
A Pattern for Secure Graphical User Interface Systems

Thomas Fischer, Ahmad-Reza Sadeghi, Marcel Winandy
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

Email: thomas.fischer@rub.de, {ahmad.sadeghi, marcel.winandy}@trust.rub.de

Abstract—Several aspects of secure operating systems have
been analyzed and described as security patterns. However,
existing patterns do not cover explicitly the secure interaction
of users with the user interface of applications. Especially
graphical user interfaces tend to get complex and vulnerable
to spoofing and eavesdropping, e.g., due to key loggers or fake
dialog windows. A secure user interface system has to provide
a trusted path between the user and the application the user
intends to use. The trusted path must be able to ensure integrity
and confidentiality of the transmitted data, and must allow
for the verification of the authenticity of the end points. We
present a pattern for secure graphical user interface systems
and evaluate its use in different implementations. This pattern
shows how to fulfill the security requirements of a trusted
path while preserving, in a policy-driven way, the flexibility
that graphical user interfaces generally demand.

Keywords-security pattern; secure GUI; secure windowing
system;

I. INTRODUCTION

Commodity operating systems offer a feature-rich en-
vironment for various applications, including a user-
convenient graphical user interface (GUI) systems. Users can
easily work with several applications simultaneously, while
being able to organize and arrange the application windows
on the screen. Users can click through web sites, copy and
paste data from one application to another, and adapt the
desktop appearance according to their needs and desires.
There are even applications that can record and automate
user inputs, or make snapshots of the entire screen.

However, such flexibility of functionality has an important
security risk. Malware may try to mimic user interfaces and
the appearance of security-critical applications, e.g., faking
password input dialogs. Other types of malware may try
to manipulate the data the user intends to send to a certain
application, e.g., by replacing the document for a digital sig-
nature application with a maliciously modified version [1].
Although there are techniques to identify applications, such
as verification of digital signatures of program binaries or
secure bootstrap mechanisms [2], these identities need to be
reliably shown to the user. For security-critical applications
users need to be able to clearly identify the application they
are interacting with, and to be sure the data they enter cannot
be accessed by unauthorized applications.

A secure operating system has to provide a secure (graph-
ical) user interface that provides a trusted path from the

application to the user and vice versa. The user interface
system must be able to isolate the input and output channels
of different applications. Furthermore, in an environment
supporting multi-level security (MLS) or domain separation
the user should know about the security label of the appli-
cation to which the current displayed user interface element
belongs to. The user must be able to identify the trusted path
via a security indicator that cannot be faked or simulated by
any software running in untrusted applications.

The realization of a secure GUI system is an important,
but not trivial task. However, existing secure GUI systems
[3], [4], [5], [6], [7], [8] have some elements in common on
a conceptual level. We present a pattern for secure graphical
user interface systems and evaluate its use in the different
implementations.

II. SECURE GUI SYSTEM PATTERN

Intent: Provide a trusted path between the user and
the application the user intends to use. Security-critical
applications require integrity and confidentiality of user
input and displayed output. All input and output devices
(keyboard/mouse, display) have to be shared by all applica-
tions, but security-critical applications need exclusive access
to avoid interference with other applications.

A. Example

Consider a system login dialog on a graphical window
system where the user has to enter a password. The user
should be sure that the dialog being displayed actually cor-
responds to the system login and not to a faked application.
Additionally, the data transmitted between the login dialog
and the user (keyboard input and displayed graphical output)
should not be possible to be eavesdropped.

B. Context

You need to provide a graphical user interface for several
applications with different trust and security requirements
for one or more users. You need to ensure that the application
the user in front of the input/output devices is currently
interacting with cannot fake to be an arbitrary other (possibly
trusted) application. You also need to ensure that the input
of the user and the output of an application cannot be
eavesdropped or manipulated by other applications.



C. Problem

Providing security for user interfaces is non-trivial be-
cause they often rely on and communicate with several
components. The problem is to combine the individual
goals (security and usability) in such a way that efficient
interaction with the user interface remains possible.

