TECHNISCHE UNIVERSITAT DARMSTADT

Center for Advanced Security Research Darmstadt
& CASED

Technical Report TR-2011-06-01

Lightweight Remote Attestation using Physical Functions
Steffen Schulz, Christian Wachsmann, Ahmad-Reza Sadeghi

System Security Lab
Technische Universitat Darmstadt, Germany

TECHNISCHE

UNIVERSITAT

DARMSTADT
Technische Universitat Darmstadt TR-2011-06-01
Center for Advanced Security Research Darmstadt First Revision: June 3, 2011

D-64293 Darmstadt, Germany Last Update: July 18, 2011

Lightweight Remote Attestation using Physical Functions

Ahmad-Reza Sadeghi
TU Darmstadt (CASED)
& Fraunhofer SIT
Darmstadt, Germany
ahmad.sadeghi@cased.de

ABSTRACT

Remote attestation is a mechanism to securely and verifiably
obtain information about the state of a remote computing
platform. However, resource-constrained embedded devices
cannot afford the required trusted hardware components,
while software attestation is generally vulnerable to network
and collusion attacks.

In this paper, we present a lightweight remote attestation
scheme that links software attestation to remotely identifi-
able hardware by means of Physically Unclonable Functions
(PUFs). In contrast to standard software attestation, our
scheme (i) is secure against collusion attacks to forge the
attestation checksum, (ii) allows for the authentication and
attestation of remote provers, and (iii) enables the detection
of hardware attacks on the prover.

1. INTRODUCTION

One of the major challenges in computer security is how
to gain assurance that a local or remote computing plat-
form behaves as expected. Various approaches have been
proposed that aim to assure the correct and secure oper-
ation of computer systems (attestation) [24]. Common to
all existing approaches is that the platform to be evaluated
(prover) sends a status report of its current configuration
to a verifier to demonstrate that it is in a known and thus
trustworthy state. Since malicious hard- or software on the
prover’s platform may forge this report, its authenticity is
typically assured by a secure co-processor |7, [21] or trusted
software [1].

A recent industrial initiative towards the standardization
of attestation was brought up by the Trusted Computing
Group (TCGQG) by specifying the Trusted Platform Module
(TPM) [38] as a trust anchor for authentic reporting of
a platform’s software state. Today, TPMs are typically
implemented as secure co-processors and available in many
PCs, laptops, and server systems. The TCG also specifies
the Mobile Trusted Module (MTM) [39], which is a TPM
for mobile and embedded devices. However, the integration
of security hardware in low-cost embedded devices (e.g.,
wireless sensor nodes) is often infeasible. In this context,
software attestation [34] was proposed, requiring neither
trusted hardware nor a secure software core.

*This is the full version of [27].
Update: Dries Schellekens made us aware of a problem with

the (optional, but useful) protocol for on-demand generation
of CRPs (cf. [Section 5.2)). We also included a more detailed

discussion of related work and security considerations.

Steffen Schulz
TU Darmstadt (CASED) &
Macquarie University (INSS)
Darmstadt, Germany
steffen.schulz@cased.de

Christian Wachsmann
TU Darmstadt (CASED)
Darmstadt, Germany
christian.wachsmann@cased.de

Software attestation exploits the computational limits of
the prover to ensure that only a specific algorithm can be
executed within a certain time frame. Within this algorithm,
the prover computes a checksum of its software state, e.g.,
its program memory content, and sends it to the verifier.
The verifier computes a reference checksum using a reference
software state and accepts the prover only if (1) the checksum
reported by the prover matches the reference checksum and
(2) the prover answered within the same time an honest
device would have needed. The first check guarantees that
the expected software is present at the prover, while the
second ensures that the prover has not performed additional
computations, e.g., to hide malicious software.

Unfortunately, software attestation schemes require ad-
ditional assumptions to be secure, namely: (1) the prover
cannot be impersonated by or collude with other, potentially
more powerful devices, and (2) the hardware of the prover
was not modified to increase its performance. As a result, ex-
isting software attestation schemes are unsuitable for remote
attestation or in scenarios where the adversary can modify
the prover’s hardware, such as sensor networks.

To overcome these problems the checksum must be linked
to the prover’s platform. One possible solution links the
checksum computation to hardware-specific side-effects, such
as CPU states and caching effects that are considered to be
expensive to simulate [15]. However, it has been shown that
these side-effects are not appropriate to achieve a strong link
to the underlying hardware |36, 19| as they only bind the
software computation to classes of devices (i.e., of a specific
type or manufacturer) instead of individual devices.

Contribution.

In this paper, we propose a lightweight remote attesta-
tion scheme that combines software attestation with device-
specific hardware functions. Specifically, we show how Physi-
cally Unclonable Functions (PUFs) can be integrated into
software attestation such that a compromised device is unable
to efficiently outsource the software checksum computation
to colluding parties and propose practical optimizations to
facilitate the verification of the PUF.

In contrast to plain software attestation, our scheme (1) is
secure against collusions of malicious provers, (2) allows for
the authentication and attestation of remote provers, and
(3) enables the detection of hardware attacks on the prover.
We present different solutions for the efficient and practical
verification of PUFs by the verifier and discuss their trade-
offs. The proposed scheme is applicable to any current (and
likely future) software attestation protocol.

ahmad.sadeghi@cased.de
steffen.schulz@cased.de
christian.wachsmann@cased.de

Outline.

After providing background information on PUFs in
[fion 2] we present our new PUF-based attestation scheme in
We discuss different instantiations of our scheme
in and various optimizations for practical integra-
tion in The security of our approach is analyzed

in Finally, we discuss related work in
and conclude in

2. Physically Unclonable Functions (PUFs)

A Physically Unclonable Function (PUF) is a noisy func-
tion that is embedded into a physical object, e.g., an inte-
grated circuit |23]. Today, there are already several PUF-
based security products aimed for the market, e.g., PUF-
enabled RFID chips and proposals for IP-protection and
anti-counterfeiting solutions [43| [13]. When queried with a
challenge z, a PUF generates a response y < PUF(z) that
depends on both z and the unique device-specific intrinsic
physical properties of the object containing PUF. Since PUF's
are subject to noise (e.g., thermal noise), they typically re-
turn slightly different responses when queried with the same
challenge multiple times. However, these output variations
can be eliminated by using fuzzy extractors |6], which can be
efficiently implemented on resource-constrained devices [40].
Hence, PUFs can be used as deterministic functions.

