b> : 4: call <funct_b>
5: cfiret 0x15 I 5: nop
6: mov %esp, %ebp | 6: cfiret 0x15
7: pop %ebp ! 7: restore
8: cfidel 0x15 | 8: retl
9: ret ! 9: cfidel 0x15
!
<funct_b> : <funct_b>
a: cfibr 0x16 ! a: cfibr 0x16
b: push %ebp : b: save %sp, -96, %sp
c: mov %ebp, %esp ! c: sparc_ins ...
d: asm_ins... : d: restore
e: mov %esp %ebp [ e: retl
f: pop %ebp : f: cfidel 0x16
10: cfidel 0x16 !
11: ret :
|
|
|
|

Figure 3: HAFIX-instrumented code

mentation of the CFI instructions and the label memory in
hardware.

4.1 Intel® Siskiyou Peak and SPARC

Intel® Siskiyou Peak is a 32-bit, fully synthesizable core in-
tended for deeply embedded applications [14]. The core is
highly configurable and features a 5-stage, single-issue pro-
cessor pipeline. Major configuration options include a Mem-
ory Protection Unit, various branch predictors, 1&D caches
and multiplier performance options. Siskiyou Peak also in-
cludes a variety of micro-architectural options to trade off
clock frequency for improved instructions-per-cycle. The
processor is organized as a Harvard architecture with sep-
arate busses for instruction, data and memory mapped 10
spaces. The instruction set is a small subset of the 32-bit x86
instruction set and shares the same variable-length binary
encoding.

The SPARC implementation of HAFIX was based on
the open-source LEON3 processor. Initially developed by
the European Space Research and Technology Centre, the
Aeroflex Gaisler LEON3 is a synthesizable 32-bit proces-
sor containing a 7-stage pipeline with Harvard architecture,
memory management unit, hardware multiplier and divider,
on-chip debug support and multi-processor extensions. The
LEON 3 implements the SPARC V8 architecture [1], a 32-bit
architecture which provides 3 to 32 register windows, where
each window offers 32 general purpose registers. The core
is extendable by means of its AMBA 2.0 AHB bus interface
supporting IP core plug and play [10].

4.2 Code Instrumentation

Figure 3 shows HAFIX-instrumented assembler code target-
ing Intel® Siskiyou Peak and SPARC. The example shows
two sample functions with their function prologue and epi-
logue instructions, where funct_A simply calls funct_B. The
emitted CFI instructions are highlighted with blue color.
In both architectures, our instrumented compilers prepend
CFIBR to function prologues that activate the unique label
of the function in the label state memory. Further, CFI-



DEL is appended to function epilogues to mark the end of
a function resulting in a label de-activation (see also Fig-
ure 1). On SPARC, we replace the nop instruction which is
normally found after the retl instruction. Hence, emitting
CFIDEL comes at no extra cost in terms of space and perfor-
mance. Lastly, CFIRET is inserted after a call instruction.
Due to the design of the SPARC pipeline, in this architec-
ture we emit CFIRET after a pipeline bubble (nop) commonly
found after a call instruction.

Unique labels are added to these instructions within their
context with a program that is executed after the linker.
On SPARC, we modified the Aeroflex Gaisler Baremetal C
Compiler (BCC) and accompanying libraries to insert our
new CFI instructions into programs [2]. These are based
on GNU Binutils and GCC. Instrumenting the assembler
was done through modification of libopcode, whilst the
output templates and code generation in GCC were mod-
ified to accommodate the required behavior. For Siskiyou
Peak, we modified the customized LLVM compiler toolchain
(shipped already with Siskiyou Peak) to generate HAFIX-
instrumented code. Moreover, during a post-compilation
processing phase, we identify recursive function calls and
replace the corresponding CFIBR with CFIREC instructions.

4.3 Hardware CFI and Label Memory

Siskiyou Peak. Hardware CFI enforcement on Siskiyou
Peak is achieved by augmenting the execution stage of the
processor pipeline with a CFI control unit and associated
label state memory, see Figure 4. The CFI control unit
monitors CFI instruction sequencing and manages CFI label
state. In the event of a CFI violation being detected, a
processor exception is issued allowing a software handler to
take appropriate action.

Label state memory is implemented as a tightly-coupled
16384x1 memory with the CFI label employed as the index.
This facilitates highly efficient CFI instructions: For a given
label, CFIBR sets the memory location indexed by the label
while a CFIDEL clears it. The CFIRET instruction reads the
location indexed by the label and raises an exception if not
set. In the target platform of Xilinx Spartan-6 this approach
allows CFI label state to be efficiently mapped onto two
synchronous Block RAMs. Due to the low logic complexity
of the indexing mechanism it is feasible to clock the Block
RAM on the opposite clock edge removing a cycle of read
latency and enabling single-cycle performance for all CFI
instructions.

