
Cryptography Meets Watermarking: Detecting Watermarks

with Minimal or Zero Knowledge Disclosure

André Adelsbach
Universität des Saarlandes, FR 6.2

D-66123 Saarbrücken, Germany

adelsbach@cs.uni-sb.de

Stefan Katzenbeisser
Institute for Information Systems

Vienna University of Technology

skatzenbeisser@acm.org

Ahmad-Reza Sadeghi
Universität des Saarlandes, FR 6.2

D-66123 Saarbrücken, Germany

sadeghi@cs.uni-sb.de

ABSTRACT

Digital watermarking schemes embed additional infor-
mation into digital data and are used in various appli-
cations, such as proof of ownership or fingerprinting. For
such applications, the presence of watermarks must be
provable to any possibly dishonest party. Standard wa-
termark detection requires knowledge of sensitive infor-
mation like the watermark or the embedding key. This
is a major security risk, since this information is in most
cases sufficient to remove the watermark.
Zero-knowledge watermark detection is a promising ap-
proach to overcome security issues residing around the
process of watermark detection: cryptographic tech-
niques are used to prove that a watermark is detectable
in certain data, without jeopardizing the watermark.
This paper gives an overview over such schemes and
discusses their properties.

1 Introduction
Watermarking methods were invented in the 1990’s in
order to embed additional information (like an identity
string of a copyright owner) in some multimedia object.
Since then, watermarks have successfully been used as
primitives in protocols for resolving disputes over copy-
right, in fingerprinting schemes or proofs of ownership.
Until recently, all watermarking methods were symmet-
ric, i.e., their watermark detection process required the
watermark and the same key that was used in the em-
bedding process. Once this information is disclosed to
a party, this party can completely remove the water-
mark. This property is a strong limitation of the usabil-
ity of symmetric watermarking, since most applications
require at some point in time the detection of a water-
mark by a – in reality – not fully trustworthy party or
device.

Two approaches were taken to tackle this problem.
First, truly asymmetric watermarking schemes were
proposed by different authors, which use different keys
for watermark embedding and detection. However, most
systems were broken; especially the presence of a water-
mark detector, i.e., knowledge of the public detection
key, leads to an increased threat of oracle attacks.

On the other hand, the approach of zero-knowledge

watermark detection applies cryptographic techniques
to the detection of watermarks. These systems substi-
tute the watermark detection process by an interactive
cryptographic protocol, involving a prover, e.g., an al-
leged copyright owner, and a possibly dishonest verifier,
e.g., a judge verifying the copyright claim.

The goal of zero-knowledge watermark detection is to
prove the presence of a specific watermark in a digital
object without compromising the security of this water-
mark. Therefore, these protocols should ideally fulfil the
following requirements:
1. Inputs conceal watermark and key: The necessary in-

puts do not reveal any information about the water-
mark and the detection key.

2. Protocol is zero-knowledge: A run of the protocol
does not disclose any information in addition to the
inputs of the protocol.

These properties guarantee that a symmetric watermark
stays as secure as if the protocol had not been executed
at all. Thus, zero-knowledge watermark detection can
improve the security of many applications, which rely
on symmetric watermarking schemes, and can reduce
the necessary trust in certain parties or devices. Weaker
requirements may be sufficient for some applications, as
long as the information leaked to the verifier (by the
inputs or by the protocol-run) is insufficient to attack
the underlying symmetric watermarking scheme.

After introducing necessary cryptographic primitives
in Section 2, we provide three different constructions
for zero-knowledge watermark detection in Sections 3
and 4. In Section 5 we compare the security offered by
these constructions. Section 6 concludes and gives open
problems and research directions.

2 Cryptographic Building Blocks
A commitment scheme (com, open) for a message space
M consists of a protocol com to commit to a value
m ∈ M and a protocol open that opens a commit-
ment. A commitment to a value m is denoted by
com(m, parcom) where parcom stands for all public pa-
rameters needed to compute the commitment value. To
open a commitment com the committer runs the proto-
col open(com, parcom , skcom) where skcom is the secret

1



opening information of the committer. For brevity we
omit parcom and skcom in the notation of com() and
open(). Furthermore, we use com() and open() on tu-
ples over M , with the meaning of component-wise ap-
plication of com() or open().

Commitment schemes fulfil a hiding (secrecy) and a
binding (committing) property. The first one requires
that a commitment com(m) does not reveal any infor-
mation about the committed message m. The second
one requires that a dishonest committer cannot open a
commitment to another message m′ 6= m than the one
(m) to which he has committed before.

Additionally, we require the following homomorphic
property : Let com(m1) and com(m2) be commitments
to arbitrary messages m1, m2 ∈ M . Then the commit-
ter can open com(m1) ∗ com(m2) to m1 + m2 without
revealing additional information about the contents of
com(m1) and com(m2). The commitment scheme intro-
duced in [8] fulfils all these properties.

