
Strategy Without Tactics: Policy-Agnostic
Hardware-Enhanced Control-Flow Integrity

Dean Sullivan1, Orlando Arias1, Lucas Davi2, Per Larsen3, Ahmad-Reza Sadeghi2, and Yier Jin1

1University of Central Florida, USA

2Technische Universität Darmstadt, Germany

3University of California, Irvine, USA

ABSTRACT
Control-flow integrity (CFI) is a general defense against code-
reuse exploits that currently constitute a severe threat against
diverse computing platforms. Existing CFI solutions (both
in software and hardware) suffer from shortcomings such
as (i) inefficiency, (ii) security weaknesses, or (iii) are not
scalable. In this paper, we present a generic hardware-
enhanced CFI scheme that tackles these problems and allows
to enforce diverse CFI policies. Our approach fully sup-
ports multi-tasking, shared libraries, prevents various forms
of code-reuse attacks, and allows CFI protected code and
legacy code to co-exist. We evaluate our implementation on
SPARC LEON3 and demonstrate its high efficiency.

1. INTRODUCTION
Defending against code-reuse attacks (CRA) is currently a
highly active research area. Control-flow integrity (CFI) has
been proposed as a general defense against control-flow hi-
jacking attacks [3]. In particular, it defends against mod-
ern CRAs such as return-oriented programming (ROP) [19].
These attacks are prevalent, Turing-complete, and repeat-
edly leveraged to compromise applications.

CFI mitigates these attacks by ensuring that an appli-
cation follows a legitimate control-flow path. The legiti-
mate paths are manifested in the application’s control-flow
graph (CFG) derived during an offline static analysis phase.
Whenever an attacker attempts to subvert the execution to
follow an illegal control-flow path, CFI detects this malicious
control flow, and immediately terminates the process.

The majority of CFI defenses focus on software-based im-
plementations, where code is instrumented to incorporate
control-flow checks before each indirect branch instruction.
These solutions, however, suffer from performance issues as
their CFI policy’s precision increases. Some approaches have
focused on improving performance, which has resulted in
overhead being lowered [26] at the cost of security. Recent
research [14, 7, 13] has highlighted that CFI policies which
trade security for performance can be bypassed. Further-
more, the protection offered by ideal CFI has recently been
questioned [6].

Ensuring the integrity of CFI-related data is similarly
challenging and costly. Many CFI schemes maintain a shadow
stack for return addresses to validate whether a function’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’16, June 05 - 09, 2016, Austin, TX, USA
Copyright 2016 ACM ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2747942.

return address has been corrupted by an attacker [3]. This
stack needs dedicated maintenance and requires protection
from the main program incurring additional overhead [11].

To tackle these shortcomings, recent CFI schemes follow
hardware software co-design principles: HAFIX [12] deploys
dedicated CFI instructions to enforce efficient CFI enforce-
ment for function returns. However, it does not provide CFI
enforcement of indirect jumps and calls. Also, to the best
of our knowledge, there does not exist any hardware-based
CFI scheme that applies to complex code including shared li-
braries, and supports multi-tasking as well as inter-operation
with legacy code. Our approach supports these features
without sacrificing performance or security. Hardware-based
signature detection [15] or control data isolation [4] support
these features, but are orthogonal approaches.

Contributions. In this paper, we introduce a hardware-
enhanced CFI platform that scales to the coverage provided
by any Control Flow Graph (CFG), enables highly efficient
enforcement of diverse CFI policies, and losslessly enforces
any provided CFG. We offer protection scalable to the pre-
cision of the control flow analysis, which in certain cases
may be coarse and in others precise. Our platform han-
dles shared libraries due to compiler supported ISA exten-
sions and incorporates features to handle multi-tasking and
interoperation with legacy programs unprotected by CFI.
We evaluate runtime attacks and CFI vulnerabilities using
hardware-enhanced CFI by first evaluating its effectiveness
against the most current code-reuse attacks [6, 20, 14] af-
fecting C and C++ applications. These attacks are able
to perform malicious actions while adhering to the restric-
tions imposed by a CFI-protected system. We examine the
runtime performance overhead of our platform using the
SPEC2006 bencharks and CoreMark microbenchmarks on
the SPARC LEON3 processor [18] demonstrating a negligi-
ble performance overhead; on average only 1.75% for SPEC
and 0.5% for CoreMark. Finally, using Design Compiler’s
32/28 nm process library, we show our hardware-enhanced
CFI area overhead is negligible and that it can be clocked
up to 3 GHz.

