Market-driven Code Provisioning to Mobile
Secure Hardware

Alexandra Dmitrienko?, Stephan Heuser!, Thien Duc Nguyen!,
Marcos da Silva Ramos?, Andre Rein?, and Ahmad-Reza Sadeghi’

! CASED/Technische Universitit Darmstadt, Germany
2 CASED/Fraunhofer SIT Darmstadt, Germany
email: {alexandra.dmitrienko, andre.rein}@sit.fraunhofer.de,
{stephan.heuser, ducthien.nguyen, marcos.dasilvaramos,
ahmad.sadeghi}@trust.cased.de

Abstract. Today, most smartphones feature different kinds of secure
hardware, such as processor-based security extensions (e.g., TrustZone)
and dedicated secure co-processors (e.g., SIM-cards or embedded secure
elements). Unfortunately, secure hardware is almost never utilized by
commercial third party apps, although their usage would drastically im-
prove security of security critical apps. The reasons are diverse: Secure
hardware stakeholders such as phone manufacturers and mobile network
operators (MNOs) have full control over the corresponding interfaces and
expect high financial revenue; and the current code provisioning schemes
are inflexible and impractical since they require developers to collaborate
with large stakeholders.

In this paper we propose a new code provisioning paradigm for the code
intended to run within execution environments established on top of se-
cure hardware. It leverages market-based code distribution model and
overcomes disadvantages of existing code provisioning schemes. In par-
ticular, it enables access of third party developers to secure hardware;
allows secure hardware stakeholders to obtain revenue for usage of hard-
ware they control; and does not require third party developers to collab-
orate with large stakeholders, such as OS and secure hardware vendors.
Our scheme is compatible with Global Platform (GP) specifications and
can be easily incorporated into existing standards.

1 Introduction

Today, mobile devices have become an integral part of our life. The increasing com-
puting, storage and networking capabilities and the vast number and variety of mo-
bile apps make smart devices convenient replacements for traditional computing
platforms such as laptops. As a consequence, mobile devices increasingly collect,
store and process various privacy sensitive and security critical information about
users such as e-mails and SMS messages, phone call history, location data, photos,
authentication credentials (e.g., for online banking), etc. This makes them very at-
tractive attack targets, as the rapid growth of mobile malware shows [40]. Hence,

mobile security has become an important topic for industrial and academic research
in recent years.

One of the major approaches to harden mobile platform security is to leverage
isolated (secure) environments, where apps can execute security sensitive opera-
tions (e.g., encryption, signing, etc.) in sub-routines referred to as trusted appli-
cations, applets or trustlets. While generally isolation between the secure environ-
ment and the rest of the mobile system can be enforced in software or in hardware,
hardware-supported isolation provides stronger security guaranties: It can resist
software-based attacks (e.g., compromised OS-level components) and even be re-
silient, to a certain degree, against physical tampering.

Hardware-based isolated environments, on which we focus in this paper, can be
established on top of general purpose secure hardware, such as processor-based se-
curity extensions (e.g., TrustZone [11] and M-Shield [14]) and dedicated secure co-
processors, e.g., an embedded secure element available on NFC-enabled devices.
However, while such secure hardware has been available for a decade and even widely
deployed on mobile platforms [20,35,41], it is owned and exclusively used by their
respective stakeholders such as phone manufacturers and mobile network opera-
tors (MNOs). For instance, processor-based security extensions are normally used
by phone manufacturers to securely store radio frequency parameters calibrated
during manufacturing process [20], or to ensure secure boot?, while secure elements
owned by MNOs (e.g., SIM-cards) are used to protect authentication credentials of
users in mobile networks. Unfortunately, they are almost never utilized by commer-
cial apps developed by third parties. Exceptions are solutions driven by large ser-
vice/OS providers like NFC payment apps Google Wallet [3] and upcoming Apple
Pay [13]. Hence, many security critical apps cannot be satisfactorily implemented
as long as the secure hardware interfaces remain inaccessible.

The major obstacle for utilizing hardware-based isolated environments by third
party apps is the fact that underlying secure hardware is currently under full con-
trol of their stakeholders. Trusted applications, applets or tustlets must first be ad-
mitted (e.g., signed) by the respective stakeholder in order to be executed within
the isolated environment. Existing code provisioning schemes either rely on a stake-
holder, or require a developer to become a Service Provider (SP) and maintain code
provisioning services on their own. In either case, a collaboration between develop-
ers and stakeholders is required. However, such collaboration is often infeasible in
practice, as stakeholders are typically large companies whereas app developers are
small or middle-size businesses. Further, regular app developers typically would not
become a service provider and maintain online code provisioning services.

To overcome these obstacles, we propose to apply the app market code distri-
bution model (as currently used by mobile platform vendors) for the distribution
of code (applets, trustlets and trusted apps) for secure hardware. Mobile app mar-
kets have been successfully bridging the gap between app developers and large OS
vendors, and thus could also serve in the same way between developers and secure
hardware stakeholders. However, there are several challenges to be tackled before

3 Secure boot means a system terminates the boot process in case the integrity check
of a component to be loaded fails [32]

an app market based code submission system can be applied for the distribution of
secure hardware code. We need mechanisms that (i) allow the regular app to be cou-
pled with corresponding applets, trustlets or trusted apps, given that the OS vendor
and the stakeholder of secure hardware are typically different entities; (ii) provide
financial incentives to secure hardware stakeholders in order to motivate them to
allow third parties to leverage secure hardware; (iii) make access to secure hard-
ware much more flexible, e.g., configurable by app developers independently from
OS vendors; and, (iv) finally, address limitations of resource-constraint secure envi-
ronments (e.g., Java cards), given that ability to leverage secure hardware by third
party developers may result in large variety of applets exceeding resource constrains
of respective secure elements.