Instruction| |Instruction| | Operand 3 Memory | 3 Exception 3 .

Fetch Decode Fetch Wi ! Stage | ! Stage ! Write Back
| CFI 3 CFI [JCommon
;:Q@:ﬁfgl::; Control " ISPARC extra pipeline stages
| CFI Label ! CFI Label [JCFI additions on Siskiyou Peak
L__State__; State {JCFI additions on SPARC

Figure 4: CFI pipeline integration

SPARC. Our implementation of HAFIX in SPARC hard-
ware is based around the Aeroflex Gaisler LEON3 micropro-
cessor, which provides a fully compliant SPARC V8 core.
To enforce a control-flow mechanism, a finite state machine
(FSM) was developed and our new CFI instructions were
added to the SPARC V8 Instruction Set. The FSM is con-
nected into the processor pipeline at the fetch stage, us-
ing the incoming instructions as inputs. Because of the 7-

1.4 | | | | |
| |0oStock OOLEONS-CFI  [OSiskiyou Peak-CFI

1.2

1L i
0.8 - i
0.6
0.4
0.2
0 T T T T T T

CoreMark Dhrystone cover cre
Figure 5: CFI extension overhead w.r.t stock core for
LEON3 and Siskiyou Peak

matmult  recursion

stage pipeline the LEON3 core provides, extra states were
added to the FSM to account for pipeline bubbles, stalls and
flushes.

The HAFIX-FSM was built in the 7-stage integer pipeline
in parallel to the fetch unit. As per the design requirement in
Section 3.1, the FSM regulates instruction execution in order
enforce secure control flow via reading and writing to the
HAFIX label memory based on issued HAFIX instructions.

CFI label memory was designed as a 1024x13 last-in-first-
out (LIFO) structure to strictly enforce call/return pairs.
As shown in Figure 4, the CFI control unit and label mem-
ory are implemented separate from the CPU bus, so that
software has no access to its internal state. Upon encoun-
tering a CFIBR instruction, the last label stored in the LIFO
structure is checked, if different from the label on the CFIBR
instruction, the new label is pushed in, otherwise, a counter
associated with the label is incremented. On CFIDEL, the
counter associated with the last label is checked, if non-
zero, it is decreased by one, if zero, the label is popped from
the LIFO (see also Section 3.2). This handles recursive calls
without exhausting the storage capabilities of the LIFO. On
CFIRET, the last label pushed to the LIFO is checked, if dif-
ferent from the CFIRET, a fault is triggered, halting the CPU,
ensuring proper control flow, otherwise, execution continues
as normal.

5. EVALUATION

5.1 Performance

The system impact was evaluated using a suite of micropro-
cessor benchmarks including CoreMark, Dhrystone, cover,
crc, matmult and recursion. The performance overhead for
the HAFIX-enhanced Siskiyou Peak and LEON3 cores is
shown in Figure 5 with the respective unmodified stock core
used as the baseline. The overall performance overhead is
around 2% for both architectures with backward-edge CFI
enabled. The largest increases, as expected, are seen in
those benchmarks that include many short function calls
such as Dhrystone and recursion. None of our benchmarks
programs raised a false CFI violation. As discussed by Dang
et al. [6] several shadow stack implementations require spe-
cial handling of certain programming constructs to avoid a
false alarm.

5.2 Area

The performance of the implemented architecture with re-
spect to area was evaluated using results from the Xilinx
place and route (PAR) tools. The HAFIX enhanced Siskiyou
Peak core consumes an additional 2.49% registers and less



JOTT

1
Dhrystone CoreMark mz mtmult cre cover

recursion
Benchmarks

Figure 6: Percentage of program instructions that a function

return is allowed to target

T T T
60 - N i

50| .
40| .

A TTO00TT

1 1
Dhrystone CoreMark matmult cover

recursion
Benchmarks

Figure 7: Percentage of CFIRET instructions that a function

return is allowed to target

than 1% additional LUTs (Look Up Tables). The CFT label
state memory is implemented using 2 Block RAMs.

For the SPARC implementation, the area was similarly
evaluated using results from Xilinx PAR tools. The HAFIX
enhanced LEON3 core consumes an additional 2.97% regis-
ters and 0.33% additional LUTs. The LIFO implementation
incurred an 8% increase in distributed RAM usage.