In summary, our core contributions are as follows.

1. Scalable, Lossless CFI Enforcement: We present
a design that scales to any CFG provided and losslessly
enforces the provided CFG. Our platform features new
CFI instructions supporting CFI on diverse CFGs.

2. Comprehensive Prevention: Our CFI hardware plat-
form prevents many known code-reuse attacks: tra-
ditional Return Oriented Programming (ROP) [19],
ROP without returns [8], and full-function reuse [20].

3. CFI Hardware Platform: We present the design,
implementation, and evaluation of an efficient hard-
ware CFI platform on the open source LEON3 SoC.

4. CFI Operating System Support: We tackle prac-
tical challenges such as support for multitasking, dy-
namic linking, CFI compilation, protection of shared
libraries, and co-existence of CFI and legacy code.

We stress that the goal of this paper is the design of a
hardware CFI framework that can enforce CFI policies of
different precision based on the CFG. Our paper is explic-
itly not about static analysis of source code or advanced
binary analysis to extract CFGs. Generation of CFGs for
real-world software remains an open research problem and
issues in CFG generation are orthogonal to the challenges we
address: making CFI enforcement efficient by adding dedi-
cated instructions and supporting hardware.

2. THREAT MODEL & REQUIREMENTS
Threat Model. Our threat model follows the traditional
CFI model. We assume an adversary who has arbitrary
read and write access to data memory, and read access to
code memory. The attacker can either be a local or re-
mote attacker. However, the attacker only has access to user
applications, as kernel exploits can undermine any security
mechanism implemented for user-space applications.

CFI ensures the integrity of the program’s control flow.
Consequently, we target benign applications that an attacker
attempts to compromise, but do not protect against appli-
cations that are inherently malicious. This includes cases
where the attacker modifies the binary either in disk or
memory. Further, we focus on CRAs, but not code injec-
tion attacks that are prevented by data execution prevention
(DEP) [16], a feature of all modern systems.
Requirements. The requirements that satisfy the goals
of a lossless, scalable, and efficient hardware-enhanced CFI
framework are given below.

• Precision: We must losslessly enforce any CFG with
which we are provided. In general, it may be impos-
sible to resolve a precise CFG either because source
code is unavailable or the analysis is imprecise.

• Scalability: The effectiveness of any CFI approach
depends on the CFG precision. Hence, we require that
our CFI scheme scales to any level of CFG precision.
Our solution must be capable of enforcing the CFI pol-
icy expressed by a given CFG.

• Efficiency: Software-based CFI approaches incur sig-
nificant overhead, which limits adoption. We require
negligible performance overhead for our CFI scheme.

• Stateful: We require stateful CFI since stateless CFI
is vulnerable to stitching gadgets [14, 13] and control-
flow bending attacks [6].

• Compatibility: Our CFI scheme needs to co-exist
with uninstrumented programs.

• Security: Based on a precise CFG, we require the
CFI scheme to cover all of the existing code-reuse at-
tacks including traditional return-oriented program-
ming [19], ROP without returns [8], just-in-time code-
reuse attacks [21], and full function-reuse attacks [20].

3. HARDWARE-ENHANCED CFI DESIGN
We present a CFI approach that is able to losslessly en-

force a program’s CFG. As such, it must encode both coarse
and precise CFG data and provide a mechanism to check
that the encoded edges on the graph are properly traversed.
At a minimum, our CFI policy ensures that forward edges
(calls/jumps) target function entries and that backward edges

(returns) target call preceded sites. Given a full CFG, our
CFI policy ensures that forward edges must target their in-
tended destinations. In our design, the precision of the pro-
tection of forward and backward edges is limited by the CFG
coverage. In addition, we present a mechanism for uniquely
identifying multiple indirect calls targeting a common func-
tion using a trampoline. For the purpose of encoding the
CFG information, we introduce an extension to the ISA and
a hardware module which enforces the CFG during execu-
tion, described below. The formal machine model for our
CFI policy does not differ significantly from that presented
by Abadi et al. in [3]. However, our design differs in that we
are able to enforce any level of protection without incurring
any extra overhead. Also, we are able to support different
levels of protection as given by a CFG.