Based on |2} |28], we consider PUF's that have the following
properties, where PUF and PUF’ are two different PUFs:

e Robustness: When queried with the same challenge x,
PUF always returns the same response y.

e Independence: When queried with the same challenge
x, PUF and PUF’ return different responses y and 3’.

e Pseudo-randomness: It is infeasible to distinguish a
PUF from a pseudo-random function.

e Tamper-evidence: Any attempt to physically access
the object containing PUF irreversibly changes PUF, i.e.,
PUF cannot be evaluated any more but is turned into a
random PUF’ # PUF.

Independence and pseudo-randomness imply that A cannot
predict PUF responses to unknown challenges, which means
that A cannot simulate a PUF based on its challenge/re-
sponse behavior. Moreover, tamper-evidence ensures that
A cannot obtain any information on the PUF by physical
means, e.g., hardware attacks. Hence, A cannot simulate or
clone a PUF.

3. PUF-BASED ATTESTATION

Our PUF-based attestation scheme extends existing soft-
ware attestation protocols. A software attestation protocol
is a two-party protocol between a prover P and a verifier V,
where V should be convinced that P is in a trusted software
state S. Typically, P is an embedded device with constrained
computing capabilities (e.g., a sensor node), whereas V is a
more powerful computing device (e.g., a base station). On a
high level, all known software attestation protocols exploit
the computational limits of P to assure that nothing else
than a specific trusted algorithm can be executed within a
specific time frame.

In contrast to existing software attestation schemes, our
solution assures the verifier V that the attestation result has

actually been computed by the original hardware of a specific
prover P. We propose to use a hardware checksum based on
PUFs to include device-specific properties of P’s hardware
into the attestation protocol. Our design exploits the limited
throughput of external interfaces to prevent an adversary
from outsourcing the computation of the software checksum
to a more powerful computing device.

Trust model and assumptions.

The adversary A controls the communication between the
verifier V and the prover P, i.e., A can eavesdrop, manipulate,
reroute, and delete all messages sent by V and P. Moreover,
A knows all algorithms executed by P and can install mali-
cious software on P. However, due to the unclonability of
the PUF (Section 2)), A cannot simulate the hardware check-
sum, while the tamper-evidence of the PUF ensures that A
cannot physically access or manipulate the internal interfaces
between CPU, memory, and PUF of P. Further, we assume
that external interfaces of P are significantly slower than the
internal interface that is used by the CPU to access the PUF.
All provers P are initialized in a secure environment before
deployment. The verifier V is trusted to behave according to
the protocol. Moreover, V can emulate any algorithm that
can be executed by P in real time and maintains a database
D containing the identity I and the exact hard- and software
configuration of each P.

Protocol description.

shows the proposed PUF-based attestation pro-
tocol, consisting of a generalized software-attestation pro-
tocol with additional inclusion of a device-characteristic
hardware checksum' function HwSum() at the prover P and
EmulateHwSum() at the verifier V. By careful integration of
this hardware checksum into the software attestation algo-
rithm, we bind the software attestation to the respective
hardware platform, enabling remote attestation.

The main protocol is the generalization of a typical soft-
ware attestation protocol: The verifier V starts by sending
a random challenge ¢ to the prover P and then measures
the time P takes to reply with the checksum o computed
over its current software state S (e.g., its program memory).
In detail, on receipt of ¢, P sets up the initial checksum
value o¢ and some state ro as required by the underlying
software attestation scheme. P then iteratively computes oy,
by taking k random measurement samples out of S. Specifi-
cally, in each iteration i of the checksum computation, P in-
vokes three procedures: GenMemAddr(), SwSum(), and HwSum().
GenMemAddr(v‘i,l7 yifl) is used to generate an output r; and
a memory address a;, which determines the next memory
block b; of S to be included into the software checksum
as 0; < SwSum(o;_1,b;). Note that SwSum() is the same
function as in plain software attestation, while we require
only a minor modification of GenMemAddr() to include the
hardware checksum output y;—1. Typically, modern software
attestation schemes implement GenMemAddr() as a Pseudo-
Random Number Generator (PRNG) to prevent efficient
pre-computation or memory mappings attacks. However,
neither the PRNG nor the SwSum() are required to be crypto-
graphically strong [34]. Hence, it is usually straightforward to

IFor the purpose of this paper, we consider HwSum() to be
implemented as a PUF to gain tamper-evidence. However,
simpler implementations are possible, e.g., an HMAC with a
hard-wired key.

Verifier V
Stores D = { .., (1,81,Cr,01),. }

Prover P
Stores (1, .5)

Choose random challenge ¢

Save current time ¢

rh < c

(64, y0) InitSuSum(rg)

for i =1to k do
Yy} < EmulateHwSum(Cy,0}_,)
(a},7}) < GenMemAddr(r;_,,yi_;)

171
o} < suSum(c}_,,b})
end
Save current time ¢’
if (¢’ —t) < 67 and o} = o}, then accept P

else reject P

Ok

rg < C

(00,Yy0) < InitSwSum(ro)

for i =1 to k do
Y; HwSu.m(ai_l)
(ai,ri) GenMemAddr(7;—1,yi—1)
0 < SwSum(o;—1,b;)

end

Figure 1: Remote attestation based on physical functions

integrate y;—1 into GenMemAddr() by using it as an additional
seed to the PRNG.