Experience shows that commodity operating systems can-
not provide sufficient security for the GUI of applications
(e.g. [1]). Applications can impose other applications by
adapting their look and feel. An attack on the user’s privacy
can be performed by applications that eavesdrop everything
the user enters, e.g., keyloggers typically install themselves
as device drivers to intercept all keyboard events.

In particular, the solution to this problem has to resolve
the following forces:

• You need to provide a graphical user interface system
that can be used by several applications simultaneously.

• You need the flexibility that applications can draw any
content without constraints (application flexibility).

• Users need to know with which application they are
currently interacting with (application authentication).

• Users need to be able to invoke interaction with a
certain trusted service at any time (trusted path).

• You need protected input/output of GUIs, i.e., unau-
thorized applications should not be able to eavesdrop
or manipulate user input directed to or display output
coming from other applications.

• You (optionally) need controlled communication be-
tween user interfaces of different applications – for
example, in a multi-level security system copy&paste
has to adhere to the information flow policy.

D. Solution

The central idea is to mediate all user input/output through
a Secure User Interface (SUI) system, and to separate
the content drawn by applications from what is actually
displayed on the screen. The SUI controls solely the graphics
rendering hardware and the input events from the user input
devices (typically, keyboard and mouse). The SUI receives
the user input and sends it to the currently active application.
Only one application can be active at a certain time, i.e., it
has the “input focus”. On the other hand, the SUI receives
the graphical output of all applications and multiplexes it
to the graphics hardware, composed with a visible labeling
of applications according to a policy. Hence, only the SUI
decides what is going to be displayed on the screen and how.

Besides the input routing and the visible labeling, the SUI
has to detect trusted path invocation, i.e., when the user
requests to interact with a trusted service, and implement
certain trusted path features, e.g., when the user wants to
switch the input focus to another application.

1) Structure: The SUI system interacts with Applications
on the one hand, and Users via Graphics Hardware (screen,

graphics processing unit (GPU)) and Input Devices (typi-
cally, keyboard and mouse) on the other hand. Applications
are defined as interactive programs that want to display a
GUI on the screen and receive user input. Depending on
the operating system, Applications can be single processes,
groups of processes (e.g., belonging to the same security
level in an MLS system), or entire virtual machines.

The main elements of the SUI system are the Input
Manager, Display Manager, Copy&Paste Manager, a Policy,
and the SUI Control (see Figure 1).

Figure 1. Participating elements of the Secure GUI System pattern.

The Input Manager is responsible for the input routing
and detection of trusted path invocation. It monitors all input
events and forwards them to the Application which currently
has the focus. Certain input events are not forwarded,
they are used as Secure Attention Key, e.g., a special key
sequence, to invoke trusted path features of the SUI Control.

The Display Manager multiplexes the GUI output and is
responsible for drawing visible labeling. Visible labels allow
the User to reliably identify Applications, especially the one
having the input focus. It is important to note that the visible
labeling must be drawn in a way that arbitrary Applications
cannot fake it. For example, the Display Manager could only
display the content of one application at a time on the screen
and keep a reserved area, e.g., on the top of the screen, in
which no application can draw. This area is used to display
the identity of the current application. The screen could
also be divided into fixed regions belonging to different
groups of applications, e.g., of the same security level. To
allow most flexibility and to display all application windows
simultaneously, the Display Manager could apply a window
labeling policy [9], i.e., all windows are decorated with
colored border where each color corresponds to a security



level. In addition to colors, the name of the application (or
its security level) can be shown in the window border, and
a reserved area on the screen shows the current input focus.

The SUI Control implements trusted path features, in
particular, to switch the input focus to another Application.

GraphicalContexts represent the GUI windows or screens
of Applications. They are composed of two parts: a Label,
which represents the identity of the Application (e.g., its
name or security level), and the actual graphical Content.
The Content is the only region to which the Application can
draw its GUI elements. The Label is under control of the
SUI. This prevents that an Application can fake the visible
identity of another Application since it has no access to the
Label, and the Label is finally visually “attached” on the
screen by the Display Manager.

The Copy&Paste Manager acts as trusted intermediate
component to enable Applications to exchange data in
compliance to the information flow policy of the system.