Inst. Semantics
cfibr lbl Push lbl to top of LSS. Unique lbl is-

sued per call.
cfiret lbl Pop lbl from LSS and compare (returns

only). Issued on valid return sites.
cfiprj lbl Store lbl in LSR. Must precede indirect

jump.
cfiprc lbl Store lbl in LSR. Must precede call/tail

call.
cfichk lbl Compare lbl with value in LSR. Issued

at indirect jump targets or function en-
tries.

Table 1: Additions to the instruction set architecture

CFI Instruction Semantics and Instrumentation. We
propose an instruction set architecture (ISA) extension as
described in Table 1. This extension enables the dynamic
creation of a stateful CFG and allow precise encoding, record-
ing, and enforcement of a CFI policy. The execution-path
behavior of the program is encoded in the ISA extension,
where dedicated hardware is designed to check both the
forward- and backward-edge state of the program. We val-
idate forward- and backward-edge control-flow using CFI
instructions, each of which encode a label that represents
a valid/source destination pair for branching (call/jump/re-
turn) instructions.

Forward-edge control-flow is encoded by a CFI instruc-
tion, where the label (lbl) is a valid target determined by
the CFG and written to the label state register (LSR).
The label stored in the LSR is never written back to pro-
cess memory, which at minimum prevents modification due
to a memory corruption vulnerability and helps reduce per-
formance overhead. Similar protection can be guaranteed
by a SFI implementation, or via the x86 segment selector
registers, where each label check is initiated by dereferenc-
ing memory, but would incur significant overhead due to the
frequency of branching instructions. Backward-edge control-
flow is encoded by the execution path’s forward-edge behav-
ior as a cfibr lbl, where the label lbl is written to the
label state stack (LSS). In certain scenarios, it may be
necessary to spill the LSS when overflown. We provide de-
tails for handling this condition below.
Addition of Trampolines. Multiple indirect calls may
legitimately target a common function, which would force
all associated cfiprc–cfichk pairs to have the same label.
This condition results in an imprecise CFG which poten-
tially allows an attacker to utilize unintended control flow

fn_a:
cfichk A
...

cfibr A1
cfiprc B
call *reg

cfiret A1
...

cfiprj C
jmp *reg
...

cfichk C
...

cfichk C
...

cfichk C
...

cfibr A2
cfiprc D
call *reg

cfiret A2
...

ret

fn_b:
cfichk B
...
...
...

ret

fn_q:
cfichk Q

insn
...
...
...

ret

_tr_a_q:

cfichk D
jmp fnD + 4

­

®

¯

°

²

±

¬
compare chk lbl with LSR

push lbl A1 to top of LSS
store lbl B in LSR

pop lbl from LSS & compare

store lbl C in LSR

compare chk lbl with LSR

push lbl A2 to top of LSS
store lbl D in LSR

pop lbl from LSS & compare

compare chk
lbl with LSR

compare chk lbl with LSR

A

...

...

...

...

...

B

A1
...
...
...
...

B

...

...

...

...

...

C

...

...

...

...

...

D

A2
...
...
...
...

D

A2
...
...
...
...

D

...

...

...

...

...

¬ ­ ® ¯ ° ± ² LSR

LSS

Figure 1: Tracking of a program’s control flow graph. Matching numbers in the code segment match the LSS/LSR state.

paths in an exploit. We solve this by borrowing the con-
cept of trampolines [25]. Trampolines are issued for every
site that is targeted by multiple functions. Their addition
transforms a call source/destination pair into a unique call
source/trampoline pair. From the trampoline, a direct jump
is issued to the original destination.
CFI Hardware Infrastructure. As mentioned above,
a label state stack is used to record backward-edges to
tightly couple caller/callee pairs and ensure only the most re-
cently executed forward-edge is returned to. A label state

register (LSS) is used to record forward-edges. This is used
as some program semantics, such as case fallthrough, are in-
herently incompatible with a stack-based storage element.
The CFI label data collected in the LSS and LSR is sen-
sitive and therefore isolated from both the process’ address
space and the CPU’s architectural registers. We enforce CFI
through the ISA extensions using a state machine that su-
pervises execution. The state transitions are encoded in the
CFI instructions. If a violation of the CFI policy is detected
a fault is triggered, resulting in the termination of the pro-
cess. The LSS, LSR, and state machine control registers are
mapped to physical memory in our implementation. The
OS kernel maps this area and reserves it as part of MMIO.
This allows the kernel to access and modify their contents.
Operating System Infrastructure. To support inter-
operability with commodity software not protected by our
CFI implementation, we utilize the facilities of the Exe-
cutable and Linkable Format (ELF) to request a custom
loader from the system. This loader is modified to notify
the kernel through the system call interface that the loaded
process is requesting CFI protection. The process control
block (PCB) of the kernel is extended to track which pro-
cesses are instrumented. This allows us to support multi-
processing and shared libraries across unique CFI protected
programs. Upon task switch, the OS enables/disables the
CFI hardware and backs-up/restores the state machine reg-
isters, LSS and LSR for the process using the MMIO inter-
face described above.

