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(Extended Poster Abstract)

Abstract. Efficient zero-knowledge proofs of knowledge (ZK-PoK) are basic building blocks of
many practical cryptographic applications such as identification schemes, group signatures, and
secure multiparty computation. Currently, first applications that critically rely on ZK-PoKs are
being deployed in the real world. The most prominent example is Direct Anonymous Attestation
(DAA), which was adopted by the Trusted Computing Group (TCG) and implemented as one of
the functionalities of the cryptographic chip Trusted Platform Module (TPM).

Implementing systems using ZK-PoK turns out to be challenging, since ZK-PoK are, loosely speak-
ing, significantly more complex than standard crypto primitives, such as encryption and signature
schemes. As a result, implementation cycles of ZK-PoK are time-consuming and error-prone, in
particular for developers with minor or no cryptographic skills.

In this paper we report on our ongoing and future research vision with the goal to bring ZK-PoK to
practice by automatically generating sound ZK-PoK protocols and make them accessible to crypto
and security engineers. To this end we are developing protocols and compilers that support and
automate the design and generation of secure and efficient implementation of ZK-PoK protocols.

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between a prover
and a verifier, which allows the prover to convince the verifier that he knows some secret
values that satisfy a given relation (proof of knowledge property), without the verifier be-
ing able to learn anything about them (zero-knowledge property). There are fundamental
results showing that all relations in NP have ZK-PoK [GMW91,DFK*93 PRS02,1KOS07].
The corresponding protocols are of theoretical relevance, but much too inefficient to be
used in practical applications.

In contrast to these generic protocols, there are various protocols which are efficient
enough to be used in real world applications. Essentially, all ZK-PoK protocols being used
in practice today are based on so called X -protocols. What is typically being proved using
basic X-protocols is the knowledge of a preimage under a homomorphism (e.g., a secret
discrete logarithm). Yet, there are numerous considerably more complex variations of
these preimage proofs. These ZK-PoK proof techniques play an important role in applied
cryptography. In fact, many practically oriented applications use such proofs as basic
building blocks. Examples include identification schemes [Sch91], interactive verifiable
computation [CM99], group signatures [Cam98], secure watermark detection [ARS05],
and efficient secure multiparty computation [LPS08] - just to name a few.
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While many of these applications typically only exist on a specification level, a direc-
tion of applied research has produced first applications using ZK-PoKs that are deployed
in the real world. The probably most prominent example is Direct Anonymous Attes-
tation (DAA) [BCCO04], which was adopted by the Trusted Computing Group (TCG),
an industry consortium of many IT enterprises, as a privacy enhancing mechanism for
remote authentication of computing platforms. Another example is the identity mizer
anonymous credential system [CHO02|, which was released by IBM into the Eclipse Hig-
gins project, an open source effort dedicated to developing software for “user-centric”
identity management.

Up to now, design and implementation of ZK-PoK protocols is done “by hand”. In
fact, past experiences, e.g., during the design and implementation of the preceding two
examples, have shown that this is a time consuming and error prone task. This has
certainly to do with the fact that ZK-PoK protocols are relatively new primitives (e.g.,
there are no pre-built libraries and other tools supporting implementation) but also with
the fact that ZK-PoK are considerably more complex than other existing crypto primitives
(e.g., signatures, encryption, etc.) which are widely deployed.

The goal of our ongoing and future research is to bring ZK-PoK to practice by making
them accessible to crypto and security engineers. To this end we are working on compilers
and related tools that support and automate the design and implementation of ZK-PoK
protocols. For instance the High Level Compiler which is part of our toolbox, will take
as input a high-level specification of the goals of a ZK-PoK and automatically finds the
specification of a corresponding protocol. The Protocol Compiler transforms this protocol
specification into an executable implementation, e.g., Java or C code or documentation
of the protocol in KTEX. We have already developed and implemented a language and
compiler that automates the latter step from protocol specification to code generation for
proofs in known-order groups [BCK*08]. Extending this compiler to hidden-order groups
and automatically finding a protocol from a high-level specification is subject of ongoing
research.