In contrast to plain software attestation, our attestation
scheme integrates a hardware checksum HwSum() into each
iteration 4, yielding the previously mentioned additional in-
put y; < HwSum(o;—1) to the GenMemAddr() procedure. As a
result, every iteration of the software checksum additionally
depends on the result of the device-specific hardware check-
sum, thus binding the attestation response o) to the prover’s
hardware. Similarly, each iteration of HwSum() depends on
the previous intermediate software checksum o;_1, such that
HwSum() cannot be executed independently of SwSum(). Note
that HwSum() and SwSum() are executed in parallel.

After every memory block b; has been included into the
checksum at least once, P sends o to V. While waiting for
the response of P, V can compute a reference checksum o7,
by emulating the computation of P using the known trusted
software state Sy recorded in database D and emulate HuSum()
using EmulateHwSum() with some verification data Cr, which
is secret information only available to V. V accepts only
if (1) P replied within a certain time frame ¢; and (2) oy
matches o,. The first check ensures that P computed oy in
about the same time d; an honest device would have needed
and has not performed additional computations, e.g., to hide
the presence of malware. The second check verifies whether
the software state S measured by P corresponds to the known
trusted software state Sy. If either of these checks fails, P is
assumed to be in an unknown software state and is rejected.

Note that the verification of the PUF-based hardware
checksum by V is not straightforward: }V must be able to
predict the outputs of the PUF, while this must be infeasible
for A. This is further complicated by the large amount of
hardware checksum responses required by our construction
and the closely parallelized execution of software and hard-
ware checksum. Hence, the integration of PUFs into software
attestation requires careful consideration.

Security objectives.

In contrast to existing software attestation schemes, our
PUF-based attestation scheme additionally achieves the fol-
lowing security goals:

e Correctness: A prover in a known trusted state must

always be accepted by the verifier.

Unforgeability: A prover in an unknown state must be
rejected by the verifier.

e Prover authentication: A prover pretending to be an-
other prover must be rejected by the verifier.

Prover isolation: A prover colluding with other (mali-
cious and/or more powerful) devices to forge the attes-
tation must be rejected by the verifier.

o Tamper-evidence: A prover that is not in its original
hardware state must be rejected by the verifier.

4. INSTANTIATION

In this section, we show how existing software attesta-
tion schemes can be used to instantiate software checksum
SwSum() and the memory address generator GenMemAddr()
with only minor modifications. Moreover, we discuss differ-
ent instantiations of the hardware checksum HwSum() and, in
particular, the corresponding secret verification data Cr and
EmulateHwSum() algorithm.

4.1 Memory Address Generation
and Software Checksum

The memory address generator GenMemAddr() and the soft-
ware checksum SwSum() components of our PUF-based at-
testation scheme can be instantiated based on any existing
software-based attestation scheme (e.g., [31] 46, 4]) with
only minor modifications to the underlying GenMemAddr()
algorithm to integrate the hardware checksum HwSum(). In
all modern software attestation designs, GenMemAddr() is im-
plemented as a PRNG with internal state r; that is used
to generate pseudo-random memory addresses a;. We can
thus integrate the output y;—1 of HwSum() simply by merging
it with the current state r; in each iteration. Due to the
unpredictability property of the PUF (Section 2), this is
equivalent to (partly) re-seeding the PRNG, which effectively
prevents the PRNG from repeating its sequence.

We use Secure Code Update By Attestation (SCUBA) [31]
as an example to demonstrate the integration of existing
software attestation schemes into our framework. We se-
lected SCUBA since it targets resource-constrained devices

Algorithm 1: GenMemAddr() of SCUBA (modified).

Algorithm 2: SwSum() of SCUBA.

Input:

r: current PRNG state

a: current memory address

y: response of last hardware checksum query

Eodestam MASK: memory address range to be measured
Output:

r: updated PRNG state

a: next memory address

SCUBA-GenMemAddr (r, a, y)
begin
// T-function, updates r where 0 < r < 2'6
r 4+ r+ (r* V 5)®y mod 2'°
// Compute random memory address using r
a= ((a®r) N MASK) 4 codestart
return r,a
end

and is presented with sufficiently detailed pseudo-code and
experimental results.

depicts the (modified) GenMemAddr() algo-
rithm of SCUBA, which implements a PRNG based on a
T-function [16] that iterates over all possible PRNG states
r. The output of the PRNG is used to generate a random
memory address a in the range specified by the verifier. [A]]
implements SwSum(), which is iteratively used to
update the intermediate checksum value o. This update is
done by periodically iterating through the ten 16 bit parts of
the 160 bits of o. We modify [Algorithm 1|such that the state
update function of the PRNG (i.e., the T-function) integrates
the output y of HuSum(), which makes the new PRNG state
r dependant on y. Since the state update function iterates
through all possible values of r, our modification introduces
random jumps into the pseudo-random sequence, which does
not weaken the security of the PRNG. note that similar
modifications are possible with other PRNGs.

Based on Algorithm [I] and [2| the complete PUF-based at-
testation scheme is an instantiation of our high-level protocol
design depicted in

4.2 Hardware Checksum

We present two alternative instantiations of the hardware
checksum HwSum() based on emulatable and non-emulatable
PUFs. In general, emulatable PUFs yield more efficient
protocols. However, since PUFs are not expected to be

emulatable by design (Section 2)), we focus on solutions for

different approaches based on non-emulatable PUFs.

4.2.1 Emulatable PUFs

One approach to implement HwSum() are emulatable PUFs,
which allow the manufacturer of the PUF to set up a mathe-
matical model that enables the prediction of PUF responses
to unknown challenges |22} 25]. Typically, the creation of
this model requires extended access to the PUF hardware,
which is only available during the manufacturing process of
the PUF and permanently disabled before deployment |22].

