
YACZK: Yet Another Compiler for Zero-Knowledge ?

(Poster Abstract)

Endre Bangerter1, Stephan Krenn2, Ahmad-Reza Sadeghi3, Thomas Schneider3

1 Bern University of Applied Sciences, Biel-Bienne, Switzerland
endre.bangerter@jdiv.org

2 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and
University of Fribourg, Switzerland

stephan.krenn@bfh.ch
3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Automatic generation of cryptographic protocols is an emerging field of research
which aims to bring complex protocols into practice.
In this work we discuss the desired properties of a compiler for automatic generation of zero-
knowledge proof of knowledge (ZKPoK) protocols. We evaluate and compare existing ap-
proaches with respect to these properties:
In particular, it seems to us that the authors of the paper accepted for USENIX Security
2010 (ZKPDL: A Language-Based System for Efficient Zero-Knowledge Proofs and Electronic
Cash) were not aware of our previous work done within the European project “Computer
Aided Cryptography Engineering” (CACE).
We hope that this poster stimulates scientific debates and exchange in this field of research.

1 Introduction

Three of the main challenges in applied cryptography are the design of protocols for certain purposes,
their efficient implementation and the verification of these implementations. In particular, this is true
for applications which require complex, non-standard crypto-primitives to be used as basic building
blocks. To overcome these challenges and the associated security risks, a direction of research in
applied cryptography has started to develop tools to automate these processes, e.g., in the area of
secure multi-party computations [MOR03,MNPS04,BDNP08,BLW08,DGKN09].

Privacy-preserving applications, such as idemix [CH02,CL01] or Direct Anonymous Attesta-
tion [BCC04], are often relying on zero-knowledge proofs of knowledge (ZKPoK), i.e., subprotocols
which allow a prover to convince a verifier that he knows some secret piece of information, without
the verifier being able to learn anything about it. For instance, a user might be interested in proving
that it is allowed to access some online service, without fully revealing his identity. Typical applica-
tions that use ZKPoK as fundamental building block are identification schemes [Sch91], interactive
verifiable computation [CM99], and group signatures [Cam98] – just to name a few.

Yet, finding highly efficient protocols that realize complex proof-goals turns out to be a non-trivial
task which requires intricate knowledge of many techniques and tricks such as [GQ90,Sch91,CDS94],
[FO97,DF02,Ban05,BCK+08,Sma09]. To overcome this challenge, compilers for automatic genera-
tion of ZKPoK protocols have been developed:

– CACE compiler. The goal of the European project CACE (Computer Aided Cryptography
Engineering) 4 is “To enable verifiable secure cryptographic software engineering to non-experts
by developing a toolbox which automatically produces high-performance solutions from natural

? This work was performed within the FP7 EU project CACE (Computer Aided Cryptography Engineering).
4 http://www.cace-project.eu

http://www.cace-project.eu

2 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

specifications”. This toolbox includes languages and compilers for different abstraction levels
including cryptographic primitives, secure communication, secure multi-party computation pro-
tocols, ZKPoK protocols as well as formal verification aspects [BBB+10]. Work package three
of the CACE project is devoted to the development of a ZKPoK compiler. First results include
a prototype compiler [Bri04,BBK+09,BBH+09] written in Java and a completely re-designed
CACE compiler [BKS+09,BBG+09,ABB+10] written in Python.

– ZKPDL compiler. An alternative ZKPoK compiler was accepted for USENIX Security 2010
[MEK+10]. Unfortunately, the authors of [MEK+10] were not completely aware of the previously
published works and code of the CACE compiler. Therefore, we would like to give a comparison
of both compilers in this paper.

2 Comparison of ZKPoK Compilers

In the following we give desired properties of a compiler for automatic generation of ZKPoK protocols
and compare the two compiler approaches w.r.t. these properties.

1. Interfaces: ZKPoK are hardly ever used as standalone applications, but rather embedded into
larger protocols and systems. Thus, the output of a ZK-PoK compiler has to have clearly defined
interfaces to other applications.

– The ZKPDL compiler achieves this by providing a C++ API for the libraries generated by
their compiler.

– The CACE compiler generates entire C applications which can be called as subroutines by
higher-level applications or executed directly.

2. Modular Design: For the compiler itself to be as extendible and flexible as possible, it is
important to have a modular design. That is, it should allow for an easy exchange of single
components such as the code generation backend, the underlying mathematical libraries, the
network interface being used in the generated protocols, etc.

– Modularity is an intricate part of the design decisions of the CACE compiler [BBK+09, Fig.
3]. The modularity of the compiler allowed for instance to easily add two backends: a code
generation backend for C and a LATEX backend for automatic generation of documentations.