In this extended poster abstract we describe the challenges pertaining to automatically
generate sound ZK-PoK for practical use in Sec. 2 and give an overview of a solution
blueprint and first results on solving these challenges in Sec. 3. Our approach for a
consistent but efficient theoretical framework for ZK-PoK in known- and hidden-order
groups is sketched in Sec. 4.

2 Challenges

In the following paragraphs we will describe the main challenges that ZK-PoK pose to
crypto engineers and protocol designers, which we aim to tackle with our compiler suite.

Let us introduce some notation first. By the semantic goal of a ZK-PoK we refer
to what a prover wants to demonstrate in zero-knowledge. For instance, the semantic
goal can be to prove knowledge of a discrete logarithm of a group element with respect
to another group element. A more complex goal is to prove that a given cipher-text
encrypts a valid (with respect to some given public key) signature on a specific message.
By a ZK-PoK protocol (specification) we refer to the actual description of a protocol (i.e.,
the operations of prover and verifier and the messages being exchanged). For instance, the
well known Schnorr protocol [Sch91] realizes the first semantic goal mentioned above, and
verifiable encryption protocols [Ate04] realize the latter. It is important to note that given
a semantic goal, there can be many different protocols realizing that goal; also sometimes



one does not know how to construct an efficient protocol realizing a goal (which does not
mean that there is no better protocol than using a generic protocols for NP statements
[GMW91,DFK*93, PRS02,IKOS07]). Finally, by a (protocol) implementation we refer to
actual code (e.g., in C or Java) realizing a specification.

Designing ZK-PoK. On a conceptual level ZK-PoK are easy to grasp and intuitive: formu-
lating the semantic goal of a ZK-PoK is an easy task for a protocol designer. It essentially
boils down to formulating the requirements on a ZK-PoK. Yet, finding a protocol speci-
fication realizing a semantic goal is in many cases difficult or impossible for people who
don’t have extensive expertise in the field. As a result, we believe that unlike other, more
simple crypto primitives such as encryption, signatures, etc., ZK-PoK are not part of the
toolbox of many crypto engineers. This in turn lets us conjecture that the potential of
novel applications that can be built using ZK-PoK is only poorly exploited.

Why is it actually often hard to find ZK-PoK protocol meeting a semantic speci-
fication? The main problem is the lack of a unified, modular and easy to understand
theoretical framework underlying the various ZK-PoK protocols and proof techniques.
As a result there is no methodological formal way to guide cryptographic protocol de-
signers. In fact, there is a large number of tricks and techniques “to prove this and that”,
yet combining various tricks and preserving the security properties (i.e., the ZK and PoK
properties) is not straightforward and is non-modular. Composition of techniques often
needs intricate knowledge of the technique at hand, and may also require modification of
the technique. For instance some techniques only work under certain algebraic assump-
tions and preconditions. These can be conditions on the order of the algebraic group and
group elements being used, conditions on whether the prover knows the factorization of a
composite integer, distributions of protocol inputs etc.. The algebraic conditions in turn
require tuning protocol parameters. As a result, finding and designing ZK-PoK protocols
is a heuristic process based on experience and a detailed understanding of the techniques
being used. In contrast, encryption and signature schemes are much more easily accessible
to designers.

Efficiency of implementation process. The step going from a protocol specification to a
protocol implementation is often considered to be trivial from a conceptual point of view.
Yet in practice it is not. In fact, experiences made while implementing, e.g., a prototype
of the identity mixer [CL0O1,CHO02] protocols have shown that a manual implementation
is tedious and error prone and easily takes person weeks. Moreover, often protocol speci-
fications are written by cryptographers and the implementation is done by SW engineers.
This “skill gap” may lead to implementation errors. The former often don’t care suffi-
ciently or don’t have the skills to cope with implementation issues and their specifications
may be slightly incomplete; the latter may have a hard time to assess implementation
decisions, which depend on cryptographic subtleties. Additionally, minor changes in the
semantic goal often result in fundamental changes of the resulting protocol.