5.3 Security

To measure to what extent HAFIX reduces the set of valid
branch addresses, we record the label memory at each func-
tion return for all of our benchmark programs under the
CFI implementation for Siskiyou Peak. The chart shown
in Figure 6 demonstrates that on average only 0.70% of all
program instructions are addressable by a function return;
with a maximum of 2.2% (CoreMark).

In order to give our evaluation more meaning, we di-
rectly compare our backward-edge CFI realization to re-
cent CFI-based approaches that restrict returns to target
a call-preceded instruction [13, 18]. For this, we validate
how many CFIRET instructions (i.e., call-preceded instruc-
tions) a function can target on average. Figure 7 shows
that the median percentage of valid CFIRET instructions for
the individual benchmarks ranges from 3.13% (matmult) to
25.36% (cover). Hence, HAFIX significantly reduces the
gadget space (to 19.82% on average) compared to recent
CFI-based approaches.

Note that using static-linked benchmark programs for our
security evaluation resembles a worst-case scenario. In fact,
all the numbers reported would be tremendously lower for
dynamically-linked programs for two reasons. First, shared
libraries introduce a large amount of code that is never
used during program execution. In coarse-grained CFI, all
call sites inside the shared library are valid targets, but in
HAFIX only those call sites of the invoked shared library
function are valid. Second, benchmark programs typically
contain a large (main) function that invokes a number of

subroutines. As the main function remains active almost
throughout the entire program execution, all its call sites
(i.e., CFIRET instructions) are valid targets for function re-
turns. As an example, Dhrystone contains a large main func-
tion with 87 call sites out of 419 call sites in total. However,
even in this circumstance, HAFIX still reduces the gadget
space to 20% compared to recent CFI-based approaches. In
order to further reduce the space, we can emit multiple la-
bels into the main function, e.g., splitting the Dhrystone
main function into four parts reduces the set of addressable
CFIRET instructions to 5%.

Note that an adversary cannot undermine HAFIX by mod-

ifying the CFI label state or the CFIREC_CNTR register simply
due the fact that both are not directly accessible by software,
but only by our CFI instructions. Since all modern platforms
as well as our target architectures prevent code injection at-
tacks (using data execution prevention), an adversary can
neither modify the CFI-protected code nor inject malicious
CFI instructions.
Practical Exploits: We also evaluated the effectiveness
of HAFIX using code-reuse exploits against self-developed
vulnerable programs. Our attack on SPARC is initiated by
overflowing a buffer, which results in the eventual overwrite
of the register holding the return address, %i7. Similar to
a conventional return-into-libc attack, our malicious return
address points to the start of a payload. However, upon
returning from the function, HAFIX reports a control-flow
violation since the exploit jumps to an address that does
not match a valid CFIRET site. Similarly, on Siskiyou Peak
our ROP exploit returns to an invalid CFIRET site. Once the
HAFIX invalidation occurs, a CPU reset trap terminates
code execution in the exception detection stage.

6. RELATED WORK

Over the last decade many defenses have been proposed to
mitigate runtime exploits. Due to the page limit, we focus
only on closely related hardware-based/assisted CFI solu-
tions.

The hardware-based CFI state model was first proposed
by Budiu et al. [4]. The main idea is to directly embed
unique labels in indirect branch instructions and emit cfi-
label instructions at possible indirect branch targets. When
an indirect branch executes, it loads its encoded label into
a dedicated register. Afterwards, the state model forces the
program to invoke a cfilabel instruction with the loaded la-
bel. However, this approach leads to coarse-grained policies
for backward-edge CFI as a return instruction can only hold
one label, i.e., all possible different call sites are assigned the
same cfilabel instruction. Moreover, they evaluated their
scheme only in a simulator (Alpha), while we present real
hardware implementations and evaluations on two architec-
turally different embedded platforms.

Branch regulation as proposed by Kayaalp et al. [12] re-
quires identifying function bounds and a shadow stack to
enforce fine-grained CFI. However, their approach suffers
from the basic problems of shadow stacks (see Section 3.1).
In particular, branch regulation by design does not support
stack unwinding and tail jumps.

Another popular hardware-assisted approach to prevent
code-reuse attacks is based on monitoring branch history in-
formation [13, 17]. These defenses do not really implement
CFI in hardware but use the branch information hold in the
branch trace store (BTS) and last branch record (LBR) of re-



cent Intel® CPUs. However, they deploy too coarse-grained
policies or require an ahead-of-time training phase which is
a heuristic approach, typically incomplete, and undesirable
in most deployment scenarios.