Zero-knowledge proof systems (see [9]) allow a party,
called prover P, to convince another party, called ver-
ifier V, of some fact without revealing any additional
information by the proof. In [3] efficient and secure zero-
knowledge proof systems for proving relations in modu-
lar arithmetic (addition, multiplication, exponentiation)
between committed1 numbers are proposed: Given com-
mitments to the values a, b, c, m ∈ M one can prove that
a+b ≡ c mod m, a∗b ≡ c mod m or ab ≡ c mod m. Fur-
thermore, [2] described efficient zero-knowledge proof
systems for proving that a committed number lies in
an exact interval.

3 Solutions based on Interactive Proof Systems
Two protocols for proving watermark presence with
minimum knowledge (that work with a potentially large
class of watermarking schemes) were proposed in [6] and
[7]. The first construction depends on a blinding process
induced by a secret permutation of the watermarked ob-
ject, whereas the other one draws its security from con-
cealing a genuine watermark by some fake ones.

3.1 Secret Permutations
Assume we are given a watermarking system that allows
a permuted watermark to be detected in an equally per-
muted object. Let τ be any permutation on n elements
and G be a graph with n nodes. The public key of the
content provider consists of G and τ(G), whereas τ is
the private key and is therefore kept secret (as finding
an isomorphism between two graphs is believed to be in-
tractable, an attacker cannot infer the private key from
the public key). The verification process consists of an
interactive multi-round protocol between the prover and
a verifier. In each round, the prover is able to cheat with
a probability of 1/2. By performing several rounds, the

1Although not mentioned explicitly in [3], these protocols work
also for the commitments from [8] (private communications with
Jan Camenisch).

verifier can gain any degree of certainty that a valid
mark is actually present.

Let WM be a (secret) watermark and O be a water-
marked object. Before the protocol starts, the content
provider publishes τ(O) and τ(WM). A cryptographic
protocol now proves that τ(O) is actually a permuted
version of O and that the watermark is present. In each
round, the content provider chooses two permutations
σi and ρi with the property that σi◦ρi = τ .

He constructs an ownership ticket, containing com-
mitments of both σi and ρi; furthermore, the ticket con-
tains hashes of the permuted objects Oi = ρi(O) and
graphs Gi = ρi(G). The verifier first checks whether
the scrambled watermark τ(WM) is indeed detectable
in the scrambled object τ(O). He then proceeds by flip-
ping a coin. Depending on the outcome of his coin flip,
he asks the content provider to open either the commit-
ment containing ρi or the commitment of σi.

If the commitment containing ρi is opened, the ver-
ifier is able to compute scrambled versions of the doc-
ument O and graph G; he then hashes the scrambled
object and checks whether the hash value agrees with
the bits contained in the ownership ticket. If, however,
the commitment containing σi is opened, the verifier ap-
plies the inverse permutation σ−1

i to both the scrambled
watermarked document τ(O) and graph τ(G); again he
verifies whether the hash of the resulting objects equal
the hash values in the ownership ticket.

3.2 Ambiguity Attacks

In an ambiguity attack, an attacker tries to guess a wa-
termark WM and an alleged “original” object O such
that WM is already contained in a given object O and
O seems to be the watermarked version of O. By con-
cealing a true watermark WM among a set of fake wa-
termarks WM1, . . . ,WMn constructed through ambigu-
ity attacks, an attacker (equipped solely with a water-
mark detector) cannot decide which of the watermarks
is not counterfeit. This is the basis of another minimum-
knowledge watermark detection protocol.

A watermark will be called valid, if the prover knows
its discrete logarithm (w.r.t a specific generator a) in a
field Zp. However, as computing the discrete log seems
to be intractable, he will be unable to provide the log-
arithm of watermarks produced through ambiguity at-
tacks. In the watermark insertion process, the prover
constructs a valid watermark, finds n − 1 other marks
through ambiguity attacks and arranges all marks in a
random order:

• He constructs a valid watermark by choosing a ran-
dom exponent e and computing WM = ae (mod p).
Afterwards, he embeds WM in his object.

• Using ambiguity attacks, he determines n − 1 coun-
terfeit watermarks WM1, . . . ,WMn−1 and publishes
all watermarks WM,WM1, . . . ,WMn−1 in a random
order.

2



In the verification step, he has to prove that “most”
of the watermarks WM,WM1, . . . ,WMn−1 are still de-
tectable in the watermarked object and that at least one
of them is genuine (i.e. he knows its discrete logarithm),
without revealing which one. As a potential attacker
does not know the “genuine” mark, he potentially has
to remove many watermarks until the verification pro-
cess fails, which hopefully renders the object useless (on
the average, n/2 watermarks must be removed). The
verification process is again an interactive multi-round
protocol:

• The verifier checks whether all watermarks
WM1, . . . ,WMn are actually contained in the
object in question (if one mark is not detectable any
more, it is discarded from further computations).