Efficiency of code. Getting efficient code, in terms of computation time, memory usage,
size of messages sent over the network, number of message exchanged, etc., can be of great
concern when using ZK-PoK. The choice of the resource to optimize may greatly differ
depending on the actual device on which the code is run. In the DAA protocol [BCC04]
for example, parts of the prover’s algorithm is executed by a relatively simple and low
cost TPM chip while the verifier’s algorithm runs on a powerful computer.



There are at least two places where one can optimize ZK-PoK. On a high-level, there
is potential for optimization by finding the most efficient protocol specification realizing
a given semantic goal (this type of optimization is closely related to “designing ZK-
PoK” issue described above). On a lower level one can optimize the code implementing
a given protocol, much like the optimization performed by compilers for conventional
programming languages like C, Java etc, whereas one can specially concentrate on crypto
operations. Optimization in general, requires substantial experience and an intricate un-
derstanding of the runtime environment.

3 Solution Blueprint and Results

In the following we sketch how we envision to resolve the challenges described above
and describe first results. Fig. 1 shows the main components of our toolbox on a very
high-level. One is the High Level Compiler that takes the semantic goal of ZK-PoK to
be proven and finds the corresponding Protocol Specification. From this, the Protocol
Compiler generates the Protocol Implementation e.g., as Java or C code realizing the
semantic goal.
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Y
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\ 4
Protocol Specification

A

4
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Fig. 1. Architecture of our framework for automatic generation of sound ZK-PoK protocols.

Designing ZK-PoK. At the moment we are designing a high-level language in which the
semantic goal of a ZK-PoK together with its non-functional properties can be formulated
in a user-friendly way. The language is inspired by the well-known Camenisch-Stadler
notation [CS97] which is used to formulate the intended semantic goal. We enrich this
with non-functional properties which allow to specify optimization constraints (e.g., up-
per bounds for computation- or communication complexity) and the security level (e.g.,
knowledge error, tightness of the statistical zero-knowledge property, etc.) of the protocol
being generated. In this high-level language, we abstract away as many technical details
as possible to ease design and usage of ZK-PoK for non-experts.

To be able to actually build a compiler for the semantics of that high-level language
we are currently working on a unified theoretical framework for the various ZK-PoK



techniques. For this, we extend the existing theory for zero-knowledge proofs which by
now mainly deals with known order groups [CDS94,Cra96,Brad7,BS02]. Our extended
theoretical framework is capable to cope with arbitrary combinations of protocols in
hidden order groups (e.g., RSA groups) as well [DF02,BCM05,CKY09]. To this end, we
have conceived the new X" protocol [BCK108], which yields efficient ZK-PoK in a more
modular but still efficient manner than the existing protocols [DF02,BCM05,CKY09].
More details on this framework will be given in Sec. 4.

A first prototype [BCKT08] of our compiler and semantic language implements a
subset of the envisaged compiler framework. It already supports the automatic genera-
tion of sound ZK-PoK protocols for known order groups which includes various crypto-
systems such as Pedersen commitments/verifiable secret sharing [Ped92], Schnorr au-
thentication/signatures [Sch91], electronic cash [Bra94,0ka95,CFT98]|, group signatures
[CL04], and ring signatures [CDS94].

Efficiency of implementation process. In fact, this challenge is solved inherently by our
compiler based approach (i.e., by automating the implementation process). Our first
prototype of the compiler performs its work in less than a second, and we expect the full
fledged version of the compiler to run in a couple of seconds. There are other features to
improve the efficiency of the implementation process. For instance, one could give our tool-
chain a consistent user interface which is based on an integrated development environment
such as Eclipse to assist application developers in all steps involved: specification of proof
goals (e.g., syntax highlighting), documentation (e.g., BTEX diagrams of the generated
protocols), or performance tests of the generated code (e.g., code profiling).