If a CFI enabled process creates a clone of itself, or a
thread, the OS also clones the current CFI context in the

clone’s PCB. If the forked process then executes the execve

system call, its CFI entry is cleared in the PCB and CFI
protection is disabled for the newly loaded image. CFI pro-
tection can then be requested by the new process. Process
termination is handled as normal, deallocating the PCB for
the process from kernel space and performing the standard
cleanup tasks.

4. DETAILED OPERATION
We will use Figure 1 to highlight the operation of our CFI

platform. The top portion of the figure shows an instru-
mented code snippet, while the bottom portion shows the
different states of the LSS and LSR during execution.

Execution begins at ¬, where the label A stored in the LSR
is verified against the cfichk A instruction at the function
entry. In our implementation, this check is an XOR oper-
ation using the CFI instruction’s immediate value and the
value stored in the LSR as operands. Prior to executing the
call at ­, a cfibr A1 instruction pushes the label A1 to the
LSS and the cfiprc B instruction updates the entry in the
LSR with B. Pushing A1 to the LSS preserves the backward-
edge state of the call and creates a unique return site for
every executed call in the process. Even in the case where
this call targets multiple functions, we maintain a unique
call/return pair because the return policy is separated from
the call policy, the cfibr lbl for a return and cfiprc lbl

for calls. This allows us to prevent an adversary from tar-
geting any return site, an attack technique employed against
coarse CFI policies.

Once the call instruction is executed, the cfichk B in-
struction at the target’s entry is compared with the label B
stored in the LSR, validating the call target. Upon return at
®, the return instruction targets the cfiret A1 instruction,
which pops the last stored label (A1) from the LSS and per-
forms a comparison. The jmp instruction at ¯ is preceded
with a cfiprj C instruction. This stores the label C in the
LSR much like the cfiprc lbl prior to a function call. Af-
ter the jmp instruction is executed, a check state is entered,
wherein a CFI comparison is performed with a cfichk C

instruction before execution is allowed to continue. An ad-
ditional feature of our hardware-assisted CFI approach is

that it enforces the exact execution of the aforementioned
sequence of instructions, ensuring an attacker is unable to
bypass the CFI checks.

Ideally, all indirect call sites target unique sets of func-
tions, but this is not guaranteed. If two indirect call sites
share a target, then the labels in the preceding cfiprc in-
structions must be the same. This introduces coarseness
into the CFI policy that can be leveraged by an adversary
by redirecting control flow along erroneous, but valid, con-
trol flow edges. We borrow trampolines [25] as a technique
to avoid this behavior. Trampolines act as a springboard
from the caller to its intended callee. The indirect call made
at ° illustrates this technique. In our example, fn_q is
targeted by multiple callers. A trampoline is inserted from
fn_a that is unique to the call site along °. In this case,
the indirect call initiates a check wherein the cfichk D in-
struction is compared with the current label in the LSR (D).
Once the check is verified, a direct jump is made to the
second instruction in the target function along ± to avoid
an invalid state transition. A cfichk Q instruction remains
at the entry to fn_q because one function among all of its
callers does not have to target a trampoline. The return
along ² is executed in the same manner as ®.

