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ABSTRACT
We describe a privacy-preserving system where a server can classify
an ElectroCardioGram (ECG) signal without learning any informa-
tion about the ECG signal and the client is prevented from gaining
knowledge about the classification algorithm used by the server. The
system relies on the concept of Linear Branching Programs (LBP)
and a recently proposed cryptographic protocol for secure evalua-
tion of private LBPs. We study the trade-off between signal repre-
sentation accuracy and system complexity both from practical and
theoretical perspective. As a result, the inputs to the system are rep-
resented with the minimum number of bits ensuring the same clas-
sification accuracy of a plain implementation. We show how the
overall system complexity can be strongly reduced by modifying the
original ECG classification algorithm. Two alternatives of the under-
lying cryptographic protocol are implemented and their correspond-
ing complexities are analyzed to show suitability of our system in
real-life applications for current and future security levels.

Index Terms— Secure signal processing, privacy preserving,
secure two-party computation, ECG classification.

1. INTRODUCTION

Health-care industry is moving faster than ever towards technolo-
gies offering personalized online self-service, medical error reduc-
tion, customer data collection and more. Such technologies have
the potentiality of revolutionizing the way medical data is managed,
stored, processed, delivered and ubiquitously made available to mil-
lions of users throughout the world. However, respecting the privacy
of customers is a central problem, since privacy concerns may im-
pede, or at least slow down, the diffusion of new e-health services.

In this paper, we consider a scenario for a remote diagnosis ser-
vice. This service offers the analysis of biomedical signals to provide
a preliminary classification in a potentially untrusted scenario. Such
a system may either be seen as a stand alone service or as a part of
a complete e-health system where the service provider, in addition
to offering a repository of personal medical data, allows to remotely
process such data. In order to preserve the privacy of the users, the
server should carry out its task without getting any knowledge about
the private data provided by the users. At the same time, the service
provider may not be willing to disclose the algorithm it is using to
process the signals, since they represent the basis for the service it is
providing and valuable intellectual property. In general, one can re-
sort to generic secure two-party computation (2PC) protocols [1, 2]
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allowing two parties to compute the output of a public function f(·)
on their respective private inputs. At the end of the protocol, the only
information obtained by the parties is the output of the function f(·),
but no additional information about the other party’s input. Specif-
ically, we consider a variant of the above, where the function f(·)
itself has to be kept secret. While this can be reduced to secure eval-
uation of a public function using universal circuits [3], this generic
transformation poses an enormous additional overhead on the proto-
cols. In this work, we consider the privacy-preserving classification
of ElectroCardioGram (ECG) signals. Classification of ECG signals
has long been studied by the signal processing community, but not
yet in the context of a privacy-preserving scenario we aim to tackle in
this paper. In our research we considered the secure implementation
of a recently proposed classification algorithm [4]. The contribution
of our research is fourfold. First, by relying on a recently proposed
protocol for secure evaluation of Linear Branching Programs [5], we
present an efficient system for privacy-preserving classification of
ECG signals. Second, we link the representation accuracy of the
to-be-processed signals (i.e., the number of bits representing the sig-
nals) and hence the complexity of the system, to the classification
accuracy. Third, we show how the overall complexity of the system
can be drastically reduced by tailoring the ECG classification algo-
rithm to the 2PC scenario. Fourth, we compare two implementations
of the secure protocol with respect to different parameter sizes and
security levels showing that our system can be used in practice.

The rest of the paper is organized as follows. In §2 the plain ver-
sion of the ECG classifier is described. In §3 the LBP concept and
the protocols for secure evaluation of private LBPs are summarized.
§4 is devoted to the description of the privacy-preserving ECG clas-
sification algorithm and the accuracy analysis. Experimental results
regarding complexity are discussed in §5 and some conclusions are
drawn in §6.