Efficiency of code. As mentioned above, this challenge has to be dealt with on a high
level (i.e., finding the most efficient protocol for a given semantic goal) and on a low level
(i.e., by optimizing the code implementing a protocol). For the high-level optimization,
the high level compiler will choose the most appropriate proof techniques according to
the user’s requirements on communicational and computational complexity. For example
interval proofs can be done either with techniques described in [Bou00] or [Lip03] which
have different communication and computation complexity. To support low level opti-
mization we’ll (additionally to C) also provide a compiler backend that outputs code in
the CAO (“Cryptography Aware language and cOmpiler”) language [BNPS05]. This is a
language and a compiler geared towards the generation of an efficient and secure low-level
implementation of cryptographic primitives; CAO is also being developed in the CACE
project.

Results obtained so far. We have implemented a first prototype of the protocol com-
piler which is capable to generate X-protocols (which can easily be converted into ZK-PoK
protocols) for groups with known order [Bri04,CRS05,BCK™08]. More precisely, we have
designed a language which is inspired by the widely used Camenisch-Stadler notation
[CS97]. ZK-PoK protocol specifications in this language are then translated by the com-
piler either into Java code or documentation in KTEX. The Java code can be integrated
into higher level systems that make use of the corresponding ZK-PoK. The I¥TEX docu-
mentation can be used for documenting the protocols and also for verification purposes.
To the best of our knowledge, this is the first compiler suite to support the automatic
generation of sound ZK-PoK protocols. Currently, we are working on a compiler which
supports also protocols in hidden-order groups [DF02,BCM05,BCK*08,CKY09] and gen-
eration of C or CAO code.



4 The X°*P-protocol - An unconditionally portable X-protocol
in the auxiliary string model

The newly introduced framework of Camenisch, Kiayias and Yung [CKY09] spotlights
several known problems when proving preimages of exponentiation homomorphisms (i.e.
homomorphisms of the form ¢(xy,...,z,) = gi* -+ - gi~), especially when such proofs are
performed within groups of unknown order, where the generalized Schnorr protocol has
to be applied. To overcome these problems, they introduce the notion of unconditionally
portable protocols and give a generic protocol transformation from a given generalized
Schnorr protocol (which is a X-protocol) into an unconditionally portable protocol. Both,
the existing transformation of [BCMO05] in the random oracle model and its adoption for
the standard model [CKY09] need six moves.

However, most protocol transformations that need to be applied in order to use such
honest-verifier ZK protocols in practice are defined for X-protocols, which by definition
have three moves only. Hence they can not be applied immediately to those six-move
protocols. Examples are the highly efficient and widely used Fiat-Shamir transformation
for non-interactive ZK (NIZK) in ROM [FS87], or constructions for concurrent zero-
knowledge (CZK) [Dam00,MP03,Vis06].

The X**P-protocol [BCKT08], which was introduced independently from, and earlier
than [CKYO09], fits excellently into this framework and in fact is a three-move uncondi-
tionally portable protocol in the auxiliary string model without random oracles. Indeed,
the X*P-protocol can easily be derived from the six-move protocols of [BCMO05] and
[CKYO09], by replacing the first, fifth and sixth move of these protocols with an auxiliary
string holding the safeguard group and bases. This auxiliary string can either be gener-
ated and certified by a trusted third party or generated by the verifier who proves in ZK
its correctness during a setup phase which is run once and for all and amortizes if the
protocol is run often.

As the X**P-protocol is a Y-protocol it can easily be combined with other X-protocols
by boolean operators AND and OR with standard composition techniques. Arbitrary
monotone access structures can be realized efficiently using secret sharing schemes such as
[ShaT79] as described in [CDS94]. Yet, these techniques can also be adopted for usage with
the protocols given in [BCMO05,CKY09]. The major advantage of the X" protocol is that
it can easily be transformed into NIZK and CZK with the above standard techniques and
hence is much better suited for use in practical applications. For this, we will incorporate
the Y*P-protocol into our compiler framework.
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