5. PERFORMANCE EVALUATION
To evaluate the support of our hardware-enhanced CFI

protection we generated custom build tools, runtime envi-
ronment, and hardware infrastructure. This enabled us to
(i) issue newly added CFI instructions in proper code lo-
cations, (ii) create unique CFI labels for any arbitrary ap-
plication, and (iii) support CFI services within a rich-OS
environment on a hardware platform.
Build tools. We developed an instrumented toolchain based
on the GNU compiler Collection (gcc) version 4.9.2, the
GNU Binary Utilities (binutils) version 2.23 and µClibc
(uClibc) version 0.9.33.2. Routines written in assembly
were manually instrumented.
Hardware Platform. Our design was integrated with the
open-source LEON3 processor distributed by the European
Space Research and Technology Centre [18]. The LEON3 is
a 32-bit processor that implements the SPARC V8 ISA [1],
and is equipped with a 7-stage pipeline, separate instruc-
tion and data caches, memory management unit, hardware
floating-point units, AMBA 2.0 AHB bus, and on-chip debug
support. Modifications were made parallel to the processor
pipeline write-back stage to incorporate the CFI-FSM, LSR,
and LSS in the iu3.vhd module. We also made minor ad-
ditions to the decode stage so that the CFI instructions are
decoded as nop instructions, which ensures single cycle la-
tency as determined by the SPARC V8 ISA [1]. A Xilinx
KC705 evaluation board was used as our test platform.
Hardware-Enhanced CFI Performance Results. We
used the industry standard EEMBC’s CoreMark benchmark
suite [2] for our performance evaluation. This benchmark
suite is designed to test a processor core’s functionality,
namely its pipeline, memory access, and functional unit
operations. The test suite covers usage of code pointers
and provides frequent conditional/unconditional branching,
which provides a representative class of CFI instrumented
code coverage for comparison.

We evaluated several SPEC INT2006 benchmarks, namely
bzip2, libquantum, and h264ref. These are representative
example programs from the group of business, scientific, and

CoreMark bzip2
libquantum

h264ref

0.8

0.9

1

1.1

1.2
Base CFI perf. bin. size ratio

Figure 2: Normalized benchmark results.

problem-solving workloads. We did not evaluate full SPEC
because of resource constraints on the FPGA evaluation
board. The FPGA board provides 1GiB of main memory,
whereas full SPEC requires at least 1GiB of free memory.
Each of the programs evaluated could be run within the
memory constraints imposed by the FPGA platform. The
benchmarks evaluated offer a reasonable tradeoff in build-
time and coverage.

For testing and CFG instrumentation purposes, an IDA
Pro plugin that extends the SPARC processor module bun-
dled with the program was written. This enabled us to auto-
matically instrument backward edges in our binary. Forward
edges for indirect jumps were instrumented by manually ex-
tracting jump table information from the binary and feeding
this information to the plugin. Indirect calls were instru-
mented to match source-target labels. For testing purposes,
we did not instrument trampolines, which relaxed the con-
trol flow graph. We do not believe this significantly affects
our performance results, since the ratio of indirect calls to
total calls for SPEC INT2006 averages 4.1%. Furthermore,
most of these are found within the runtime environment.
The main computational load of the SPEC benchmarks are
in the program itself. Also, as the overhead for our imple-
mentation is mainly due to code size, the full instrumenta-
tion of shared objects will not affect performance.

The results are shown in Figure 2, where the performance
overhead on average is 1.75%, with a worst-case overhead of
3.5% for SPEC benchmarks and 0.5% for CoreMark. The
average code size overhead is 13.5% across both SPEC and
CoreMark. We should note that this overhead is directly
related to the number of calls and indirect jumps in the
binaries.

LEON3 LEON3-CFI % Change
comb. 8759.073 8996.952 2.72
seq. 16921.416 17143.284 1.31
total 25680.589 26140.236 1.78

Table 2: Evaluation of area overhead with CFI implemented
on a LEON3 processor.

Area and Timing Overhead. Our hardware-enhanced
CFI LEON3 core was synthesized with Design Compiler H-
2013.03-SP5-3 using the Synopsys 32/28 nm generic library,
a teaching library created for microelectronic design edu-
cation. We evaluated both area and maximum clock rate.
In general, smaller area ensures better resource usage and
lower cost requirements. A faster clock ensures our hard-
ware will not be on the critical path or violate existing tim-
ing constraints and stall the pipeline. Table 2 displays the
area overhead caused by extending the pipeline with full CFI
protection. The total area overhead is a negligible 1.78%.

We also evaluated the maximum frequency at which our

CFI-FSM, LSS, and LSR implementation could be clocked
as a stand alone module and determined using Design Com-
piler timing scripts that our additions could be clocked up
to 3 GHz without incurring timing violations.

6. SECURITY EVALUATION
The main goal of our hardware-enhanced CFI platform

is to prevent code-reuse attacks that leverage either invalid
backward edges, forward edges, or full functions. These in-
clude attacks that corrupt return addresses [19], code point-
ers used in indirect calls/jumps [8, 7], or reuse entire func-
tions [20, 20, 23]. Finally, we must prevent runtime attacks
that bypass CFI while adhering to its policies [6].