2. ECG CLASSIFICATION IN THE PLAIN DOMAIN

In this section, we describe the architecture of the plain domain
version of the ECG classifier. In our system we are interested in
classifying each heart beat according to 6 classes: Normal Sinus
Rhythm (NSR), Atrial Premature Contractions (APC), Premature
Ventricular Contractions (PVC), Ventricular Fibrillation (VF), Ven-
tricular Tachycardia (VT) and SupraVentricular Tachycardia (SVT).
The classification algorithm we use is inspired by the work of D.
Ge et al. [4, chapter 8]. The choice of the algorithm is justified
first of all by the good classification accuracy it ensures, secondly
because it fits well the requirements of a privacy preserving imple-
mentation, finally because of its generality. As both, AutoRegressive
(AR) models and Quadratic Discriminant Functions (QDF) are often
used in automatic medical diagnosis, the protocol described in this
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paper may represent the basis for a large number of implementations
addressing a variety of diverse topics in biomedical signal process-
ing.

The overall architecture of the classifier is summarized by the
block diagram in Figure 1. The input of the system is an ECG chunk
corresponding to a single heart beat, that consequently, is classified
as an independent entity. For the extraction of heart beats the algo-
rithm proposed in [4] is used. We assume that the ECG signal is
sampled at 250 sample per second and that 300 samples surround-
ing each peak are fed to the system: 100 samples preceding the beat
peak and 200 following it. We also assume that the ECG signal has
been pre-filtered by a notch filter removing the noise due to power
line interference, electrode contact noise, motion artifact and base
line wander [4].

The ECG classifier here taken into consideration relies on a
rather general technique based on AR models for ECG description
and a subsequent QDF classifier. Specifically, each ECG chunk
is modeled by means of a 4-th order AR model. The AR model
coefficients can be estimated in several ways; in our system we used
a method based upon the Yule-Walker equations [6]. Once the AR
model has been computed, five features1 are extracted, yielding the
following vector f = (α1, α2, α3, α4, ne)

T . The first four features
are the coefficients of the AR model and ne is the number of sam-
ples for which the amplitude of the estimation error |εn| exceeds a
threshold defined as th = 0.25 maxn (|εn|). To perform a QDF
classification as a linear operation, the classifier does not operate
directly on f . Instead a composite feature vector fc is computed con-
taining the features in f , their square values and their cross products,
namely:

fc = (1, f1, . . . , f5, f
2
1 , . . . , f2

5 , f1f2, . . . f4f5)
T = (fc

1 , . . . fc
21)

T .

The vector fc represents the input of the QDF block in Figure 1.
The QDF block projects fc onto 6 directions βi, obtaining a 6-long
vector y, that represents the input of the final classification step:
y = Bfc, where B is a matrix whose rows are the vectors βi. The
matrix B contains part of the knowledge embedded within the clas-
sification system, and is computed by relying on a set of training
ECGs (see [4] for the details). For the final classification, the signs
of the values yi are extracted and used to actually classify the ECG,
by means of the binary classification tree given in Figure 2.
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Fig. 2. Binary classification tree for ECG classification

3. SECURE EVALUATION OF PRIVATE LBPS

Our system is based on a recently proposed cryptographic protocol
for efficient secure evaluation of private Linear Branching Programs

1In [4, chapter 8] 6 features are used, however our experiments have
shown that by using 5 features we obtain the same classification accuracy
with a lower complexity.

(LBP) [5]. The notion of LBP is a natural generalization of binary
classification trees and Ordered Binary Decision Diagrams (OB-
DDs). Compared to the above, LBPs have a more general branching
condition that depends on the comparison of a linear combination of
the inputs with a given threshold. More formally, LPB is defined as
follows.