Goals and contributions. In this paper, we aim to tackle the challenges men-
tioned above and enable third party developers to leverage secure hardware widely
available on commodity devices. In particular, we make the following contributions:

Market-driven code provisioning to secure hardware. We propose anew paradigm
for code provisioning to secure hardware (cf. Section 3). The main idea is to use
an app market model for distribution of secure hardware code. Our solution (i) al-
lows developers to distribute security sensitive code (e.g., trusted apps or applets)
as a part of the mobile app package. Hence, developers do not need to act as service
providers (SPs) and maintain online code provisioning servers; (ii) it supports flex-
ible and dynamic assignment of access rights to secure hardware APIs and applets
by mobile app developers independently from an OS vendor and a secure hardware
stakeholder; (iii) allows the secure hardware stakeholder to obtain revenue for ev-
ery provisioned piece of code; (iv) allows for automated and transparent installation
and deinstallation of applets on demand in order to permit arbitrary number of ap-
plets, e.g., in a constraint Java card environment. Our scheme is compatible with
Global Platform (GP) specifications and can be easily incorporated into existing
standards [23-25, 29).

Prototype implementation and evaluation. We prototyped our solution on An-
droid and a Java-based secure element (SE) (cf. Section 4). For SE prototyping,
we ported the open source JCardSim Java Card emulator [4] to Android and en-
hanced it with our extensions. We will make the code for JCardSim Java Card em-
ulator on Android open source*. Qur prototype provides a wide range of SE options:
(i) Java Card emulator placed on the mobile platform, (ii) Java Card emulator re-
sides on a separate hardware token, for instance a smartwatch, and (iii) Java Card
emulator provided by a cloud-based service. We further evaluated our prototype
with the NFC-based access control application [15,18] which turns the smartphone
into a key ring for electronic door (or car) keys. The security sensitive sub-routines
of the app were implemented as a Java applet which was then executed within the
JCardSim-based emulated environment deployed either on a smartphone, or on a
smartwatch that acts as a trusted token. We then evaluated performance to confirm
efficiency of our implementation.

* Please visit our project page jcandroid.org.

2 Background and Problem Description

In this section, we review possible secure hardware alternatives available to devel-
opers and discuss existing code provisioning and access control mechanisms for these
environments. We discuss their trade-offs and highlight disadvantages that impede
use of these environments in practice.

2.1 Hardware-based Secure Hardware Alternatives

Generally, Global Platform specifies different implementations of isolated execu-
tion environments [27]: Processor-based trusted execution environments (TEEs),
and embedded or removable secure elements (SEs).

Processor-based TEEs are realized via a secure processor mode. Almost every
smartphone and tablet today contains a processor-based TEE, such as TrustZone [11]
and M-Shield [14]. However, their use requires third party developers to collabo-
rate with mobile device vendors (such as Samsung and Apple) in order to get the
security sensitive code admitted to run in a secure processor mode. Further, collab-
oration with the operating system vendor would also be required in order to enable
communication between a mobile app and TEE-residing code.

Embedded SEs are distinct security sub-systems, which are available on many
commercial mobile devices. They can be realized either as a standalone chip at-
tached to the motherboard, or integrated into an NFC chip. Secure elements usually
use standardized and widely supported JavaCard environment that can run Java
applets. However, their interfaces are not usually exposed to third party develop-
ers. There are only a few products on the market powered by large companies, such
as Google Wallet [3], Visa payWave [37] and MasterCard’s PayPass [17] solutions
for NFC payments, that utilize an embedded SE.

Removable SEs are security co-processors which can be attached to the device
via peripheral interfaces, such as Universal Integrated Circuit Cards (UICC) (also
known as SIM cards) and plug-in cards for an SD card slot (ASSD cards). UICC
cards are controlled by MNOs—yet too large entities for small-size developers. More-
over, collaboration with a single MNO can only reach limited number of users. Hence,
more complex business models arose that involve Trusted Service Managers (TSM) —
intermediate entities that have agreements with multiple MNOs [22]. In contrast,
ASSD cards (e.g, [16,39]) are not controlled by external stakeholders.On the down-
side, however, they are quite costly® and their use is limited to smartphone plat-
forms featuring an SD card slot.

To summarize, all existing options have disadvantages which in fact impeded
use of secure hardware by application developers in practice. This resulted in a no-
table shift in favor of software-based solutions compared to prior years [19], despite
of general opinion that hardware-based solutions provide stronger security.

® For instance, the retail price for the cgCard [16] is 99 EUR per piece

2.2 Secure Hardware APIs and Access Control Mechanisms

Currently, Android does not allow mobile apps to directly access processor-based
TEEs®. Only embedded and removable SEs are accessible via respective APIs.

Embedded SE on Android can be accessed via an NFC API. Initially, access to
this APT was limited to system-level components signed with platform keys [21].
This has been changed in 4.0.4 version, which introduced a more flexible approach
based on an access control list (ACL) stored in a system file. Although potentially
the ACL could be updated by system apps or by the OS vendor through the over-
the-air (OTA) system update, these mechanisms do not seem to be used in practice
— once deployed, ACLs typically remain unmodified.

Access to removable SEs on Android is provided via a SmartCard APT imple-
mented within seek-for- Android project”. Access control to the SmartCard APT is
compliant to the Global Platform (GP) specification [29]. In particular, it uses an
SE internal access control list (ACL) of which a read-only copy is fetched on system
boot and enforced by an access control enforcer (ACE) — an OS side system com-
ponent. ACLs on the SE can only be updated by an SE stakeholder or by a trusted
(by the SE stakeholder) party.