Finally, the Policy of the SUI defines the labeling strategy
of the Display Manager, constraints to allow to switch the
input focus, constraints to allow copy&paste, and the secure
attention key events and corresponding reactions.

Note that the Display Manager and the Input Manager are
the only components connected to the hardware input/output
devices. This has to be enforced by the underlying operating
system (OS), e.g., by allowing access to the corresponding
device drivers exclusively to these components. Moreover
the SUI system relies on proper authentication of Applica-
tions and Users, which has to be done by the OS as well.

2) Dynamics: When an Application wants to update its
GUI, it draws into its Content object and requests to update
the corresponding GraphicalContext. Figure 2 shows the
corresponding sequence diagram. The important step in this
process is the composition of the labeling information with
the basic display content provided by the Application. The
Application cannot alter the Label itself, as it is defined by
the Policy based on the application identity and composed
within the GraphicalContext by the Display Manager.

Figure 2. Sequence diagram for updating GraphicalContext

Users can request to switch the input focus by invoking
the trusted path to the SUI Control (e.g., via a hot key).

Applications may also request to switch the focus to them-
selves or another Application, e.g., to request a password
input or a confirmation from the user when they do not
have the focus. In this case, the SUI Control asks the
Policy and determines whether to allow or deny the request
(see Figure 3). Alternatively, Policy can contain rules that
effectively result in asking the user for a password in order to
authorize the switch. Once authorized, SUI Control changes
the input focus and updates the reserved area if required.

Figure 3. Sequence diagram for switching application

To enable copy&paste, the Policy must define access rules
to the Copy&Paste Manager (CPM) which are in compliance
to the information flow policy of the operating system. For
example, in an MLS system it is not allowed to write data
from high to low security levels. Therefore, all data transfer
via GUI elements must go through the CPM. An Application
can copy (write) data to the CPM, and other Applications
may request to paste (read) data from the CPM. The CPM
has to enforce the policy on such requests accordingly.

E. Example Resolved

By applying the Secure GUI System pattern, a Policy can
be defined to keep a reserved area on the screen to display
the active application’s name. The Display Manager controls
solely the graphics hardware and multiplexes the output to
the display. Hence, no application can modify the reserved
area in order to change the displayed name. This allows the
user to identify the login application and to distinguish it
from faked ones. Moreover, since the Input Manager routes
the user input only to the one application that has the focus,
the input cannot be eavesdropped by any other application.

F. Known Uses

The Secure GUI System pattern can be found in several
existing implementations:

• Trusted X [4], [10] is a multi-level secure X window
system. It encapsulates the untrusted functionality of
an ordinary X server and polyinstantiates it for each
security level. Trusted X multiplexes the windows of
all levels and attaches a colored label on each window
to indicate its security level. A reserved area on the
screen always shows the level having the input focus.
A dedicated trusted application implements the secure



copy&paste function and mediates the data transfer
according to the information flow policy.

• Solaris TX [7] supports multi-level desktop sessions in
a similar way to Trusted X, but uses a single trusted
desktop system instead of polyinstantiated X servers.

• EWS [5] is a mandatory access control capable window
system for the EROS operating system. It consists of
a small display server that renders the output of client
applications and supports window labeling to indicate
the trusted path. It does not have an X server, instead
all drawing logic is in the applications, and shared
memory is used to define Content. Secure copy&paste
is realized via special invisible windows which are
dedicated trusted applications.

• Nitpicker [6] is a small, framebuffer-based secure GUI
server on top of the L4 microkernel. It controls the
physical display and aggregates the virtual screens
of clients, which can be native processes or virtual
machines. The server also supports visible labels.

• Green Hills’ INTEGRITY [8] is a microkernel-based
operating systems that supports multi-level security. It
displays the maximum security level and the current
input security level at the top and, respectively, bottom
of the screen as a colored bar. Applications in the
system are virtual machines (VMs) that run isolated
from each other. The VMs can only access virtual
devices and cannot draw on the reserved screen areas.