Definition 3.1 (Linear Branching Program (LBP) [5]) Let x` =
x`

1, .., x
`
n be the attribute vector consisting of signed `-bit inte-

ger values. A binary Linear Branching Program (LBP) L is a
triple 〈{P1, .., Pz},Left ,Right〉. The first element is a set of z
nodes consisting of d decision nodes P1, .., Pd followed by z − d
classification nodes Pd+1, .., Pz . Decision nodes Pi, 1 ≤ i ≤ d

are the internal nodes of the LBP. Each Pi :=
D
a`
i , t

`′
i

E
is a

pair, where a`
i =

˙
a`

i,1, .., a
`
i,n

¸
is the linear combination vector

consisting of n signed `-bit integer values and t`′
i is the signed

`′ = (2` + dlog2 ne − 1)-bit integer threshold value with which
a`
i ◦ x` =

Pn
j=1 a`

i,jx
`
j is compared in this node. Left(i) is the

index of the next node if a`
i ◦ x` ≤ t`′

i ; Right(i) is the index of the
next node if a`

i ◦ x` > t`′
i . Functions Left(·) and Right(·) are such

that the resulting directed graph is acyclic. Classification nodes
Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consisting of a
single classification label cj each.

Evaluation of the LBP L on an attribute vector x` proceeds as
follows. We start with the first decision node P1. If a`

1 ◦ x` ≤
t`′
1 , move to node Left(1), else to Right(1). Repeat this process

recursively (with corresponding a`
i and t`′

i ), until reaching one of
the classification nodes and obtaining the classification c = L(x`).

3.1. Secure evaluation of private LBPs

The protocols for secure evaluation of private LBPs presented in [5]
are executed between a server S and a client C. S has a private
LBP L, and C has the attribute vector x`. After protocol execu-
tion, C learns only the classification label c = L(x`) corresponding
to his inputs. In particular, C learns nothing about L (besides the
number of decision nodes d, and the length of the evaluation path
e), and S learns nothing about C’s inputs. For completeness, we in-
clude a general overview of the protocol. It consists of three main
blocks (see Figure 3) as discussed below. The construction is some-
what similar to that of Yao’s garbled circuit (GC) [1]. The main
idea is to encrypt (or garble) the nodes and transitions of the LBP
(algorithm CreateGarbledLBP), such that the evaluator of the gar-
bled program (algorithm EvalGarbledLBP) is able to follow only a
single evaluation path, defined by the LBP and the input attribute
vector. The evaluation proceeds node by node, and the evaluator is
able to decrypt and move to (only) the correct next node using the
keys defined by CreateGarbledLBP and provided to C by protocol
ObliviousLinearSelect. We now give the details of the three blocks.

CreateGarbledLBP. S creates a garbled version eL of the LBP
L. The garbled LBP eL maps the garbled inputs ew1, .., ewd to the cor-
responding classification label c, and allows its oblivious evaluation.
We note that for tiny LBPs, i.e., those having a small number of de-
cision nodes d (which is the case in our application), this can be done
most efficiently with a garbled Yao gate with d inputs [1].

ObliviousLinearSelect. In this phase, C obliviously obtains gar-
bled values ew1, .., ewd, which correspond to the outcomes of the com-
parisons of the linear combination of the attribute vector with the
threshold. C inputs the private attribute vector x` = {x`

1, . . . , x
`
n},
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and S inputs the private outputs of CreateGarbledLBP: comple-
mentary garbled values fW1 =

˙ ew0
1, ew1

1

¸
, .., fWd =

˙ ew0
d, ew1

d

¸
and

the permuted LBP L̂. (The latter consists of permuted linear combi-
nation vectors â`

1, .., â`
d and permuted threshold values t̂`′

1 , .., t̂`′
d .)

Upon the completion of the protocol, C obtains the garbled val-
ues ew1, .., ewd corresponding to the oblivious comparisons: if â`

i ◦
x` > t̂`′

i , then ewi = ew1
i ; else ewi = ew0

i . Two instantiations of
ObliviousLinearSelect are given in [5].

Circuit instantiation. This instantiation, hereafter referred to as
GC, securely evaluates a circuit which is naturally built from multi-
plication, addition and comparison circuits, as provided by [7].

Hybrid instantiation. In this instantiation, C encrypts each of
its attributes with a semantically secure additively homomorphic en-
cryption scheme (e.g., Paillier [8]) and sends these ciphertexts to S.
Using the additively homomorphic property, S can compute the lin-
ear combination under encryption, i.e., Encpk(â`

i ◦ x`). Finally,
this ciphertext is obliviously compared with the threshold t̂`′

i using a
conversion protocol which combines homomorphic encryption and
the evaluation of a small GC.