Tosummarize, all existing approaches are inflexible in performing ACL updates.
In either case, involvement of a trusted party is required — for instance, OS vendors
are responsible for ACL updates for embedded SEs, while MNOs manage ACLs on
UICC-based secure elements.

2.3 Code Provisioning

Currently, code provisioning specifications for processor-based TEEs are under de-
velopment by the Global Platform Device Specification Working Group. Hence, we
will discuss specifications of the code provisioning mechanisms for NFC-based and
UICC-based secure elements which are already published [23, 26].

Generally, there are three options for code provisioning specified: (i) Simple mode,
(ii) delegated mode, and (iii) authorized mode. In a simple mode, the service provider
(SP) delegates full management of its applet to an SE stakeholder. In the delegated
mode, each operation for code provisioning is performed by a Trusted Service Man-
ager (TSM) and requires a pre-authorization from the SE stakeholder for each oper-
ation. In the authorized mode, however, the SE stakeholder authorizes either TSM
or SP to perform code provisioning on their own. In any mode code provisioning is
performed either by the SE stakeholder or by authority the SE stakeholder trusts,
via over-the-air (OTA) secure channel. In this way, third party developers must ei-
ther become service providers or delegate code provisioning tasks to the SE stake-
holder, which raises the bar for entering market of SE-supported applications.

5 Indirect access is available for certain crypto operations provided by Android’s Key-
Store https://developer.android.com/about/versions/android-4.3.html
" https://code.google.com/p/seek-for-android/

3 Market-driven Code Provisioning to Secure Hardware

In this section we present our market-driven code provisioning mechanism which
enables access of third party developers to secure hardware. Generally, our solution
can be applied for code provisioning to secure hardware of different types. However,
in the following we will concentrate on secure elements (SEs) and mechanisms for
Java applet provisioning for brevity.

Our solution enables application developers to distribute applets via the app
market place, e.g., packaged together with the mobile app or pulbished on a ded-
icated market place for applets. It relies on a developer to couple apps with cor-
responding applets — an approach which does not require interaction between OS
vendors and SE stakeholders. Further, the scheme allows developers to define ac-
cess control rules for accessing applets that are deployed during applet provision-
ing and independently from OS vendor. Moreover, our solution makes use of applet
installation tokens issued by SE stakeholders to end users, which effectively allows
SE stakeholders to enforce per-installation license fees (e.g., if obtaining the instal-
lation token requires payment). Finally, our mechanism makes use of an SE inter-
nal access control list (ACL) as defined by Global Platform (GP) Access Control
Specification [29] for access control to SE APIs and is, hence, compatible with the
established Global Platform mechanisms.

3.1 System Model and Assumptions

System Model. As shown in Figure 1, our system model involves the following
entities: (i) app market M, (ii) SE stakeholder S, (iii) mobile host H, (iv) secure ele-
ment E, and (v) developer D. Here, D develops the mobile app A and a correspond-
ing applet a which includes security-sensitive sub-routines. Further, H is a mobile
device of the user (e.g., a smartphone or a tablet) for which the mobile app was de-
veloped, while E is a secure element of H, which is trusted to securely execute the
applet a. Moreover, M is a regular market place for mobile apps managed by the
(OS or device) vendor, while S is an online service managed by the SE stakeholder.

Assumptions. We assume that the SE Stakeholder S shares a symmetric key Kg
with every secure element E it controls. This assumption is reasonable, as similar
keys are already used by SE stakeholders to perform code management on deployed
SEs®. Further, the mobile host H is aware of the SE identifier tdg which uniquely
identifies its secure element. We also assume that all interactions between D and
S, D and M, M and H are performed over secure (authentic and confidential) chan-
nels. For instance, the Global Platform specifications describe various standards for
secure channel protocols (e.g., AES-based SCP03 [25], SCP10 [23] based on asym-
metric crypto-system, and SCP81 [24] based on SSL/TLS), which can be used for
secure channel establishment and communication.

8 For instance, GP specifies [23] that Java Cards share with the card issuer (i.e., a
stakeholder) the symmetric Data Encryption Key (DEK)

(2) Mobile app publishing; (1) Applet certification:

. : Developer D

submit mobile app A P submit applet a and policy P,

packaged with ea obtain encrypted applet ea

and cert, ,’{\ and applet certificate cert,
AppMarket M | _ SE Stakeholder § ‘\ :E

J
Certify applet a
(3) [Download and install mobile app A Generate applet key K,
(packaged with ea and cert,) ea = enc(Kg a) o

Token T,: = encMAC (Kg; K, P)

(4) Token download: download T,
Key Koi = KDF (Kg, idg)

and K; for a given idg

Mobile Host H

Secure Element E

(5) Applet installation: transfer ea, Ty, | {ge Ky to decrypt T, , get K, and P
cert,, prool of possession of Kg; K, = KDF(K,, idy)

Verify proof of possession of Kg;

By £ pareys

g

Decrypt ea

Verify cert,

Install a

Add policy P into ACL 6& >
¥ X

%2)
m
—
a.
o
=1
=
=
o
=
-
U
)

Fig. 1. Market-driven code provisioning
3.2 Code Provisioning Scheme

The general architecture of our market-driven code provisioning scheme is depicted
in Figure 1. It shows the involved parties and their interactions in the following use
cases: (1) applet certification, (2) mobile app publishing, (3) mobile app download
and installation, (4) token download, and (5) applet installation. In the following
we describe use cases in more details.