• The SDH architecture [3] divides the screen in separate
regions according to security levels. For each region, an
untrusted processor draws the Content, and a hardware-
implemented Display Manager multiplexes the output
on the screen. A software-implemented Input Manager
functions also as SUI Control, i.e., it switches current
security level and input focus simply by moving the
mouse pointer from one region on the screen to another.

While the examples above are mainly mandatory access
control systems or research prototypes, commodity operating
systems would also benefit from applying the Secure GUI
System pattern. However, this would require to change the
access to graphics and input hardware, i.e., not allow every
application to arbitrarily use these devices (e.g., preventing
installation of “filter” drivers that can intercept keyboard
input). Moreover, the GUI system of a commodity operating
system needs to separate the graphical content that applica-
tions can draw from what is finally presented on the screen
(i.e., providing window labeling and/or a reserved area).

G. Consequences

Applying this pattern is expected to result in the following
benefits:

• You will get a trusted path for the user input and
the application output. This channel is secure against
eavesdropping and manipulation by unauthorized appli-
cations.

• Security-critical applications need not to implement
their own protection mechanisms against faked dialogs
because they can rely on the SUI to show the user the
identity of applications via labels.

• The resulting SUI system is very flexible since labeling
and access decisions can be delegated to the policy.

However, this pattern may also have the following liabil-
ities as consequences:

• The SUI might become a single point of failure. If
the SUI does not work correctly, the whole system
might become unusable for users, or the security of
user intentions is compromised.

• There might be usability issues due to security con-
straints of the GUI system. For example, when applying
a window labeling policy (based on colors), users might
need extra training and education to understand the
meaning of the colors.

• You need to trust the SUI. For a high assurance system,
the components within the SUI (cf. Figure 1) are critical
and require high assurance for their development and
integrity protection during runtime.

• The increasing usage of graphics accelerator functions
in commodity operating systems and 3D game applica-
tions may pose an implementation problem since any
direct access to the GPU could circumvent the SUI.

Today’s GPUs lack of proper virtualization functionality.
However, there are approaches to virtualize the 3D OpenGL
graphics language [11], [12].

The actual implementation of the labeling in the SUI
can be fitted to many scenarios. For example, one can
implement different labeling methods for color blind people,
and another can use a special braille external interface
with separated “secure label zone” for blind people. It is
also possible to decouple the label from the screen at all.
For example, an additional small display attached to the
keyboard could display the security level of the application
that has currently the input focus.

Another area of extension is to control audio input/output
in the same way as it is done with keyboard inputs. However,
details are beyond the scope of this pattern.

H. Related Patterns

On an architectural view, the Secure GUI System pat-
tern is a Single Access Point [13], [14] for users to the
graphical interfaces of the system’s applications, but also
for applications to the user input/output devices, especially
keyboard/mouse and the graphical processing unit.

Reference Monitor [15] intermediates access to resources
defined by policy. This is similar to the Secure GUI System
pattern since the SUI system controls the usage of the graph-
ics output and the user input, i.e., which application receives
the input. But the Secure GUI System has additionally to
ensure authenticity of the end points. Actually the Secure



GUI System can use the Reference Monitor pattern to
implement a policy-driven secure GUI.

The Authenticator [16] pattern can be applied to provide
proofs of identity of users and applications, which are
requested by the Secure GUI System. For example, digital
certificates of program binaries can be used to reliably
identify applications, which the operating system has to
verify when a process is started.

The SUI has to be executed in an Execution Domain [15]
which restricts the usage of the user I/O devices solely to
the SUI. Other processes must not be allowed to directly
access the GPU, otherwise they could easily circumvent the
SUI.

To protect the input sent to an application and the output
sent to the graphics hardware, it must be possible to isolate
process memory. Otherwise, one process could directly read
or modify the memory of another process and, hence,
intercept or manipulate the data entered by or presented
to the user. Process isolation can be achieved with the
Controlled Virtual Address Space [15] pattern.

To protect the SUI process from other processes and to
allow some applications additional privileges, the Secure
Process [17] pattern is used to isolate processes and as-
sign authorization rights. Some applications have special
dedicated meaning and hence have additional privileges.
For example, a screen snapshot application would need to
capture the graphical output of other applications. Such
processes need corresponding authorization rights, which are
defined in the SUI policy and enforced by the SUI.