EvalGarbledLBP. The last phase is an analog of Yao’s garbled
circuit evaluation procedure. Here, C receives the garbled LBP eL
from S, and evaluates it on the garbled values ew1, .., ewd output by
ObliviousLinearSelect to obtain the classification label c = L(x`).

The protocols for secure evaluation of private LBPs are proven
secure against semi-honest (or honest-but-curious) adversaries, and
can be extended to be secure against malicious C as well [5].

4. PRIVACY-PRESERVING ECG CLASSIFICATION

Before describing the privacy-preserving ECG classification proto-
col, we define the players of the protocol and the data that needs
to be protected. A first requirement is that the server S, who is
running the classification algorithm on client’s ECG signal, learns
neither any information about the ECG signal nor the final result of
the classification. At the same time, the client C should not get any
information about the algorithm used by S, except for the output of
the classification. The latter point deserves some explanation. We
assume that the general form of the classifier used by S is known,
however the parameters of the classifier need to be kept secret. By
referring to the description given in §2, the algorithm parameters that
S aims at keeping secret are the matrix B and the classification tree
of Figure 2. This is a reasonable assumption since the domain spe-
cific knowledge needed to classify the ECGs and the knowledge got
from the training, a knowledge that S may want to protect, reside in
the classification tree and the matrix B.

In order to introduce the privacy-preserving ECG classification
protocol, we observe that the classification algorithm described in
§2 is nothing but an LBP with fc,` as attribute vector, and 6 nodes
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Pi =
˙
β`

i , 0
¸
, i = 1, .., 6, where fc,` and β`

i are `-bit representa-
tions of the features and projection vectors. In this way, the general
scheme for the privacy-preserving implementation of the classifier
assumes the form given in Figure 4. All steps until the computation
of the composite feature vector are performed by C on the plain data.
Such a choice does not compromise the security of the system from
the server’s point of view, since S is not interested in keeping the
structure of the classifier secret, but only in preventing users from
knowing the matrix B and the classification tree. On the contrary,
all the steps from the projection onto the directions βi’s, through the
final classification are carried out securely. Note that with respect to
the overall architecture depicted in Figure 1, we added a quantiza-
tion step before the encryption of the composite feature vector. The
need for such a step comes from the observation that the parameters
α1, α2, α3, α4 resulting from the AR model estimation procedure
are usually represented as floating point numbers, a representation
that is not suitable for 2PC protocols which compute on numbers
represented as integers only. For this reason the elements of the
composite feature vector fc are quantized and represented in inte-
ger arithmetic for subsequent processing2. Note that the choice of
the quantization step, and consequently the number of bits used to
represent the data (` in the LBP terminology), is crucial since on
one side it determines the complexity of the overall secure protocol
and on the other side it has an impact on the accuracy of the ECG
classification.

4.1. Quantization error analysis

In this section we estimate the impact that the quantization error in-
troduced passing from fc to fc,` and from βi to β`

i has on the clas-
sification accuracy. Such an analysis will be used to determine the
minimum number of bits (`) needed to represent the attribute vector
and the linear combination vectors of the LBP. The value of ` in-
fluences the complexity of the secure classification protocol for two
main reasons. As already outlined in §3, the main ingredients of
the protocols for secure evaluation of private LBPs are garbled cir-
cuits and additively homomorphic encryption. In the case of garbled
circuits, the input of the protocol are the single bits used to repre-
sent fc,` and β`

i . It is obvious, then, that the greater the number of
bits, the more complex the resulting protocol will be. With regard
to computing on homomorphically encrypted data, we observe that
after each multiplication carried out in the encrypted domain, the
number of bits necessary to represent the output of the multiplica-
tion increases (it approximately doubles)3. Since it is not possible
to carry out truncations in the encrypted domain, it is necessary that
the size of the ring used by the homomorphic cryptosystem is large
enough to contain the output of the computations without an over-
flow which would cause an invalid result. Augmenting the number

2In the same way the coefficients of matrix B, representing the combina-
tion vectors of the LBP, are represented as integer numbers.