• The prover constructs n blinding exponents h1, . . . ,
hn, computes bi = WMi ·ahi (mod p) and publishes
all blinded watermarks bi in a permuted manner.

• The verifier flips a coin; if the result is heads, he
challenges the prover to reveal the blinding exponents
hi to verify that the bi are actually blinded versions
of the WMi.

• If the result is tails, the verifier asks the prover to
reveal the discrete log of one of the values bi. The
prover can do this, as the discrete log of the blinded
true watermark bj is e + hi (mod p− 1).

4 Zero-knowledge Watermark Detection

It is possible to construct watermark detection proto-
cols which leak no information about security critical
detection parameters at all. The protocols presented
in [1] fulfil this strong security property: they hide all
to-be-secret values in commitments from [8] and com-
pute a commitment on the detection statistic of the un-
derlying watermarking scheme, using the homomorphic-
property and zero-knowledge proofs from [3] (see Section
2). Finally, using protocols from [2] the prover proves
to the verifier in zero-knowledge, that the committed
value of the detection statistic lies above the detection-
threshold.2 The idea underlying this approach is general
and easily adaptable to any watermarking scheme that
detects watermarks by computing a detection statistic,
using operators +, ∗,−, and comparing it to a threshold.

We show the protocol for a well-known blind detection
statistic proposed by Cox et al. [4]. For a protocol allow-
ing non-blind zero-knowledge detection we refer to [1].
Blind detection of a watermark WM = (wm1, . . . , wmk)

2These protocols improve the results from [10], where the wa-
termark coefficients are assumed to be RSA-encrypted and the
correlation between the encrypted watermark and the stego-data
is computed in a challenge-response manner. The protocol is not
zero-knowledge since the verifier obtains a good estimation of the
correlation value, thus enabling oracle attacks. Another drawback
of the approach from [10] is that it is only applicable to blind wa-
termark detection.

in a digital image O works by computing the correlation
value

corr =
< DCT (O, k),WM >√

< DCT (O, k),DCT (O, k) >
(1)

between WM and the k largest DCT-coefficients
DCT (O, k) = (DCT (O)1, . . . ,DCT (O)k).3 This value
is a measure of confidence for the presence of WM in
O. The watermark is decided to be present in O iff
corr ≥ δ holds for a predefined detection-threshold δ.4

For efficiency reasons the following equivalent5 detection
criterion is used:

C := [(< DCT (O, k),WM >︸ ︷︷ ︸
A

)2 −

< DCT (O, k),DCT (O, k) > ∗ δ2

︸ ︷︷ ︸
B

]
?≥ 0

Zero-knowledge detection assumes that parcom , O,
com(WM) = (com(wm1), . . . , com(wmk)) and δ are
common inputs to the prover P and verifier V. The wa-
termark is hidden in a commitment, to prevent removal
by V. Additionally, P has the secret opening informa-
tion skcom for com(WM). The protocol allowing P to
prove to V that the watermark, hidden in commitments
com(WM), is blindly detectable in O consists of the fol-
lowing steps:

1. P and V compute DCT (O, k).

2. P and V both locally compute part B from the equiv-
alent detection criterion C. Now P generates a com-
mitment com(B) and sends it to V. By opening
com(B) immediately to V the prover proves that
this commitment contains the same (correct) value
B which V computed himself.

3. Then, both P and V compute the commitment

com(A) :=
k∏

i=1

com(wmi)DCT(O)i

by taking advantage of the homomorphic property of
the commitment scheme and P proves to V in zero-
knowledge that com(A) contains a value ≥ 0.

4. P computes the value A2, sends a commitment
com(A2) to V and proves to V in zero-knowledge (see
[3]) that com(A2) contains the square of the value
contained in com(A).

3Here, < x, y > denotes the scalar product of two vectors x
and y.

4In contrast to Cox et al., we assume that the watermark,
DCT-coefficients and detection threshold are integers and not real
numbers. Note that this is no real constraint, because we can scale
the real values appropriately.

5Equivalency holds for A ≥ 0, which is proven in step 3 of the
detection protocol.

3



5. Now both V and P compute the commitment
com(C) := com(A2)/com(B) on the value C.

6. Finally P proves to V in zero-knowledge, that the
value contained in com(C) is≥ 0 using protocols from
[2]. If V accepts this proof he can be sure that the
watermark hidden in com(WM) is contained in O.

If any of the local tests or zero-knowledge proofs fails the
verifier considers the watermark as being not detectable.