More detailed, during the production of the hardware of
prover P, the trusted hardware manufacturer sets up a secret
mathematical model C; of PUF(). Before deployment of P,
the interface for modelling the PUF() is then disabled such that

Input:
o: current checksum value
a: address of current memory block
i: loop counter (i.e., i-th iteration of SwSum())
r: current PRNG state
Output: o: updated checksum value
Data:
j: determines the part of the checksum to be modified
SR: current CPU status (flags) register value
PC: current CPU program counter value
SCUBA-SwSum(o, a, i,)
begin
// Calculate checksum at index j
// Note: S[a] denotes block b of S at address a
cj+0;+PC®S[a]+idoj_1+rPa+o;j—2® SR
0 <—rotate-left(o;)
// Update checksum index (10 - 16 = 160 bit)
j<« (j+1) mod 10
return o
end

any attempt to reactivate it leads to an irreversible change
of PUF(). During deployment of P, C7 and an algorithm
EmulateHwSum() for emulating HwSum() is given to the verifier
V. In the attestation protocol, P computes HwSum(-) = PUF(-),
whereas V emulates HwSum(-) = EmulateHwSum(C7, -).

In practice, emulatable PUFs can be realized by most
delay-based PUFs (e.g., Arbiter PUFs [18, |10] and Ring
Oscillator PUFs [9]), which allow for creating precise mathe-
matical models based on machine learning techniques [26].
However, the security properties of practical instantiations
of emulatable PUFs still need further evaluation. Hence, in
the following section, we present different solutions based on
non-emulatable PUFs.

4.2.2 Non-emulatable PUFs

For non-emulatable PUFs, the verifier V typically main-
tains a secret database D of PUF challenges and responses,
called Challenge/Response Pair (CRP) database. Note that
our attestation scheme requires PUF's that ideally have an
exponentially large CRP space, such that an adversary A
with direct access to the PUF cannot create a complete CRP
database and then emulate the PUF. However, this means
that V can store only a subset of the CRP space. We thus
have to deterministically limit the CRP subspace used during
attestation without allowing A to exploit this to simulate
the PUF in future attestation runs.

In the following, we describe two different approaches of
how non-emulatable PUF's can be used to instantiate HwSum().

Commitment to procedure.

One approach is creating a database D of attestation
challenge messages ¢ and the corresponding checksums oy in
a secure environment before the prover P is deployed. In the
attestation protocol, the verifier V can then use D to obtain
the reference checksum oy instead of emulating the PUF.

Specifically, before deployment, V runs the attestation
protocol several times with P in a secure environment. For
each protocol run, V records in D the attestation challenge
c sent to P and the corresponding checksum o}, returned by

P. When running the attestation protocol after deployment,
V chooses a random set (I,c,07,d0r) € D and sends c to P,
which then computes o using HwSum(). V accepts only if P
replied with o = o7, in time ;.

The solution allows for very efficient verification of o by
V), however, the number of attestation protocol runs of each
P is limited by the size of D. Moreover, this approach does
not allow to update the software state of P after deployment,
e.g., to fix bugs that allow runtime compromise.

Commitment to challenge.

Since updates to the software of the prover P are usually
developed after deployment of P, the software state S and
thus the inputs to HwSum() are not known before deployment
of P and the final checksum value o) cannot be computed
in advance.

Our solution to this problem is to reduce the amount of
possible inputs z; to HwSum() generated by the intermediate
checksum results o;_1, such that it becomes feasible to create
a CRP database for node that is independent of o;, and
thus S. To prevent the adversary from exploiting this to
simulate the attestation procedure, we use a random offset ¢
to determine this reduced CRP space within the overall CRP
space of HwSum(), such that the adversary cannot generate
the required CRPs before the actual attestation protocol
starts. The offset ¢ is sent from the verifier V to P together
with a random attestation challenge 7 in the first message of
the attestation protocol (Figure 1)), i.e. ¢ = (q,r).

Specifically, we chose f(-) to be a function that maps
intermediate checksum results o;—1 to bit strings of length n
and derive the input to HwSum() as z; < ¢||f(oi—1). Before
deployment, the verifier V evaluates y; < HwSum(g||7) for all
j€{0,...,2" — 1}, and records (g, yo,-..,y2n—1) as Cr,q in
D for a number of randomly chosen offsets q.

After deployment, V chooses a random (I, S7,Cr,q,91) € D
and a random nonce r to start the attestation. The prover
‘P then computes the checksum oy, using HwSum(q||f(oi—1)).
While waiting for the response of P, V computes the reference
checksum o7, using EmulateHwSum(Cr 4, q||f(0i—1)) and the
current reference software state Sr. V accepts only if P
replied with o = o7, in time ;.

In this approach, the number of attestations are limited by
the amount of random offsets ¢ for which a CRP subspace
has been generated in advance and by the storage available
at the verifier V. The offsets cannot be re-used since they
cannot be encrypted? and would enable the adversary to
pre-compute or even replay future attestation protocol runs.

5. PRACTICAL CONSIDERATIONS

In the following, we discuss some interesting variations of
our attestation scheme to support its practical integration.

5.1 Checksum Synchronization

Our protocol assumes a strong inter-dependency and highly
concurrent execution of the hardware and software checksum
functions at the prover. However, in practice, the soft- and
hardware checksum functions are limited by additional con-
straints such as cost, power consumption, and availability.?

2The encryption requires a secret key that must be protected
against SW attacks. This typically requires a hardware
security module, which, however, contradicts purpose of our
lightweight attestation scheme.

3In particular, current PUF constructions are not designed

In the following we thus present two alternatives for a more
abstract hardware checksum function y; < HwSum'(z;) as a
wrapper to the actual hardware checksum HwSum(), which
adapts the average access time of the hardware checksum
to that of the software checksum and thus increases their
inter-dependency.

In case the real hardware checksum HwSum() is faster than
SwSum() and GenMemAddr(), we use a logical hardware func-
tion HwSum’() that simply issues v > 1 queries to the un-
derlying HwSum() in a cipher-feedback mode, as illustrated
in Note that enforces multiple
subsequent queries to HwSum() to derive the final output of
HwSum’() and may thus also be implemented in software. We
include a counter u into the input of HwSum() for additional
diffusion of its previous outputs y. However, several other
diffusion functions are possible.

Algorithm 3: Low-speed hardware checksum HwSum'().