3The same observation holds for additions, however additions have a neg-
ligible effect with respect to multiplications.



of bits used to represent the inputs of the LBP may require to in-
crease the size of the needed cryptosystem ring which results in an
increased protocol complexity.

To start with, we observe that quantization is applied to the com-
posite feature vector fc, that is used to compute the vector y, through
multiplication with the matrix B. After such a step, only the signs
of vector y are retained, hence it is sufficient to analyze the effect
of quantization until the computation of the sign of y. As to the
processing steps carried out by the client prior to quantization, we
assume that all the blocks until QDF are carried out by using a stan-
dard double precision floating point arithmetic. In order to simplify
the notation, we consider only the computation of one coefficient of
the vector y. The function to be computed is a simple inner product:
y =

P
j βjf

c
j where the index i has been omitted, and βj and fc

j are
real numbers. The quantized version of the above relationship can
be expressed as follows:

βq,j = ρ1βj + ε1,j = bρ1βje
fc

q,j = ρ2f
c
j + ε2,j = bρ2f

c
j e (1)

where ρ1 and ρ2 are positive integers and ε1,j and ε2,j are the quanti-
zation errors affecting βq,j and fc

q,j respectively. By using the above
relations it is possible to evaluate the final error due to quantization:

N−1X
j=0

„
ρ1βj + ε1,j

«„
ρ2f

c
j + ε2,j

«
=

= ρ1ρ2

„
y +

N−1X
j=0

βjε2,j

ρ2
+

N−1X
j=0

fc
j ε1,j

ρ1
+

N−1X
j=0

ε1,jε2,j

ρ1ρ2| {z }
ε

«
(2)

where ε indicates the error on the scalar product once the scaling fac-
tor ρ1ρ2 is canceled out. By letting max(|βj |) = Mb, max(|fc

j |) =
Mf and by noting that max(|ε1,j |) = max(|ε2,j |) = 1

2
, we have:

ε ≤ N

2ρ1ρ2

„
ρ1Mb + ρ2Mf +

1

2

«
≤ ε∗ (3)

where ε∗ is a target maximum error that we do not want to exceed.
Given ε∗, choosing the optimum values of ρ1 and ρ2 is equivalent
to a constrained minimization problem in which the function to be
minimized is ρ1ρ2 (since this is equivalent to minimize the number
of bits necessary to represent the output of the scalar product) and
the constraint corresponds to equation (3), that is:

ρ1 ≥ N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (4)

To ensure that ρ1 is a positive integer, we require 2ρ2ε
∗−NMb > 0,

yielding the following minimization problem:

min
ρ2>

NMb
2ε∗

ρ2
N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (5)

By solving (5) we obtain the solutions:

ρ2 =
1

2Mfε∗

“
NMbMf +

p
NMbMf (ε∗ + NMbMf )

”
, (6)

ρ1 =
1

2Mbε∗

“
NMbMf +

p
NMbMf (ε∗ + NMbMf )

”
. (7)

4.2. Speeding up the system

By referring to the analysis in the previous section, we must consider
that in our case N = 21, however the values of Mb and Mf are not
known. In fact, the coefficients of the AR model and matrix B are
not bounded. However, considering that in practical applications AR
model coefficients are rather small (lower than 10 for ECG signals)
and observing that the 5-th component of the feature vector f can
be at most 300, hence in fc we surely have a component that is at
most 9 · 104. We may then let Mf to be the closest power of 10,
i.e., Mf = 105. At the same time, in our experiments we never
observed a matrix B with coefficients larger than Mb = 105. Finally
by examining the data of the ECG MIT Database4 we found that
ε∗ = 10−5 ensures a sufficient classification accuracy. By using
these settings the bit size of the values in input turned out to be 56 bit.
As to the ring size for homomorphic encryption we found that the
ring size imposed by security standards, e.g., 1248 bits and more [9],
is always sufficient to accommodate all the intermediate and final
results of the computation.