– According to [MEK+10, Fig. 2], the ZKPDL compiler consists of a single compile() routine.

3. Verifiability: In the context of security-sensitive applications, the need to ensure that “a pro-
gram does what it is supposed to do” is even stronger than for every-day applications. For this
reason, various standards such as Common Criteria require cryptographic applications to come
along with a certificate of their correctness. Letting the user of a compiler prove the correctness
of the compilation process by hand after every run of the compiler is nearly impossible or at
least makes the compiler substantially less useful.

– The CACE compiler includes a profound static code analysis of the protocols generated
by the compiler. Additionally, a formal verification toolbox is built into the compiler as
proposed in [BBK+09] and implemented in [ABB+10]. Currently, this verification toolbox
automatically gives a formal verification of the proof of knowledge property (i.e., ensures
that a malicious prover, not knowing the secret, cannot convince the verifier) for a large
class of inputs.

– The ZKPDL leaves verification as future work.

In addition to these general concepts of cryptographic compilers, we give a more detailed com-
parison of the two compiler s in Table 1:

The CACE compiler allows to describe a larger class of proof goals than the ZKPDL compiler. For
instance, the latter is not capable of proving logical “OR” relations, and can therefore not be used
to generate protocols for group signature schemes [Cam98]. Also, in contrast to the CACE compiler,

YACZK: Yet Another Compiler for Zero-Knowledge 3

CACE Compiler ZKPDL compiler

Basic proof goals knowledge of preimages under arbi-
trary group homomorphisms, includ-
ing RSA or Paillier type homomor-
phisms [Pai99,RSA78]

exponentiation homomorphisms only

Basic protocols SigmaPhi [Sch91], Damg̊ard/Fujisaki
[DF02], SigmaExp [BCK+08]

SigmaPhi [Sch91], Damg̊ard/Fujisaki
[DF02]

Composition techniques Boolean AND, OR, and proving knowl-
edge of k out of n secret values [CDS94]

Boolean AND only

Supported macros none (i) equality of secret values,
(ii) multiplicative relations among se-
cret values, and
(iii) secret value belongs to public in-
terval

Input language inspired by the standard notation for
ZK-PoK [CS97]

inspired by the English language

Output language C for implementation, LATEX for docu-
mentation

specifically design language with inter-
preter and API to C++

Type of output complete source code, which can di-
rectly be compiled to machine code

meta-code or libraries, which partly
have to be instantiated by the calling
procedure

Optimizations reduction of redundant terms in the
proof goal

(i) reduction of redundant terms in the
proof goal
(ii) possibility of caching pre-
computations to reduce runtime

Additional features (i) existence of a formal verification
toolbox, which proves the correctness
of the compilation process

possibility to specify the generation of
the protocol inputs

(ii) modular design with interfaces to
other cryptographic compilers devel-
oped within CACE project

Table 1: Detailed Comparison of ZKPoK Compilers

the ZKPDL compiler is not suited to prove statements about homomorphic encryption schemes
commonly used in secure multi-party computations such as proving knowledge of the plaintext
encrypted within an RSA [RSA78] or Paillier [Pai99] ciphertext, as ZKPDL compiler only supports
preimage proofs of homomorphisms of the form φ(w1, . . . , wn) =

∏n
i=1 g

wi
i .

On the other hand, the ZKPDL compiler can yield lower runtimes for certain applications as it
allows to pre-compute and cache frequently used values.

3 Conclusion

In summary, the ZKPDL Compiler seems to be suited well for generating highly efficient protocols for
a specific class of protocols such as electronic cash, whereas the CACE Compiler is able to generate
a larger variety of ZKPoK protocols.

We hope that the comparison of the different compilers available for ZKPoK protocols presented
in this paper, helps users to pick the right tool for their needs.

4 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

References

ABB+10. J. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schneider. A certifying
compiler for zero-knowledge proofs of knowledge based on Σ-protocols. ESORICS 2010 (to
appear), 2010.

AS01. A. Adelsbach and A.-R. Sadeghi. Zero-knowledge watermark detection and proof of ownership.
In Information Hiding, volume 2137 of LNCS, pages 273–288. Springer, 2001.

Ban05. E. Bangerter. Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms. PhD thesis,
Ruhr-University Bochum, 2005.

BBB+10. E. Bangerter, M. Barbosa, D.J. Bernstein, I. Damgard, D. Page, J.I. Pagter, A.-R. Sadeghi,
and S. Sovio. Using compilers to enhance cryptographic product development. In Information
Security Solutions Europe (ISSE’10), pages 291–301. Vieweg+Teubner, January 2010.