7. CONCLUSION AND FUTURE WORK

For the first time, we present the implementation and eval-
uation of a fine-grained hardware-assisted CFI scheme that
provides integrity checks for backward edges (returns). Our
implementation of HAFIX on Intel® Siskiyou Peak and
SPARC LEONS3 provides new dedicated CFI instructions
that efficiently perform CFI checks in a single cycle. We
require minimal changes to the compiler toolchain to emit
our new CFT instructions. Our security evaluation demon-
strates that HAFIX significantly reduces the code base an
adversary can leverage to perform code-reuse attacks. Com-
pared to recently proposed software-based CFI approaches,
HAFIX reduces the gadget space to 19.82% with an average
performance overhead of only 2%.

In our reference implementation of HAFIX we target bare
metal code. Ideally, HAFIX needs to be applied to all code
running on the target system, including the operating sys-
tem. We are currently working on an operating system CFI
support module that handles label states for different pro-
cesses. Specifically, this extension will store and restore la-
bels whenever a context switch occurs.

Another ongoing work concerns the label space for pro-
grams that link to several shared libraries. In this case, we
need to ensure that our compiler emits unique labels per li-
brary. We are also currently exploring new CF1I instructions
that facilitate hardware-assisted forward-edge CFI.

Although embedded systems rarely deploy just-in-time
(JIT) compilers, we plan to explore the feasibility of ap-
plying HAFIX to dynamically-generated code. In fact, we
believe that our mechanisms to enforce backward-edge CFI
can be integrated into JIT compilers since we only require
assignment of unique labels with a per-function granular-
ity, and emission of CFI instructions at function prologue,
epilogue, and call sites.

Acknowledgments

The authors thank the anonymous reviewers, Per Larsen,
and Stephen Crane for their constructive feedback. This
work has been co-funded by the German Science Founda-
tion as part of project S2 within the CRC 1119 CROSSING,
the European Union’s Seventh Framework Programme un-
der grant agreement No. 609611, PRACTICE project, and
the Intel CRI for Secure Computing.

8. REFERENCES
[1] Gaisler Research. LEON3 synthesizable processor.

http://www.gaisler.com.

[2] Gaisler Research. Bare-C Cross-compiler system
(BCCQC).
http://www.gaisler.com/index.php/products/operating-
systems/bcc.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity: Principles, implementations,
and applications. ACM Trans. Inf. Syst. Secur., 13(1),
2009.

[4] M. Budiu, U. Erlingsson, and M. Abadi. Architectural
support for software-based protection. In Workshop on

[5]

(6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

Architectural and System Support for Improving
Software Dependability, ASID 06, 2006.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In ACM Conference on
Computer and Communications Security, CCS ’10,
2010.

T. H. Dang, P. Maniatis, and D. Wagner. The
performance cost of shadow stacks and stack canaries.
In ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’15, 2015.

L. Davi, P. Koeberl, and A.-R. Sadeghi.
Hardware-assisted fine-grained control-flow integrity:
Towards efficient protection of embedded systems
against software exploitation. In Annual Design
Automation Conference - Special Session: Trusted
Mobile Embedded Computing, DAC ’14, 2014.

L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of
coarse-grained control-flow integrity protection. In
USENIX conference on Security, SSYM’14, 2014.

A. Francillon and C. Castelluccia. Code injection
attacks on Harvard-architecture devices. In ACM
Conf. on Computer and Communications Security,
CCS "08, 2008.

J. Gaisler, E. Catovic, M. Isomaki, K. Glembo, and
S. Habinc. GRLIB IP Core User’s Manual, 2008.

E. Goktas, E. Athanasopoulos, H. Bos, and

G. Portokalidis. Out of control: Overcoming
control-flow integrity. In IEEE Symposium on Security
and Privacy, S&P 14, 2014.

M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and

D. Ponomarev. Branch regulation: Low-overhead
protection from code reuse attacks. In Annual
International Symposium on Computer Architecture,
ISCA 12, 2012.

V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP exploit mitigation using indirect
branch tracing. In USENIX conference on Security,
SSYM’13, 2013.

J. Rattner. Eztreme scale computing. ISCA Keynote,
2012.

H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM Conf. on Computer and
Communications Security, CCS ’07, 2007.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In USENIX conference on Security, SSYM’14, 2014.
Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon:
Detecting violation of control flow integrity using
performance counters. In Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN 12, 2012.

M. Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX conference on Security,
SSYM’13, 2013.