The analysis reported above is mainly based on worst case as-
sumptions. In practice, we may expect that the number of bits nec-
essary for a good classification accuracy is lower than 56. To inves-
tigate this aspect, we implemented a simulator to exactly understand
which is the minimum number of bits that can be used. The results
we obtained by running the simulator on the MIT Database of ECG
signals are shown in Figure 5. This figure shows the accuracy of
the system as a function of `. As we can see ` = 44 is sufficient to
guarantee the same performance of a non-quantized implementation.

In order to further speed up the system, we tested a version of
the ECG classifier with a reduced number of features. Specifically,
we reduced f by eliminating the feature ne. In this way, we obtain a
15-coefficient fc. Obviously the reduction of the feature space gives
also a reduction of the accuracy, but this reduction is quite negligible:
our experiments, in fact, indicate that the accuracy decreases only
from 88.57% to 86.30%. On the other hand, as it will be shown
in the next section, by removing one feature we gain a lot from a
complexity point of view. Such a gain is already visible in Figure 5,
where we can see that with the reduced set of features a value of `
as low as 24 is enough to obtain the same performance of a non-
quantized version of the classifier.

terferes with the computation. Augmenting the number of bits used
to represent the input of the LBP, may then increase the size of the
cryptosystem ring, hence increasing the complexity of the protocol.

To start with, we observe that quantization is applied to the com-
posite feature vector fc, that is used to compute the vector y, though
multiplication by the matrix B. After such a step, only the signs
of vector y are retained, hence it is sufficient to analyze the effect
of quantization until the computation of the sign of y. As to the
processing steps carried out by the client prior to quantization, we
assume that all the blocks until QDF are carried out by using a stan-
dard double precision floating point arithmetic. In order to simplify
the notation, we consider only the computation of one coefficient of
the vector y. The function to be computed is a simple inner product:
y =

∑
j βjf

c
j where the index i has been omitted, and βj and fc

j are
real numbers. The quantized version of the above relationship can
be expressed as follows:

βq,j = ρ1βj + ε1,j = !ρ1βj"
fc

q,j = ρ2f
c
j + ε2,j = !ρ2f

c
j " (1)

where ρ1 and ρ2 are positive integers and ε1,j and ε2,j are the quanti-
zation errors affecting βq,j and fc

q,j respectively. By using the above
relations it is possible to evaluate the final error due to quantization:

N−1∑

j=0

(
ρ1βj + ε1,j

)(
ρ2f

c
j + ε2,j

)
=

= ρ1ρ2

(
y +

N−1∑

j=0

βjε2,j

ρ2
+

N−1∑

j=0

fc
j ε1,j

ρ1
+

N−1∑

j=0

ε1,jε2,j

ρ1ρ2

︸ ︷︷ ︸
ε

)
(2)

where ε indicates the error on the scalar product once the scaling fac-
tor ρ1ρ2 is canceled out. By letting max(|βj |) = Mb, max(|fc

j |) =
Mf and by noting that max(|ε1,j |) = max(|ε2,j |) = 1

2 , we have:

ε ≤ N
2ρ1ρ2

(
ρ1Mb + ρ2Mf +

1
2

)
≤ ε∗ (3)

where ε∗ is a target maximum error that we do not want to exceed.
Given ε∗, choosing the optimum values of ρ1 and ρ2 is equivalent
to a constrained minimization problem in which the function to be
minimized is ρ1ρ2 (since this is equivalent to minimize the number
of bits necessary to represent the output of the scalar product) and
the constrain corresponds to equation (3), that is:

ρ1 ≥
N(2ρ2Mf + 1)
4ρ2ε∗ − 2NMb

. (4)

To ensure that ρ1 is a positive integer, it must be 2ρ2ε
∗−NMb > 0,

yielding the following minimization problem:

min
ρ2>

NMb
2ε∗

ρ2
N(2ρ2Mf + 1)
4ρ2ε∗ − 2NMb

. (5)

By solving (5) we obtain the solutions:

ρ2 =
1

2Mfε∗

(
NMbMf +

√
NMbMf (ε∗ + NMbMf )