BBG+09. E. Bangerter, S. Barzan, A. Grünert, W. Henecka, S. Krenn, A.-R. Sadeghi, and T. Schneider.
CACE - WP3: Zero-knowledge proof of knowledge compiler. http://zkc.cace-project.eu/,
2009.

BBH+09. E. Bangerter, T. Briner, W. Heneka, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic
generation of Σ-protocols. In EuroPKI 09 (to appear), 2009.

BBK+09. E. Bangerter, S. Barzan, S. Krenn, A.-R. Sadeghi, T. Schneider, and J.-K. Tsay. Bringing zero-
knowledge proofs of knowledge to practice. In SPW 09 (to appear), 2009.

BCC04. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In V. Atluri, M. Backes,
D. A. Basin, and M. Waidner, editors, ACM CCS 04, pages 132–145. ACM Press, 2004.

BCK+08. E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic generation
of sound zero-knowledge protocols. Cryptology ePrint Archive, Report 2008/471, 2008. http:

//eprint.iacr.org/. Poster Session of EUROCRYPT 09.

BDNP08. A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-party computation.
In ACM Conference on Computer and Communications Security (CCS’08), pages 257–266, 2008.
http://fairplayproject.net/fairplayMP.html.

BKS+09. E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, and J.-K. Tsay. On the design and implemen-
tation of efficient zero-knowledge proofs of knowledge. In Software Performance Enhancements
for Encryption and Decryption and Cryptographic Compilers – SPEED-CC 09, October 12-13,
2009.

BLW08. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving
computations. In European Symposium on Research in Computer Security (ESORICS’08), volume
5283, pages 192–206, 2008.

Bri04. T. Briner. Compiler for zero-knowledge proof-of-knowledge protocols. Master’s thesis, ETH
Zurich, 2004.

Cam98. J. Camenisch. Group Signature Schemes and Payment Systems Based on the Discrete Logarithm
Problem. PhD thesis, ETH Zurich, Konstanz, 1998.

CDS94. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Y. Desmedt, editor, CRYPTO 94, volume 839 of LNCS, pages
174–187. Springer, 1994.

CH02. J. Camenisch and E. V. Herreweghen. Design and implementation of the idemix anonymous
credential system. In V. Atluri, editor, ACM CCS 02, pages 21–30. ACM Press, 2002.

CL01. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In B. Pfitzmann, editor, EUROCRYPT 01, volume 2045 of
LNCS, pages 93–118. Springer, 2001.

CM99. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe
primes. In J. Stern, editor, EUROCRYPT 99, volume 1592 of LNCS, pages 107–122. Springer,
1999.

CS97. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended
abstract). In B. Kaliski, editor, CRYPTO 97, volume 1294 of LNCS, pages 410–424. Springer,
1997.

DF02. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups
with hidden order. In Y. Zheng, editor, ASIACRYPT 02, volume 2501 of LNCS, pages 77–85.
Springer, 2002.

http://zkc.cace-project.eu/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://fairplayproject.net/fairplayMP.html

YACZK: Yet Another Compiler for Zero-Knowledge 5

DGKN09. I. Damg̊ard, M. Geisler, M. Krøig̊ard, and J. B. Nielsen. Asynchronous multiparty computation:
Theory and implementation. In Public Key Cryptography (PKC’09), volume 5443, pages 160–179,
2009. http://viff.dk.

FO97. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In B. Kaliski, editor, CRYPTO 97, volume 1294 of LNCS, pages 16–30. Springer, 1997.

GQ90. L. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme resulting from
zero-knowledge. In S. Goldwasser, editor, CRYPTO 88, volume 403 of LNCS, pages 216–231.
Springer, 1990.

MEK+10. S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. ZKPDL: A language-based
system for efficient zero-knowledge proofs and electronic cash. USENIX 2010 (to appear), 2010.

MNPS04. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system.
In USENIX Security 04, 2004. http://www.cs.huji.ac.il/project/Fairplay/fairplay.html.

MOR03. P. MacKenzie, A. Oprea, and M. K. Reiter. Automatic generation of two-party computations. In
ACM Conference on Computer and Communications Security (CCS’03), pages 210–219, 2003.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern,
editor, EUROCRYPT 99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

RSA78. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

Sch91. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991.

Sma09. N. P. Smart, editor. Final Report on Unified Theoretical Framework of Efficient Zero-Knowledge
Proofs of Knowledge. http://www.cace-project.eu, 2009. CACE Project Deliverable.

http://viff.dk
http://www.cs.huji.ac.il/project/Fairplay/fairplay.html
http://www.cace-project.eu

	YACZK: Yet Another Compiler for Zero-Knowledge
	 Endre Bangerter, Stephan Krenn, Ahmad-Reza Sadeghi, Thomas Schneider