Input:

x: challenge to HwSum’()

v: number of iterations

Output: y: response of HwSum'()
Data: u: loop counter

HwSum’(z, v)
begin
y<«0
for u =0 to v do
|y« y ® HuSun(u|ly ® =)
end
return y
end

Algorithm 4: High-speed hardware checksum HwSum’().

Input: z: challenge to HwSum'()

Output: y: response of HwSum'()

Data:

v: PRF re-seeding period, fixed hardware parameter
u: loop counter, initialized as 0

seed: temporary PRF seed

HwSum’ ()

begin
if v =0 mod v then

| seed < HwSum(z)

end
y < PRF(seed, x)
u+—u+1
return y

end

On the other hand, if the software checksum is faster than
the hardware checksum, we require a construction where the
actual HwSum() is queried less often than the software check-
sum. Unfortunately, this reduces the inter-dependency of the
two algorithms and may allow an adversary to violate, e.g.,

prover isolation (Section 3|). To mitigate this problem, we

or even evaluated for high access speed and we are currently
investigating suitable PUF prototypes for the integration
and practical evaluation of our protocol.

propose the hardware checksum construction depicted in E
where a fast HwSum’() is implemented in hardware,
using a fast PRF that is continuously re-seeded by HwSum().
If the seeding period is sufficiently low, this construction
also remains secure against side-channel attacks since each
PRF seed is only valid for a few microseconds. To achieve
tamper-resistance, the implementation of HwSum’() must be
protected as one of the security-critical device components,
e.g., by physically shielding it with a coating PUF (41}, |44].

Note that multiple HwSum() functions may integrated into
the device, e.g., to provide comprehensive tamper-evidence
for all hardware components through multiple PUFs. More-
over, they can be incorporated into to lower
the frequency of accessing the individual HwSum() functions.
Hereby, a global counter iterates over the number of available
HwSum() functions and accesses them successively.

For example, the authors of [31] evaluate the SCUBA
protocol for k£ = 40,000 and measure a legitimate attesta-
tion time frame of about 2.87 seconds. When instantiating
our protocol based on SCUBA, the PUF should operate
at 40,000/2.87 ~ 14 kHz. Assuming that the PUF cannot
operate at this frequency but only reaches, e.g., 200 Hz [5],
and assuming that two PUF's are available per device P, we
can use and access the two PUFs in turns,
resulting in an optimal PRF re-seeding period of about
v =14 KHz/(2 - 200 Hz) = 35 or 2.5 milliseconds.

Finally, a special case of is where the Pseudo-
Random Function (PRF) is seeded only once per attestation
and the initial HwSum() challenge is a shared secret between
prover and verifier (i.e., is stored in the prover’s hardware to
resist software compromise), which can be protected against
hardware attacks using key storage based on PUFs [45] |20].

5.2 Key Establishment and CRP Generation

We propose a method to reduce the storage requirements at
the verifier V and to allow a theoretically unlimited number
of attestation protocols runs, by generating additional CRP
subspaces on demand, once an attestation succeeded.

Specifically, ¥V and P can establish a mutually authenti-
cated and confidential channel after successful attestation to
exchange additional CRPs for future attestation runs. For
this purpose, o is treated as a common shared authentica-
tion secret and the proof of knowledge of this secret (the last
message of the attestation protocol in is replaced
with an authenticated key exchange.

However, contrary to the original proposal in [27] one
cannot use o as a session key. As pointed out by Dries
Schellekens, an adversary can recover oy by recording the
protocol messages exchanged between P and V), then com-
promising the software of P, and recompute oy, by replaying
the verifier’s challenge ¢ and simulating the attestation using
HuSum() of P as an oracle. Knowing oy, the adversary can
decrypt the required CRPs and future challenges ¢ exchanged
with the on-demand CRP generation protocol of [27]. The
gained a priori knowledge on future CRPs compromises all
future (remote) attestations.

To mitigate this attack, o, should be interpreted as an
authentication secret that is used only in an authenticated
key exchange that provides forward secrecy, such as authenti-
cated Diffie-Hellman. Although this makes the solution less
lightweight, we stress that the whole process of on-demand
CRP generation itself can be rather resource intensive due

to the exchange of the several thousand CRPs of HuSum().*
Also note that sensor nodes are increasingly equipped with
hardware acceleration for cryptography, such as many ZigBee-
compatible wireless controllers, while secure memory in face
of physical attacks is a real cost factor.

Moreover, more efficient solutions that a full Diffie-Hellman
key exchange are possible. For example, the verifier V can
generate an ephemeral RSA key pair with short public key
exponent. The exponent and RSA modulus are transmitted
to the verifier encrypted under ox. The prover P then can re-
cover the public key and modulus to send an RSA-encrypted,
randomly chosen session key K to V. This scheme provides
forward secrecy since the adversary needs the RSA secret key
to recover K. This approach is similar to Encrypted Key Ex-
change [3], where a Diffie-Hellman public key is authenticated
by encrypting it under a short user password®.

5.3 Cooperative Attestation

As a last modification, we consider the problem of perform-
ing precise time measurements in the presence of network
delays. In wireless sensor networks, hop-to-hop communica-
tion combined with energy restrictions at the sensor nodes
used for routing can impose high transmission delays and
more importantly jitter. Previous attempts to solve this issue
are using trusted co-processors |17} [29]. However, we think a
more practical and interesting solution is to leverage node
collaboration as suggested in [46].

In particular, our protocol allows to delegate the time
measurement to the direct neighbor of the prover without
modification. The measuring neighbor only needs to record
the response time and forwards it to the verifier in an authen-
ticated fashion, together with the original response of the
prover. Multiple neighbor nodes in the same broadcast zone
can collaborate in this action and inform the base station
about their measured time, resulting in a threshold-secure
attestation scheme.

To attest the whole sensor network, this process starts at
the verifier’s direct neighbors and iteratively covers all nodes
in the network. We must emphasize that the security of
this approach also depends on the integrity of the neighbors
of P, i.e., the time it takes the adversary to compromise a
given set of nodes after attestation. However, if the iterated
attestation is executed as an attestation payload, the attack
surface remains minimal.