)
, (6)

ρ1 =
1

2Mbε∗

(
NMbMf +

√
NMbMf (ε∗ + NMbMf )

)
. (7)

4.2. Speeding up the system

By referring to the analysis in previous section, we must consider
that in our case N = 21, however the values of Mb and Mf are
not known. In principle, in fact, the parameters of the AR model
and the matrix B coefficients are not bounded. Of course this is
not an acceptable solution, all the more that in practical applications
the AR model coefficient for ECG signals are rather small (lower
than 10 in most cases). In order to go on, we observe that the 5-th
component of the feature vector f can be at most 300, hence in fc

we surely have a component that is at most 90000. We may then
let Mf to be the closest 10-power, that is Mf = 100000. At the
same time, in our experiments we never observed a matrix B with
coefficients larger than Mb = 100000. Finally by examining the
data of ECG MIT Database 4 we found that ε∗ = 10−5 ensures a
sufficient accuracy. By using these settings the bit size of the values
in input turned out to be 56 bit. As to the ring size for homomorphic
encryption we found that the ring size imposed by security standards
is always sufficient to accommodate all the intermediate and final
results of the computation.

The analysis reported above is mainly based on worst case as-
sumptions. In practice, we may expect that the number of bits nec-
essary for a good classification accuracy is lower than 56. To inves-
tigate this aspect, we implemented a simulator to exactly understand
which is the minimum number of bits that can be used. The results
we obtained by running the simulator, on the MIT Database of ECG,
are in Figure 5. This figure shows the accuracy of the system as a
function of $. As we can see $ = 44 is sufficient to guarantee the
same performance of a non-quantized implementation.

In order to further speed up the system, we tested a version of
the ECG classifier with a reduced number of features. Specifically,
we reduced f by eliminating the feature ne. In this way, we obtain a
15-coefficient fc. Obviously the reduction of the feature space gives
also a reduction of the accuracy, but this reduction is quite negligible:
our experiments, in fact, indicate that the accuracy decreases only
from from 88.57% to 86.30%. On the other side, as it will be shown
in the next section, by removing one feature we gain a lot from a
complexity point of view. Such a gain is already visible in Figure 5,
where we can see that with the reduced set of features a value of $
as low as 24 is enough to obtain the same performance of a non-
quantized version of the classifier.
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Fig. 5. Classification accuracy of dataset using 21 and 15 features.

5. COMPLEXITY ANALYSIS

To evaluate the communication and computation complexity of the
Hybrid and the GC protocol, we implemented both protocols in
C++ using the Miracl library5. The following tests were run on two
PCs with 3 GHz Intel Core Duo processor and 4GB memory each

4
http://www.physionet.org/physiobank/

5
http://www.shamus.ie

Fig. 5. Accuracy of dataset using 21 and 15 features

5. COMPLEXITY ANALYSIS

To evaluate the communication and computation complexity of the
Hybrid and the GC protocols, we implemented both protocols in
C++ using the Miracl library5. The following tests were run on two
PCs with 3 GHz Intel Core Duo processor and 4GB memory con-
nected via Gigabit Ethernet. The security parameters in the proto-
cols of [5] are denoted by T for the bitlength of the RSA modulus for
Paillier encryption [8] in the Hybrid protocol, and t for the symmet-
ric security parameter which determines the performance of the GC

4http://www.physionet.org/physiobank/
5http://www.shamus.ie



protocol using an elliptic-curve based oblivious transfer protocol. In
our implementation, we chose these security parameters according to
common recommendations [9] as T = 1248, t = 80 for short-term
security (recommended use up to 2010) and T = 2432, t = 112 for
medium-term security (up to 2030). We measured the complexity of
both protocol instantiations for the parameter sizes proposed in §4.2:

In test #1, we represent the features of fc,` with ` = 56 bits, as
obtained from the theoretical estimations.

In test #2, the features are represented with ` = 44 bits, the
lower value obtained from the practical tests.