5 Comparison of the Protocols

Comparing the three approaches with regard to secu-
rity and information leakage, we can give the following
results:

Secrecy of inputs:
1. Secret permutation: A permuted version τ(WM) of

the watermark WM is given to the verifier as a neces-
sary input. This permutation does not hide the coeffi-
cients of WM perfectly, since it reveals characteristics
like the minimum/maximum coefficient. However,
this may be an advantage in some applications, since
it allows certain tests by the verifier, e.g., whether it
fulfils necessary statistical properties.

2. Ambiguity attacks: A valid watermark WM is hid-
den among a large number n (security parameter) of
fake watermarks WM1, . . . ,WMn. Here, the secrecy
of WM increases only linearly in the security param-
eter n, which makes a level of security comparable to
cryptosystems impossible.

3. Zero-knowledge watermark detection: The verifier
sees only commitments com(wmi) on the watermark-
coefficients. The hiding property of the commitment-
scheme guarantees that no information about wmi is
leaked.

Information disclosure by protocol-runs:
1. Secret permutation: The system is susceptible to an

oracle attack, which shows that it does not satisfy a
zero-knowledge property. By issuing different care-
fully modified test documents to the prover, τ can be
recovered after several (independent) invocations of
the protocol (see [7]).

2. Ambiguity Attacks: This scheme is susceptible to the
following oracle attack, which requires on the average
n/2 trials: In each step, the verifier removes a water-
mark WMi until the prover is unable to present the
discrete log of a mark. In this case the verifier knows
that he has removed the genuine watermark.

3. Zero-knowledge watermark detection: The commit-
ments that the verifier sees during a protocol-run re-
veal no information about their contents. Neither
do the executed sub-protocols, since they are zero-
knowledge proof protocols. Thus, due to the com-
position theorem for the sequential execution of zero-
knowledge proofs (see [9]), the whole protocol is zero-
knowledge.

6 Conclusion

We discussed the idea of zero-knowledge watermark de-
tection, reviewed some constructions and compared the
level of security they provide. The suggested construc-
tions follow different approaches and are applicable to a
large class of symmetric watermarking schemes. Many
applications of symmetric watermarks can strongly ben-
efit from these protocols. Examples are copyright dis-
pute resolving where the trust necessary in the dispute
resolver can be reduced. In proofs of ownership, zero-
knowledge watermark detection can help improving the
efficiency by allowing offline ownership proofs (see [1]).

Future research may investigate the benefit of zero-
knowledge watermark detection in further applications
in more detail. Another interesting question is whether
there are asymmetric watermarking schemes which
achieve a level of security comparable to zero-knowledge
watermark detection.

References

[1] A. Adelsbach, A.-R. Sadeghi: Zero-Knowledge Wa-
termark Detection and Proof of Ownership; Informa-
tion Hiding: Fourth International Workshop, LNCS
2137, Springer, 2001, pp. 273–288.

[2] F. Boudot: Efficient Proofs that a Committed Num-
ber Lies in an Interval; Eurocrypt ’00, LNCS 1807,
Springer, 2000, pp. 431–444.

[3] J. Camenisch, M. Michels: Proving in Zero-
Knowledge that a Number is the Product of Two
Safe Primes; Eurocrypt ’99, LNCS 1592, Springer,
1999, pp. 107–122.

[4] I. Cox, J. Kilian, T. Leighton, T. Shamoon: A Se-
cure, Robust Watermark for Multimedia; Informa-
tion Hiding, LNCS 1174, Springer, 1996, pp. 185–
206.

[5] I. Cox, J.-P. M. G. Linnartz: Some General Methods
for Tampering with Watermarks, IEEE Journal on
Selected Areas in Communications, Vol. 16, No. 4,
May 1998, pp. 587–593.

[6] S. Craver: Zero Knowledge Watermark Detection;
Information Hiding: Third International Workshop,
LNCS 1768, Springer, 2000, pp. 101–116.

[7] S. Craver, S. Katzenbeisser: Security Analysis of
Public-Key Watermarking Schemes; in Proc. SPIE
vol. 4475, Mathematics of Data/Image Coding,
Compression and Encryption IV, with Applications,
2001, pp. 172–182.

[8] E. Fujisaki, T. Okamoto: Statistical Zero-Knowledge
Protocols to Prove Modular Polynomial Relations;
Crypto ’97, LNCS 1294, Springer-Verlag, Berlin
1997, pp. 16-30

[9] O. Goldreich: Foundations of Cryptography: Basic
Tools; Cambridge University Press, 2001

[10] K. Gopalakrishnan, N. Memon, P. Vora: Protocols
for Watermark Verification; Multimedia and Secu-
rity, Workshop at ACM Multimedia 1999, pp. 91–94.

4