III. CONCLUSION

Secure operating systems need secure user interfaces to
provide users a trusted path to applications. We have pre-
sented a security pattern for graphical user interface systems.
It shows how to control the access to user input/output
devices such as keyboard, mouse, and display, and how to
provide an indication of authenticity of applications to the
user. The pattern can be found in both research prototypes
and commercial products. We expect this pattern to be an
important amendment to other operating system security
patterns.

REFERENCES

[1] A. Spalka, A. B. Cremers, and H. Langweg, “The fairy tale
of ’what you see is what you sign’ - trojan horse attacks on
software for digital signatures,” in Security & Control of IT in
Society - II (SCITS-II). Proceedings of the IFIP WG 9.6/11.7
Working Conference, 2001, pp. 75–86.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and
reliable bootstrap architecture,” in Proceedings of the IEEE
Symposium on Research in Security and Privacy. Oakland,
CA: IEEE Computer Society, May 1997, pp. 65–71.

[3] R. Sherman, G. Dinolt, and F. Hubbard, “Multilevel secure
workstation,” U.S. Patent 5,075,884, 1991, issued December
24.

[4] J. Epstein, J. McHugh, H. Orman, R. Pascale, A. Marmor-
Squires, B. Danner, C. R. Martin, M. Branstad, G. Benson,
and D. Rothnie, “A high assurance window system prototype,”
Journal of Computer Security, vol. 2, no. 2, pp. 159–190,
1993.

[5] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia,
“Design of the EROS Trusted Window System.” in USENIX
Security Symposium, 2004, pp. 165–178.

[6] N. Feske and C. Helmuth, “A nitpicker’s guide to a minimal-
complexity secure gui,” in 21st Annual Computer Security
Applications Conference (ACSAC), 2005.

[7] G. Faden, “Solaris trusted extensions,” Sun Microsystems
Whitepaper, April 2006, http://opensolaris.org/os/community/
security/projects/tx/TrustedExtensionsArch.pdf.

[8] Green Hills Software Inc., “INTEGRITY PC Technology,”
http://www.ghs.com/products/rtos/integritypc.html, Nov.
2008.

[9] J. Epstein, “A Prototype for Trusted X Labeling Policies,”
in Sixth Annual Computer Security Applications Conference
(ACSAC), 1990.

[10] ——, “Fifteen years after TX: A look back at high assurance
multi-level secure windowing,” in ACSAC ’06: Proceedings of
the 22nd Annual Computer Security Applications Conference.
IEEE Computer Society, 2006, pp. 301–320.

[11] Andres, N. Tolia, M. Satyanarayanan, and E. de Lara, “VMM-
independent graphics acceleration,” in VEE ’07: Proceedings
of the 3rd International Conference on Virtual Execution
Environments. ACM Press, 2007, pp. 33–43.

[12] C. Smowton, “Secure 3D graphics for virtual machines,” in
EuroSEC ’09: Proceedings of the Second European Workshop
on System Security. ACM, 2009, pp. 36–43.

[13] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad, Security Patterns: Inte-
grating Security and Systems Engineering. John Wiley &
Sons, 2006.

[14] J. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in PLoP’97: Conference on Pattern
Languages of Programs, 1997.

[15] E. B. Fernandez, “Patterns for operating systems access
control,” in Proceedings of the 9th Conference on Pattern
Language of Programs (PLoP), 2002, http://jerry.cs.uiuc.edu/
∼plop/plop2002/proceedings.html.

[16] E. B. Fernandez and J. C. Sinibaldi, “More patterns
for operating system access control,” in Proceedings of
EuroPLoP 2003, pp. 381–398, http://hillside.net/europlop/
europlop2003/.

[17] E. B. Fernandez, T. Sorgente, and M. M. Larrondo-Petrie,
“Even more patterns for secure operating systems,” in PLoP
’06: Proceedings of the 2006 Conference on Pattern Lan-
guages of Programs. New York, NY, USA: ACM, 2006, pp.
1–9.