Applet Certification. As a first step, the developer D submits an applet a via a
code submission system to SE stakeholder S for certification. The applet is accom-
panied with the access control policy P defining which mobile apps will be allowed
to communicate with this applet (e.g., the app A). Upon receipt, S performs applet
verification according to its security policy. In particular, it can perform code vet-
ting process (as typically done by OS vendors for mobile apps). If this check passes,
it creates an applet certificate cert,, generates an applet-specific key K, and en-
crypts the applet a under K,. The encrypted applet ea is then returned to D to-
gether with its certificate cert,.

Note, that for better efficiency one could replace applet certificate cert, with
the message authentication code (MAC) of the applet generated under the key K.
We opted for certificates in our system design due to legacy reasons, as in current
systems applets are certified by means of certificates.

Mobile App Publishing. To publish a mobile app A at the app market M, the
developer D includes the (encrypted) applet ea and its certificate cert, into an in-

stallation package of A and submits it to M. This step is common for a regular app
development process. Whenever the mobile app A is verified by M, it will appear
at the app market and will be ready for download by mobile users.

Alternatively to packaging the applet a and its certificate cert, together with a
mobile app A, the developer D may opt to publish an applet on a dedicated applet
market (e.g., maintained by S) and include a download link referencing the required
applet, e.g., into app A’s manifest (not shown in Figure 1 for brevity).

Mobile App Download and Installation. Our solution relies on standard
mechanisms for mobile app downloading and extends the app installation process
with routines to detect applet-related dependencies and, if detected, to trigger a
token download procedure.

Token Download. Whenever the mobile host H detects that the mobile app A
requires an applet a, it connects to the SE stakeholder S and requests an applet in-
stallation token for the secure element with the identity idg. Hence, S generates the
token T, for a given idg and a, where T, is an authenticated encryption (which we
denote as encMAC) under the key K over the key K, and the policy P. Further,
S derives an applet installation key K,; by applying a one-way key derivation func-
tion (KDF') to the key K, and the identity idg. The resulting token 7, and the key
K ,; are returned to H.

As one can notice, our token download procedure requires interaction between
a mobile host H and an SE stakeholder S. While potentially such a communication
could be avoided using cryptographic techniques such as key derivation and obliv-
ious hash functions, we aim to keep the SE stakeholder on the installation path in
order to enable it to enforce license fees. In particular, if a license fee is required, the
token download procedure can be preceded by a payment procedure, which can be
realized in the same way as a mobile app purchase.

Applet Installation. Toinstall the applet, the mobile host Hsends the (encrypted)
applet ea, the token T, and the proof of possession of K,; to the secure element E.
Then, E extracts K, and P from the token T}, and derives the key K,; by applying
a one-way key derivation function to values K, and idg. Next, it verifies if K,; is
known to the host (e.g., by means of challenge-response authentication). Further,
it decrypts ea with the key K, in order to obtain the applet a, verifies cert,, installs
a and adds the policy P for the applet a into ACL.

3.3 Applet Invocation

As soon as the applet a is installed, it can be invoked by user space apps residing on
the mobile host H. We realized the communication between the apps and applets
as defined by GP Access Control Specification [29]. In particular, a communica-
tion channel is mediated by the OS-level component access control enforcer (ACE),
which fetches the access control list (ACL) from the SE-internal access rule appli-
cation master (ARA-M) component. The ACL consists of data objects (DO) which

contain access rules for SE access and application protocol data unit (APDU) filter-
ing. Rules are identified by the identifier AID-REF-DO of the applet to be accessed
and the hash of the application’s certificate Hash-REF-DO. Further, it may include
an APDU filter consisting of an APDU header and an APDU filter mask.

When the app A requests access to an applet a identified by AID-REF-DO, ACE
identifies Hash-REF-DO of the app and reads the ACL rule for the specific {AID-
REF-DO, Hash-REF-DO} pair. Access is granted, if such access is permitted by the
ACL rule, or denied, if access is prohibited by an ACL rule or no rule is found. Fur-
ther, the application can communicate with the SE applet if the command APDUs
match the filter list (if given) checked by ACE.

3.4 On-demand Applet Installation

Although a secure element (SE) may host multiple applets at once, generally the
space on SE is limited. As soon as a limit is reached, it may not be longer possible
to install further applets. Currently, this is not yet a concern for SE environments
due to the lack of available applets. Further, SE stakeholders may specify resource
quota for every applet and ensure that SE resource limits are not exceeded. How-
ever, resource quota mechanisms might not be effective for our market-based code
provisioning scheme, as it is not under full control of SE stakeholders. Further, our
scheme is likely to stipulate development of new applets, so that a space limitation
may become a concern.

To address this issue, we extended applet invocation mechanism with an SE ap-
plet manager (SEAM) component which allows for on-demand installation and de-
installation of applets in order to dynamically re-use available resources. In partic-
ular, SEAM maintains applet usage statistics in order to identify more frequently
accessed applets. Whenever a currently deinstalled applet is invoked, SEAM per-
forms dynamic applet installation and then allows the access control enforcer (ACE)
to establish a communication channel between the applet and the app. Whenever
the applet installation requires more resources than currently available, SEAM de-
installs a suitable (i.e., rarely used and sufficiently large) applet in order to release
additional resources. Our on-demand applet installation extension is compatible to
current GP specifications, i.e., it is transparent to ACE component and to mobile
apps. Further, our prototype implementation and performance measurements indi-
cate that our extension imposes low performance overhead which is well acceptable
for runtime environments (cf. Section 4.2).