In test #3, we measure how the optimizations of §4.2 increase
the efficiency of the protocols. While test-cases #1 and #2 were run
for short-term security parameters only, in this test case we consider
short-term (#3) and medium-term (#3∗) security.

# Fea- N ` Protocol Communication Computation
tures Type Client [kBytes] Client [s] Server [s]

sent received cpu total cpu total

1 5 21 56 Hybrid 20.7 119.1 2.3 35.4 5.4 34.2
GC 24.1 67435.6 7.2 64.5 17.3 64.7

2 5 21 44 Hybrid 17.7 94.5 2.0 29.0 4.8 27.6
GC 19.0 41573.6 4.7 48.5 11.5 48.8

3 4 15 24 Hybrid 10.9 52.4 1.3 18.7 3.3 16.2
GC 7.4 8788.4 1.3 17.5 3.1 19.2

3∗ 4 15 24 Hybrid 17.6 71.7 6.5 40.5 16.3 30.9
GC 10.2 11984.3 3.0 20.4 4.6 20.8

* medium-term security

Table 1. Performance of protocols for secure ECG classification

Table 1 shows the results obtained from running these tests.
Specifically, the table contains the communication complexity (sep-
arated into data sent and received by the client) and the computation
complexity for the client and the server (separated into CPU time and
total time which additionally includes data transfer and idle times).
From these measurements we draw the following conclusions:

a) Parameter Sizes: The performance of both protocols in test
#2 is slightly better than that of test #1 due to smaller size of `.
Reducing the number of features in test #3 results in substantially
improved protocols while the classification accuracy is only slightly
decreased as discussed in §4.2.

b) Communication Complexity: While the data sent by the client
is approximately the same for both protocols (few kBytes), the re-
ceived data in the GC protocol (MBytes) is by an order of mag-
nitude larger than in the Hybrid protocol (kBytes). However, this
asymmetric communication complexity of the GC protocol matches
today’s asymmetric network connections (e.g., ADSL or mobile net-
works), where the upstream is limited, while tens of MBytes can be
downloaded easily. Future research should concentrate on further
reducing the communication complexity of GC.

c) Computation Complexity (short-term security): For the test
cases #1 and #2 the computation complexity of the Hybrid protocol
is better by a factor of three in CPU time and factor two in total
time, whereas for the optimized test case #3 both protocols have
approximately the same computation complexity. Hence, for short-
term security, the Hybrid protocol is better than the GC protocol with
respect to computation and communication complexity (see also ’b)’
above).

d) Computation Complexity (medium-term security): Increas-
ing the security parameters has a much more dramatic effect on the
computation complexity of the Hybrid protocol than on that of the
GC protocol (see test #3 vs. #3∗). This effect results from the asym-
metric security parameter T being almost doubled, whereas the sym-
metric security parameter t is only slightly increased. We stress that

this loss in performance of additively homomorphic encryption for
realistic security parameter sizes is often neglected in literature or
hidden by choosing relatively small moduli sizes of T = 1024 bit.
For medium-term security, the GC protocol is substantially better
than the Hybrid protocol besides the amount of data received by the
client (see discussion in ’b)’ above).

6. CONCLUSIONS

Privacy-preserving processing of medical signals calls for the appli-
cation of cryptographic two-party computation techniques to medi-
cal signals. While in principle this is always possible, the develop-
ment of efficient schemes that minimize the computation and com-
munication complexity is not trivial, since it requires a joint design
of the signal processing (SP) and cryptographic aspects of the sys-
tem. In this paper we have presented an efficient and secure system
for privacy-preserving classification of ECG signals based on a re-
cently proposed 2PC protocol and a careful design of the SP algo-
rithm used to classify the ECG. In particular, the optimization of the
SP part substantially improved the performance of the secure pro-
tocols. We experimentally compared two different implementations
of the system, one relying on garbled circuits (GC) and one on a
hybrid combination of the homomorphic Paillier cryptosystem and
GCs (Hybrid). While from communication complexity perspective
the Hybrid protocol is clearly better, the computation complexity of
both protocol is similar for short-term security parameters, whereas
for medium-term security the GC based protocol is preferable.
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