6. SECURITY CONSIDERATIONS

In the following, we point out that our solution presented
in[Section 3|achieves the security goals of software attestation
described in Herby, we assume that secure software

attestation schemes and PUF's exist (see [Section 2)).

Correctness and unforgeability.
Existing software attestation schemes consist of two main

4In contrast, the main attestation protocol requires the prover
‘P to send only the final checksum response o and the main
cost for P is likely checksum computation itself, which by
design must be computationally expensive.

5An information leakage attack is known against the en-
crypted Diffie-Hellamn key in the original scheme [3|. This
partition attack can be mitigated by proper encoding and
choice of the key RSA-key pair. Additionally, such an attack
would be less effective in our case, where the encryption key
o) is a strong secret used in only one session.

procedures, GenMemAddr() and SwSum(), which are iteratively
executed to compute the checksum oj. Our proposed modi-
fications to this algorithm are limited to the GenMemAddr()
procedure, where we add the intermediate PUF responses
y;—1 as additional randomizing input to the memory address
computation. Hence, to guarantee that our changes do not af-
fect correctness and unforgeability (see , we have to
ensure that the output distribution of both the original and
our modified GenMemAddr() procedure are computationally
indistinguishable.

In practice, GenMemAddr() is typically implemented by a
simple PRNG, which maintains an internal state that is
(partly) used to generate pseudo-random outputs. The PUF
response y;—1 must be incorporated into the PRNG such
that all its subsequent outputs depend on y;—; but without
destroying their pseudo-randomness.

In case of the GenMemAddr() function of the SCUBA pro-
tocol , the PRNG is implemented as a T-
function that, starting from a random seed, generates a
pseudo-random sequence of 16 bit values. To incorporate the
PUPF response y;—1 into the PRNG, we can simply add y;—1
to the state of the T-function. Note that due to the unpre-
dictability of the PUF , Yi—1 is a pseudo-random
value. Hence, adding y;—1 to the state of the T-function is
equivalent to reseeding the PRNG. However, if the PRNG
is secure, insertion of additional entropy will not modify the
statistical distribution of its output.

Prover identification.

The main security goal of our design is to link the checksum
to the hardware of a prover P. Our solutions achieves this by
identifying P based on the outputs of its hardware checksum
HwSum(). For this purpose, we must simply ensure that a
sufficient amount of identifying information is generated by
the hardware checksum HwSum() and incorporated into the
attestation checksum o, to prevent simple guessing attacks,
i.e., k- len(y;—1) > 80 bits, where k is the total number of
HwSum() iterations and len(y;—1) is the bit length of y;_1.

Prover isolation.

The most challenging problem is to prevent the prover P
from delegating (part of) the software checksum computa-
tion to other systems. In our design, we run the soft- and
hardware checksum in parallel to create a large algorithmic
interdependence between them. In the following, we derive
constrains for the minimum amount of data that must be
exchanged between hard- and software checksum to assure
significant slowdowns in case of a delegation attack.

To detach the computation of the software checksum from
the hardware of the prover, the adversary must simulate
the hardware checksum output y; in each iteration of the
attestation algorithm to generate the correct input to the
GenMemAddr() procedure, and the intermediate checksum val-
ues o; used as input to the hardware checksum. There are two
major obstacles for the adversary to do this within the time
frame allowed for successful attestation: (1) The adversary
must involve the original hardware checksum procedure on
the prover’s hardware since this cannot be simulated or copied
to another device due to the unpredictability and tamper-
evidence (i.e., the unclonability) of the PUF. (2) The access
speed of the hardware checksum is limited by its physical
design and cannot be increased due to the tamper-evidence
of the PUF.

Hence, an adversary that outsources the checksum compu-
tation to an external device is always limited by the maximum
throughput of the prover’s external communication interfaces
when transferring the inputs and outputs z;,y; of the hard-
ware checksum, which in turn are required in each iteration
of the software checksum computation.

We assume a strong adversary that can calculate the simu-
lated software checksum instantly. Such an adversary is only
limited by the time ¢,, and t,, it takes to transmit x; and
y;, respectively, plus the access time tpysun of the hardware
checksum: t4 = t; + ty;, + tmsw. In contrast, the time
for an unmodified checksum computation is limited by the
computational speed of the legitimate hardware and software
checksums, which are executed concurrently and thus have
similar access time®: tp = tsusun = tHusum, Where tsysun iS the
access times of the software checksum. Hence, the security
of our scheme depends on the amount of information that is
transferred between hard- and software checksum during the
computation of the checksum oy, and the time it takes to
transfer this data over the accumulated transfer capacity of
all external communication interfaces (ExtBps) of the prover:

k- (len(z;) + len(y:))
ExtBps

In we propose optimizations that work with
reduced bit lengths for y; and reduced entropy of x;. The
impact of reduced bit length of y; is straightforward to assess
by re-evaluation of the above security margins. However,
the reduction of the challenge space changes may allow the
adversary to predict the responses of the PUF in a similar
way as the procedure used for on-demand generation of CRPs:
After reception of the offset ¢, the compromised prover P
is asked to generate the complete CRP subspace for the
current attestation and to return only the responses, ordered
by the corresponding challenges. In this case, the time
ta that the adversary takes to calculate the final software
checksum value oy, is limited only by the time required to
generate and transmit all hardware checksum outputs vy, i.e.,
ta = 2D . (tysum + ty,). The resulting timely advantage
for the adversary can be derived as

ta—tp =ty, + 1, =

ta—tp = (219nﬁci - k) tawsun + 2len(mi)tSwSu.m

As we can see, the adversary’s timely advantage critically
depends on the length of x;. Since we aim to keep t,, =
len(y;)/ExtBps small to speed up on-demand generation
and transmission of new CRP subsets and since t4 grows
exponentially with increasing len(x;), we can set len(y;) = 1,
and use len(z;) as adjustable security parameter.