3.5 Platform Architecture

In Figure 2 we depict the mobile platform architecture. It includes components we
introduced to support our extensions, as well as standard components defined by
Global Platform Reference Specification [29] (which we show in the figure in the
dark gray color). The architecture separates the execution environment of the mo-
bile platform into two independent worlds: Mobile host (H) and secure element (E).
Apps are deployed on H via the modified app installer Al, which interacts with the
untrusted service manager USM for applet deployment and token management. At

______ Mobile Host (H) Secure Element (E)
I I Application Level System Level SE System Level SE Application Level
Istapes or |
i I 4. download Untrusted
toke .
| (S) | oxen 3. transmit Service Manager| | 5 ;o 7. install
_____1 applet[package (Usm) 2pplel 7| ™ applet] >
777777777 command
| i | ! Token ! v. on-demand
| A | [| installation
| PP A I “Applet | SE Applet of applet, Applet
1. download pp ! ! Pp!
I Market I pp package | 7| Installer | Packege | Manager @
Lo (A1) LR (SEAM)
______ |
P 2.|insla// app SE API .)
iv. accesq vi. access
" applet applet ™
ii_access applet 3
App Access
(A) iii. verify Control 6. deploy
access Enforcer applet > ARA-M
rights (ACE) olic Applet
9 policy —
i i. fetch .na’
ACL
Key [Global Platform Reference Specification component
[Introduced or modified component
L. "] External Component

Fig. 2. Instantiated Platform Architecture

runtime, apps interact with their applets via the secure element API (SE API) that
embeds the GP-defined access control enforcer (ACE).

In the following, we describe component interactions for two major use cases:
(i) download and installation of applet-dependent apps, and (ii) execution of applet-
dependent apps.

Download and installation of applet-dependent apps. When the applet
installer Al receives arequest to install an applet-dependent app A (step 1), A is first
extracted from the app package and installed on the mobile host H (step 2). Next, Al
extracts the applet package AP (consisting of the encrypted applet ea and its cer-
tificate cert,) and sends it to the untrusted service manager USM (step 3). USM
stores AP in its internal storage and requests a token T, via a secure communica-
tion channel from S using the remote application management over HT'TP protocol
(SCP81) [24] (step4). Next, USM triggers applet installation process by sending the
the applet package AP and token T, to the SE applet manager SEAM (step 5). In
turn, SEAM proceeds to verify the integrity and authenticity of T, using the secret
key Kg shared by the secure element E and the SE stakeholder S and decrypts Ty,
using K . Further, the encrypted applet ea is decrypted using K, (which is embed-
ded in T,), and cert, is verified. If the verification process is successful, the applet
a is ready for installation. Finally, SEAM deploys the new ACL rules to the ARA-M
Applet (step 6) and installs the applet a on the secure element E (step 7).

Execution of applet-dependent apps. Either on system boot, or just be-
fore the access rules are verified, the SE access control enforcer (ACE) fetches and
caches all current ACL-rules from the ARA-M Applet (step i). When an app A re-
quests access to an applet a (step ii), AID-REF-DO and Hash-REF-DO are retrieved

10

by ACE and access rights for applet access are verified (step iii). If the verification
was successful, ACE grants access and forwards applet access request to the SE ap-
plet manager (SEAM) (step iv), which verifies the installation status of the applet.
If the applet is not yet installed, SEAM triggers the applet installation process (step
v). Finally, a communication request is forwarded to the applet a (step vi) and the
communication channel is successfully established between the app A and the ap-
plet a.

4 Implementation and Evaluation

In this section we briefly describe our prototype implementation and provide eval-
uation results.

4.1 Implementation

Our implementation is based on Java and currently targets Android devices. To
prototype the secure element environment, we used the open-source JavaCard sim-
ulator jCardSim [4], which we ported on Android. As summarized in Table 1, our
implementation consists of 7 software modules and includes 9558 Lines of Code (LoC)
in total, of which 5651 LoC consist of ports of third party open source projects.

The JavaCard emulator is realized in the jCardSim4 Android and SmartCardIO
modules, consisting of 4923 and 728 LoC, respectively. The main functionality is in-
cluded into a jCardSim4Android Android library — a modified version of jCardSim
which we adapted to run on Android. The emulator provides an environment to run
third-party applets, as well as the previously described ARA-M applet which stores
access control rules. jCardSim has a dependency on the Java Remote Method In-
vocation (RMI) API and javax.smartcardio classes, which are not available on An-
droid. Hence, we removed RMI functionality (which is not used in our project) and
extracted the required javax.smartcardio classes from the source code of OpenJDK
v7 into a SmartCardlO library.

Our secure element environment is implemented within an Android SE app which
holds an instance of the JavaCard emulator and implements the functionality of the
SE Applet Manager (SEAM) component. It consists of 791 LoC and depends on the
jCardSim4Android module and the SpongyCastle [6] API for crypto support. The
functionality of the USM component is implemented within the Android Host app
consisting of 1124 LoC. It depends on the SpongyCastle Crypto API and Commu-
nication API modules.

The Communication API module is responsible for the communication between
different entities. In particular, it provides a unified communication framework which
can be instantiated for different types of interfaces (Bluetooth, SSL/TLS, or lo-
cal socket connections). It implements requests and responses and includes helper
classes for data serialization, deserialization and transfer between parties. It is im-
plemented in Java 6 and consists of 545 LoC. Further, it was ported to Java/An-
droid to be compatible with the Android Host app.

11

Table 1. Software Modules

Module Size Language Codebase Dependencies
(LoC)

Android SE 791 |Java/Android - SpongyCastle Crypto API,
jCardSim4Android

jCardSim4Android 4923 |Java/Android | jCardSim [4] |SmartCardIO

SmartCardIO 728 |Java/Android| OpenJDK -

Android Host 1124 |Java/Android - SpongyCastle Crypto API,
Communication API

Communication API | 545 Java 6, - -

Java/Android

Developer 656 Java 6 - BouncyCastle Crypto API,
Communication API

SE Stakeholder 1390 Java 6 - BouncyCastle Crypto API,

Communication API

The SE stakeholder S and developer D modules are implemented in Java 6 and
consist of 1390 LoC and 656 LoC, respectively. Both modules have dependencies
on the BouncyCastle [1] Crypto API and the Communication API.

External SE Deployment. As our solution strictly separates the mobile host
H and the secure element E, we are able to deploy E not only on the same device
as H, but also on external devices like smartwatches or even in a cloud environ-
ment. To implement such a scenario we chose to use a smartwatch emulating the
secure element E and asmartphone acting as the mobile host H. The communication
between the smartphone and the smartwatch is based on Bluetooth with security
mode 3 (Link-Level Enforced Security) with enabled data encryption. This allows
us to make use of our socket based client-server communication between H and E
by simply establishing RFCOMM channels [31] and to perform the previously de-
scribed applet installation and execution without any further modification to the
existing code.

4.2 Evaluation

To evaluate the performance of our prototype we deployed it on an Samsung Galaxy
S3 smartphone running Android 4.4 and a Samsung Galaxy Gear SM-V700 smart-
watch running Android 4.2. The components that do not rely on a mobile platform
(app market and SE stakeholder) were executed on a server machine (Intel i7-2600
CPU, 8 GB RAM) running Ubuntu 12.04.4 and OpenJDK 6b31. The smartphone
and the server were connected via a a 802.11abgn Wi-Fi network. In our evaluation
we used the emulated and hardware-based secure element. Hardware-based secure
element was represented by a Mobile Security Card [39] which is a representative
of an ASSD card. Further, we utilized a Java applet developed for a SmartToken
access control solution [15,18] (10953 Bytes). All experiments were performed 1000
times, and we present the average values and standard deviation for selected oper-
ations.

12

We first measured time required for the execution of the applet certification and
token download protocols. Applet certification requires 173.975 ms (£ 40.517 ms)
on average, while token download needs 144.235 ms (£ 26.729 ms).

The most performance-critical operations are applet installation, deinstallation
and applet execution, as they are performed at runtime during execution of the mo-
bile app. We measured their performance in two different use-cases: (i) mobile host
H and secure element E deployed on the same smartphone and (ii) mobile host H de-
ployed on smartphone while the secure element E is deployed on a smartwatch. Fur-
ther, for the sake of comparison we measured the applet execution for the hardware-
based SE. However, we could not measure applet installation and deinstallation
operations for the hardware-based SE, as standard JavaCard environments do not
support on-demand installation and deinstallation of applets.

Table 2. Applet installation, deinstallation and execution. Average values and stan-
dard deviation

Applet Applet de- Applet
installation, | installation, | execution,
ms ms ms
Mobile host H and secure element E on| 46.265 + 15.763 £+ 38.430 +
the same smartphone 19.188 7.851 18.464
Mobile host H on the smartphone, secure| 415.266 £ | 205.356 & | 150.335 £+
element E on the smartwatch 77.998 72.539 50.069
Hardware-based secure element E - - 24.471 +
1.863

Table 2 shows the average time (and standard deviation) required for the ap-
plet installation and deinstallation process for use-cases (i) and (ii). Furthermore,
it shows how long it took to execute a simple operation (receiving 4 Bytes and send-
ing 10 Bytes) in the applet from an app residing on H. The process starts within the
app, requests the execution and ends after the result of the operation is successfully
received by the app.

Overall, we deem these results reasonable and promising for a real-life deploy-
ment of our architecture, especially when considering that our implementation has
not been optimized for performance yet.

5 Related Work

The most relevant work to oursis the On-board credentials (ObC) framework devel-
oped by Nokia researchers [34]. In particular, incentives behind ObC are similar to
ours — to open secure hardware to third party developers. ObC enables developers
to implement security sensitive subroutines of their applications in the form of ObC
scripts, which can beloaded into and executed within an isolated execution environ-
ment. Put forward by Nokia, the framework is deployed on commercial Nokia de-

13

vices (e.g., Nokia Lumia), on top of ARM TrustZone and TTI M-Shield TEEs. How-
ever, the ObC framework does not address access control aspects to ObC APIs from
mobile apps — in fact, such access is still controlled by the OS vendor. Hence, third
party developers need to collaborate with the OS vendor in order to execute their
ObC scripts within the isolated execution environment. Further, the framework
is an intellectual property of Nokia and is limited to Nokia platforms. Moreover,
ObC is primarily tailored for processor-based TEEs, while we focus on secure co-
processors — Java-cards, and address Java-card specific challenges (e.g., on-demand
applet installation).

Akram et al. [7-10] aim to solve similar problem by different means — they pro-
pose a new paradigm to hand over the control and management of smartcard ap-
plications to the end-user. Similarly, Global Platform specifies a consumer-centric
provisioning model where the user has more control over their isolated execution
environments [28]. In contrast to these works, we aim to remain compliant with the
traditional SE ownership model and expose secure hardware to third party devel-
opers by means of more flexible SE code provisioning mechanisms and providing
financial incentives to SE stakeholders.

Vasudevan et al. [41] proposed a challenge to the research community to present
sound technical evidence that application developers and users can benefit from
hardware security features. Our work aims to address challenges related to utilizing
secure hardware by application developers.

Ekberg et al. [20] discussed reasons for limited use of secure hardware on mobile
devices, such as security requirements and concerns of different stakeholders and
absence of standardized APIs for accessing secure hardware. We believe, that our
work can help to satisfy security requirements of different stakeholders.