For instance, the Telos Mote used for the prototype imple-
mentation of SCUBA [31] supports a wireless interface with
at most 250 kBps and a wired UART over USB interface
with (typically) 115.2 kBps. Considering our example instan-
tiation based on SCUBA for len(z;) = 20 bits, the adversary
would need to transmit len(o)+1en(y;) = 160+ 20 bit for o;
and y;, respectively, in each iteration. The prototype imple-
mentation of [31] computes 40, 000 checksum iterations in less
than 2.87 seconds. This requires the adversary to transmit
(160 + 20) - 40,000 = 7,032 kBit per attestation, incurring a
significant overhead of 7,032 kBit /(250 kBps+115.2 kBps) =
19.26 seconds.

5See [Section 5.1|on how to synchronize the performance of

hard- and software checksum.

Hence, if the implementation uses CRP sub-spaces of size
len(f(0;)) = 20 bits and a HwSum() that operates at 14 kHz,
an adversary, who aims to query the complete CRP sub-
space in a batch instead of executing software and hardware
checksum in parallel, takes 74.85 seconds, which is a mas-
sive overhead compared to 2.85 seconds of the legitimate
computation time.

7. RELATED WORK

The term remote attestation was coined by the TCG. It
describes a process where a remote system reports its (soft-
ware) state such that a manipulation of this state is noticed
or no valid report can be generated at all.

Unfortunately, the mechanism suffers from the fundamen-
tal problem that software is only measured at load-time and
runtime compromise is not detected. Furthermore, it requires
a trusted component that is hard to compromise and thus
typically expensive to implement in embedded systems such
as sensor nodes or mobile devices.

The first conceptual description of assured remote code exe-
cution based on time constraints concerned the tamper-proof
remote execution of mobile agents [11} [12]. Such agents are
deployed with a signed expiration date that can be “recharged”
via code obfuscation on a trusted platform. The idea was
extended in [37} [15] to let the executed code securely report
the software state and to assure that this state is running
on actual hardware, i.e., is not simulated. Another proposal
to link the software checksum calculation to hardware side-
effects, such as the CPU state and caching effects that are
supposedly expensive to simulate was made in [15]. Unfortu-
nately, this scheme is vulnerable to several attacks [34} |36]:
Redundancy in the code and simple hardware manipulations
can be used to forge a valid attestation checksum within the
required time. Furthermore, the proposed side-effects of the
software execution are not reliable and not available on mod-
ern hardware. Finally, [36] presents multiple network-level
attacks and shows that the scheme of [15] is generally unsuit-
able for access control, since it does not allow identification
of the remote device or its user.

More recent works (33| |32 |35 31, 46, 30, |19], extend
software attestation by adapting the checksum algorithm
to specific scenarios, such as sensor networks, and making
it harder for the adversary to forge the checksum in time.
However, purely software-based attestation in general always
requires (1) a direct channel between verifier and prover to
prevent man-in-the-middle attacks, (2) that the prover cannot
communicate with colluding parties to delegate computation,
and (3) that the hardware configuration is known and was
not manipulated by the adversary. Specifically in case of
sensor networks there is also the problem of network delay
and jitter which may prevent accurate time measurements.
However, this can be mitigated by delegating the time mea-
surement to previously attested neighbors of the device to be
attested [34] |46], or by using secure hardware [29]. Another
approach to relax the requirements of software attestation
is the exploitation of memory access time to increase the
performance penalty for forged checksum computation (8]
14].

In contrast, our proposal is a generalization of [15} |29], and
integrates an abstract hardware PRF into the computation
of the software checksum to protect against collusion and
hardware attacks.

8. CONCLUSION

We presented a novel approach to attest both the soft-
ware and the hardware configuration of a remote embedded
device that does not possess trusted hardware components.
Our solution combines existing software attestation with
cost-efficient physical security primitives, i.e., Physically Un-
clonable Functions (PUFs). In contrast to existing software
attestation protocols, our scheme does not require an au-
thenticated channel between the prover and the verifier and
reliably prevents remote provers from colluding with other
devices to forge the software checksum. For future work we
plan to evaluate our PUF-based attestation scheme using
FPGA-based PUF prototypes.

Acknowledgement

This work has been supported in part by the European Com-
mission under grant agreement ICT-2007-238811 UNIQUE
and ICT-2007-216676 ECRYPT NoE phase II.

9 REFERENCES

(1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure
and reliable bootstrap archltecture In Symposium on
Research in Security and Privacy (S€P). IEEE, 1997.

(2] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and
P. Tuyls. Memory leakage-resilient encryption based on
physically unclonable functions. In Advances in Cryptology -
ASIACRYPT. Springer, 2009.

[3] S. M. Bellovin and M. Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks.
In Symposium on Research in Security and Privacy (SE&P).
IEEE, 1992.

[4] Y.-G. Choi, J. Kang, and D. Nyang. Proactive code
verification protocol in wireless sensor network. In
Computational Science and Its Applications (ICCSA).
Springer, 2007.

[5] P. F. Cortese, F. Gemmiti, B. Palazzi, M. Pizzonia, and
M. Rimondini. Efficient and Practical Authentication of
PUF-based RFID Tags. Technical Report RT-DIA-150-2009,
Universita degli studi Roma Tre, Dipartimento di
Informatica e Automazione, 2009.

6] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data.
In Advances in Cryptology — EUROCRYPT. Springer, 2004.

[7] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn,
S. W. Smith, and S. Weingart. Building the IBM 4758
Secure Coprocessor. IEEEC, 34(10):57-66, 2001.

[8] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code
alteration by creating a temporary memory bottleneck.
Trans. Info. For. Sec., 4(4):638-650, 2009.

[9] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon
physical random functions. In Conference on Computer and
Communications Security (CCS). ACM, 2002.

[10] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas.
Identification and authentication of integrated circuits:
Research articles. Concurrency and Computing: Practice €
Experise, 16(11):1077-1098, 2004.

[11] F. Hohl. An approach to solve the problem of malicious
hosts. Technical report, University of Stuttgart, Faculty of
Computer Science, Germany, 1997.