Masti et al. [38] proposed an architecture that can provide an isolated execu-
tion environment as a cloud service. The authors focus on light-weight processor
extensions (like Intel TXT) and virtualized trusted platform modules (TPMs) in
order to provide concurrent dynamic root of trusts to multiple cloud-based virtual
machines. Generally, this work aims to solve an orthogonal problem. However, our
cloud-based architecture instantiation can largely benefit from proposed hardware-
based security anchors in the cloud.

Gonzélez, et al. [30] proposed an open big data platform for sensors that lever-
ages the Open Virtualization framework — an open source implementation of the
Global Platform’s TEE specifications [2] for ARM TrustZone [5]. Their efforts are
directed towards building an open source community around Open Virtualization,
while our primary goal is to enable access to secure hardware for third parties.

Marforio et al. [36] concentrated on secure and practical bootstrapping tech-
niques for security services on mobile devices. They particularly discussed the im-
portance of binding user identities to underlying mobile platforms and proposed an
architecture to provide secure user enrollment and migration from one platform to
another in the context of mobile TEEs.

The white paper [33] describes <tBase, a commercial trusted OS by Trustonic
and highlights provisioning mechanisms for trusted apps. Similarly to our approach,
provisioning mechanisms of <tBase leverage symmetric keys shared between the

14

TEE stakeholder and the TEE. However, similarly to provisioning solutions spec-
ified by Global Platform (cf. Section 2.3), they require a trusted third party (in a
form of TSM) to manage code provisioning process, while our solution relies on un-
trusted service manager (USM) which can reside on untrusted mobile host.

Anwar et al. [12] proposed a new access control to secure element APIs by mo-
bile apps on Android devices. Their concern is the fact that Access Control En-
forcer (ACE) that mediates access to the secure element is an OS-level component
which can be manipulated in case OS gets compromised. Authors propose to utilize
trusted computing concepts in order to establish trust into OS-level components. In
particular, they leverage processor-based TEE in order to ensure integrity of ACE
component and lock access to SE if integrity is not preserved. On a down side, this
solution requires significant modifications to system level software, as well as ad-
ditional support in hardware, which is hard to achieve in practice. Hence, we opt
for approach specified by Global Platform for sake of compatibility. Nevertheless,
our code provisioning scheme can be combined with the access control solution pro-
posed in this paper.

6 Conclusion

Currently, there is no flexible model for third party app developers to access and
use the available secure hardware on smartphones. This is an unfortunate situa-
tion since secure hardware provides an isolated execution environment that would
drastically improve the security of mobile apps. We propose a new model for flex-
ible distribution and provisioning of secure hardware code (applets, trustlets, or
trusted applications) for third party app developers. Our solution is compatible to
specifications of Global Platform (GP) and allows developers to use existing app
markets and couple their secure hardware code (e.g., applets in case of Java card)
to mobile apps that require security critical operations to be executed in an isolated
environment. The proposed ecosystem will allow the secure hardware stakeholders
to generate revenue by enforcing per-installation fees for secure hardware code. We
developed a prototype based on Java card and applied it to a smartphone (and a
smartwatch) for an access control application that uses smartphone to open doors
with NFC locks. We are planning to open source our port of JCardSim Java Card
emulator to Android which will help industry and other researchers to build upon
our work and deploy applet-dependent apps on smartphone platforms or even use
a smartwatch as an isolated execution environment.

Acknowledgements. We thank N. Asokan for several fruitful discussions and
feedback to the paper draft. Further, we thank anonymous reviewers for their help-
ful comments. This work was partially supported by the German ministry of educa-
tion and research (Bundesministerium fr Bildung und Forschung, BMBF') within
the Software Campus initiative.

15

References

NSO

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

BouncyCastle crypto API. https://www.bouncycastle.org/.

GlobalPlatform - device specifications. http://www.globalplatform.org/
specificationsdevice.asp.

Google Wallet: Shop. Save. Pay. With your phone. http://www.google.com/
wallet/.

jCardSim Java card runtime environment simulator. http://jcardsim.org/.
Sierraware. http://www.sierraware.com.

SpongyCastle crypto API. http://rtyley.github.io/spongycastle/.

R. N. Akram and K. Markantonakis. Rethinking the smart card technology. In
the Second International Conference on Human Aspects of Information Security,
Privacy, and Trust, pages 221-232, 2014.

R. N. Akram, K. Markantonakis, and K. Mayes. A paradigm shift in smart card
ownership model. In International Conference on Computational Science and its
Applications (ICCSA ’10), pages 191-200, Washington, DC, USA, 2010. IEEE
Computer Society.

R. N. Akram, K. Markantonakis, and K. Mayes. User centric security model for
tamper-resistant devices. In IFEE International Conference on e-Business Engi-
neering (ICEBE’11), pages 168-177, 2011.

R. N. Akram, K. Markantonakis, and K. Mayes. Trusted Platform Module for
smart cards. In 6th International Conference on New Technologies, Mobility and
Security, NTMS ’14, pages 1-5. IEEE, 2014.

T. Alves and D. Felton. TrustZone: Integrated hardware and software security.
Information Quaterly, 3(4), 2004.

W. Anwar, D. Lindskog, P. Zavarsky, and R. Ruhl. Redesigning secure element
access control for NFC enabled Android smartphones using mobile trusted com-
puting. In International Conference on Information Society (i-Society), June 2013.
Apple Press. Apple Announces Apple Pay: Transforming Mobile Payments with
an Easy, Secure & Private Way to Pay, Sep 2014. https://www.apple.com/pr/
library/2014/09/09Apple-Announces-Apple-Pay.html.

J. Azema and G. Fayad. M-Shield mobile security technology: Making wireless
secure. Texas Instruments white paper, 2008. http://focus.ti.com/pdfs/wtbu/
ti_mshield_whitepaper.pdf.

C. Busold, A. Dmitrienko, H. Seudi, A. Taha, M. Sobhani, C. Wachsmann, and A.-
R. Sadeghi. Smart keys for cyber-cars: Secure smartphone-based NFC-enabled car
immobilizer. In ACM Conference on Data and Application Security and Privacy
(CODASPY), Feb. 2013.

Certgate. Certgate products. cgCard, 2012. http://www.certgate.com/wp-
content/uploads/2012/09/20131113_cgCard_Datasheet_EN.pdf.

S. Clark. MasterCard and Samsung introduce embedded NFC pay-
ments. http://www.nfcworld.com/2013/12/13/327343/mastercard-samsung-
introduce-embedded-nfc-payments/, 2013.

A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann. SmartTokens:
Delegable access control with NFC-enabled smartphones. In 5th International
Conference on Trust and Trustworthy Computing (TRUST). Springer, June 2012.
Edgar Dunn & Company. Advanced payments report. http://wuw.
paymentscardsandmobile.com/wp-content/uploads/2014/02/PCM_EDC_
Advanced_Payments_Report_2014_MWC.pdf, 2014.

16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J.-E. Ekberg, K. Kostiainen, and N. Asokan. The untapped potential of trusted exe-
cution environments on mobile devices. IEEE Security € Privacy, 99(PrePrints):1,
2014.

N. Elenkov. Accessing the embedded secure element in Android 4.x,
2012. http://nelenkov.blogspot.de/2012/08/accessing-embedded-secure-
element-in.html.

European Payments Council - GSMA. Trusted Service Manager. Ser-
vice management requirements and specifications. EPC 220-08. Version
1.0. http://wuw.europeanpaymentscouncil.eu/index.cfm/knowledge-
bank/epc-documents/epc-gsma-tsm-service-management-requirements-
and-specifications/epc220-08-epc-gsma-tsm-wp-vipdf/, 2010.

Global Platform. Card specification. Version 2.2, 2006.

Global Platform. Remote application management over HT'TP protocol, Sep 2006.
Global Platform. Global Platform card technology: Secure channel protocol 03,
Sep 2009.

Global Platform. GlobalPlatforms proposition for NFC mobile: Secure element
management and messaging. White paper. http://www.sicherungssysteme.net/
fileadmin/GlobalPlatform_NFC_Mobile_White_Paper.pdf, 2009.
GlobalPlatform. GlobalPlatform Device Technology. TEE System Architecture.
Version 1.0. http://globalplatform.org/specificationsdevice.asp, 2011.
GlobalPlatform. A new model: The consumer-centric model and how it applies to
the mobile ecosystem. http://www.globalplatform.org/documents/Consumer_
Centric_Model_White_PaperMar2012.pdf, 2012.

GlobalPlatform. Secure element access control. http://www.globalplatform.
org/specificationsdevice.asp, 2012.

J. Gonzalez and P. Bonnet. Towards an open framework leveraging a trusted execu-
tion environment. In Cyberspace Safety and Security, volume 8300 of Lecture Notes
in Computer Science, pages 458-467. Springer International Publishing, 2013.
Google. Android API guide - Bluetooth. http://developer.android.com/guide/
topics/connectivity/bluetooth.html, 2010.

N. Itoi, W. A. Arbaugh, S. J. Pollack, and D. M. Reeves. Personal secure booting.
In 6th Australasian Conference on Information Security and Privacy (ACISP),
pages 130-144, Jul 2001.

Jan-Erik Ekberg. Trustonic. <t-base - a trusted execution environment. White
paper, 2014.

K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board credentials with
open provisioning. In ACM Symposium on Information, Computer, and Commu-
nications Security (ASIACCS), pages 104-115. ACM, 2009.

K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan. Old, new, borrowed,
blue — a perspective on the evolution of mobile platform security architectures.
In First ACM Conference on Data and Application Security and Privacy, pages
13-24, 2011.

C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun. Secure en-
rollment and practical migration for mobile trusted execution environments. In the
Third ACM Workshop on Security and Privacy in Smartphones € Mobile Devices
(SPSM), pages 93-98, New York, NY, USA, 2013. ACM.

C. Marlowe. Intel and Visa join forces to boost mobile payments.
http://www.dmwmedia.com/news/2012/02/28/intel-and-visa-join-forces-
to-boost-mobile-payments, 2012.

17

38.

39.

40.

41.

R. J. Masti, C. Marforio, and S. Capkun. An architecture for concurrent execu-
tion of secure environments in clouds. In The ACM Cloud Computing Security
Workshop (CCSW), pages 11-22, 2013.

Press Release, Giesecke & Devrient. G&D makes mobile terminal devices even
more secure with new version of smart card in microSD format. http://wuw.gi-
de.com/en/about_g_d/press/press_releases/G/,26D-Makes-Mobile-Terminal-
Devices-Secure-with-New-MicroSD%E2%84%A2-Card-g3592. jsp.

TrendLabs. 3Q 2012 security roundup. Android under siege: Popularity comes
at a price. http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/reports/rpt-3q-2012-security-roundup-android-under-
siege-popularity-comes-at-a-price.pdf, 2012.

A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune. Trustworthy
execution on mobile devices: What security properties can my mobile platform
give me? In 5th International Conference on Trust and Trustworthy Computing
(TRUST), pages 159-178, Berlin, Heidelberg, 2012. Springer-Verlag.

18