[12] F. Hohl. Time limited blackbox security: Protecting mobile
agents from malicious hosts. In Mobile Agents and Security.
Springer, 1998.

[13] Intrinsic ID. Intrinsic ID — product page.
www.intrinsic-id.com/products/, 2010.

[14] M. Jakobsson and K.-A. Johansson. Retroactive Detection of
Malware With Applications to Mobile Platforms. In
USENIX Workshop on Hot Topics in Security (HotSec’10).
USENIX, 2010.

www.intrinsic-id.com/products/

(15]

(16]

17]

(18]

(19]

20]

(21]

(22]

(23]

24]

25]

[26]

27]

28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

R. Kennell and L. H. Jamieson. Establishing the genuinity of

remote computer systems. In USENIX Security Symposium.

USENIX, 2003.

A. Klimov and A. Shamir. New Cryptographic Primitives
Based on Multiword T-Functions. In Fast Software
Encryption. Springer, 2004.

C. Krauss, F. Stumpf, and C. Eckert. Detecting node
compromise in hybrid wireless sensor networks using
attestation techniques. In European conference on Security
and privacy in ad-hoc and sensor networks (ESAS).
Springer, 2007.

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated
circuits for identification and authentication application. In
Symposium on VLSI Clircuits, 2004.

Y. Li, J. McCune, and A. Perrig. SBAP: Software-based
attestation for peripherals. In Trust and Trustworthy
Computing. Springer, 2010.

D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas. Extracting secret keys from integrated circuits.
IEEE Transactions on VLSI Systems, 13(10):1200-1205,
2005.

J. Nick L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.

Copilot - a coprocessor-based kernel runtime integrity
monitor. In USENIX Security Symposium [|42)].

E. Oztiirk, G. Hammouri, and B. Sunar. Towards Robust
Low Cost Authentication for Pervasive Devices. In
International Conference on Pervasive Computing and
Communications (PERCOM). IEEE, 2008.

R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical one-way functions. Science, 297:2026-2030, 2002.
B. Parno, J. M. McCune, and A. Perrig. Bootstrapping
Trust in Commodity Computers. In Symposium on Research
in Security and Privacy (S&P). IEEE, 2010.

U. Rithrmair. SIMPL systems: On a public key variant of
physical unclonable functions. Cryptology ePrint Archive,
Report 2009/255, 2009.

U. Rithrmair, F. Sehnke, J. Sélter, G. Dror, S. Devadas, and
J. Schmidhuber. Modeling attacks on physical unclonable
functions. In Conference on Computer and Communications
Security (CCS). ACM, 2010.

A.-R. Sadeghi, S. Schulz, and C. Wachsmann. Lightweight
remote attestation using physical functions. In Conference
on Wireless Network Security (WiSec). ACM, 2011.

A.-R. Sadeghi, C. Wachsmann, and I. Visconti.
PUF-enhanced RFID security and privacy. In Workshop on

Secure Component and System Identification (SECSI), 2010.

D. Schellekens, B. Wyseur, and B. Preneel. Remote
attestation on legacy operating systems with trusted
platform modules. Sci. Comput. Program., 74(1-2):13-22,
2008.

A. Seshadri, M. Luk, and A. Perrig. SAKE: Software
attestation for key establishment in sensor networks.
Distributed Computing in Sensor Systems, pages 372—385,
2008.

A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.

SCUBA: Secure code update by attestation in sensor
networks. In Workshop on Wireless security (WiSe). ACM,
2006.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. In Symposium on
Operating Systems Principles (SOSP). ACM, 2005.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Using
SWATT for verifying embedded systems in cars. In
Embedded Security in Cars Workshop (ESCAR), 2004.

A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla.

SWATT: SoftWare-based ATTestation for embedded devices.

In Symposium on Research in Security and Privacy (SE&P).
IEEE, 2004.
M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote

(36]

(37]

(38]
(39]

[40]

[41]

42]

(43]

(44]

(45]

[46]

software-based attestation for wireless sensors. In Security
and Privacy in Ad-hoc and Sensor Networks. Springer, 2005.
U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In USENIX Security
Symposium |42)].

D. Spinellis. Reflection as a mechanism for software integrity
verification. ACM Transactions on Information and System
Security, 3(1):51-62, 2000.

Trusted Computing Group (TCG). TPM Main Specification,
Version 1.2, 2005.

Trusted Computing Group (TCG). Mobile Trusted Module
(MTM) Specifications, 2009.

P. Tuyls and L. Batina. RFID-tags for anti-counterfeiting. In
Cryptographers’ Track at the RSA Conference (CT-RSA).
Springer, 2006.

P. Tuyls, G.-J. Schrijen, B. Skorié¢, J. van Geloven,

N. Verhaegh, and R. Wolters. Read-proof hardware from
protective coatings. In Cryptographic Hardware and
Embedded Systems Workshop. Springer, 2006.

USENIX. Proceedings of the USENIX Security Symposium,
2004.

Verayo, Inc. Verayo website — product page.
www.verayo.com/product/products.html, 2010.

B. Skori¢, S. Maubach, T. Kevenaar, and P. Tuyls.
Information-theoretic analysis of capacitive physical
unclonable functions. Journal of Applied Physics,
100(2):024902, 2006.

B. Skori¢, P. Tuyls, and W. Ophey. Robust key extraction
from physical uncloneable functions. In Applied
Cryptography and Network Security (ACNS), 2005.

Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed
software-based attestation for node compromise detection in
sensor networks. In Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2007.

www.verayo.com/product/products.html

	Introduction
	Physically Unclonable Functions (PUFs)
	PUF-based Attestation
	Instantiation
	Memory Address Generation and Software Checksum
	Hardware Checksum
	Emulatable PUFs
	Non-emulatable PUFs

	Practical Considerations
	Checksum Synchronization
	Key Establishment and CRP Generation
	Cooperative Attestation

	Security Considerations
	Related Work
	Conclusion
	References