For our security discussion, we consider the adversary
model and assumptions mentioned in Section 2. Due to
page constraints we can not include a full example of a CRA,
however, we do evaluate a prototype exploit and refer the
interested reader to [19, 8, 7, 20, 23] for details. We assume
the most precise CFG has been given.
Backward-Edge Code Reuse attacks. We prevent back-
ward edge runtime attacks described here, and in general,
because they require redirection to invalid call-preceded in-
structions or arbitrary code locations. This is in direct vio-
lation of our method of ensuring precise state preservation.
Each call instruction is instrumented with a unique label
that encodes the execution path’s state information with a
cfibr lbl/cfiret lbl instruction pair. A return instruc-
tion is only allowed to target a cfiret instruction if it is the
most recent in the execution path history, i.e., it is a valid
state. This is determined by checking the label at the top
of the LSS against cfiret lbl at the return target. Only
cfiret instructions may be targeted by returns.
Forward-Edge Code Reuse Attacks. We prevent for-
ward edge runtime attacks described above, and in general,
because their reliance on either an arbitrary location or to
an invalid call/jump target. Only valid indirect call/jump
targets are allowed as given by a program’s CFG. This pre-
vents the attacker from redirecting control-flow to arbitrary
locations in program code. Each benign call/jump target
is instrumented with a cfipr* lbl/cfichk lbl pair that
encodes its intended targets. Redirection to an invalid tar-
get is prevented when the check against the stored label in
the LSR fails. Redirection to an arbitrary location in the
application’s code space will not target cfichk instructions.

While we did not port our instruction extensions to a JIT
compiler in this work, our hardware-enhanced CFI archi-
tecture can support protection against dynamic code-reuse
attacks if a JIT compiler were modified. Dynamic CRAs,
such as JIT-ROP, dynamically determine gadgets on exe-
cutable memory pages [21]. These attacks exploit backward
and forward edges in the same way we have described herein
and are therefore prevented by our platform.
Full-Function Code-Reuse Attacks. Our hardware en-
hanced CFI prevents full-function reuse attacks, such as
COOP [20], because they rely on redirecting control-flow
to an invalid indirect call/jump targets. Valid branch tar-
gets are instrumented with cfipr* lbl/cfichk lbl pairs.
If the class hierarchy is correctly and precisely covered in
the CFG, then only benign control-flow targets are encoded
with matching labels. For instance, Google compiler exten-
sions can be leveraged to extract such precise CFG infor-
mation [22]. Redirection to an invalid control-flow target is
prevented by checking that the label currently in the LSR

matches the cfichk lbl label.
Control-Flow Bending. A recent attack called control-
flow bending (CFB) demonstrates code-reuse attacks are
possible while adhering to fully precise static CFI [6]. In a
CFB attack, an attacker may corrupt a code pointer to call
a valid function entry, where a vulnerability exists allowing
to corrupt a return address. The corrupted return address
may then be used to return to a call-preceded site. CFB ex-
ploits any function with a vulnerability that can overwrite
its own return address and adheres to CFI by returning to
any location where this function was called.

We prevent CFB attacks since they require redirection
to any call-preceded slot in a stateless CFI protection sys-
tem. We offer precise, stateful CFI so that only the most
recently executed forward-edge transition may be returned
to. As described above, this is ensured with a unique cfibr

lbl/cfiret lbl instruction pair. A return instruction is
only allowed to target a call-preceded slot if it is the most
recent in the execution path history.
Security of Label State Stack/Register. Even though
it is not a strict security requirement, our design only allows
CFI instructions to access the LSS and LSR from userspace
and avoids CFI data being loaded to main memory. Recall
the recent CFI attack that corrupts offset pointers referenc-
ing a CFI jump table spilled to the program’s stack due to
efficiency reasons [10]. We prevent this attack, and similar
attacks that corrupt or disclose CFI data, by storing CFI-
related data such as labels in a dedicated memory, the LSS
and LSR, and backing them into kernel memory when nec-
essary.
Sample Exploit. As a baseline test of our protection, we
developed a program that exploits a buffer overflow in the
stack, thus overwriting the return address of a function. We
pointed this address to a call-preceded site to implement a
loop, attempting to adhere to a coarse-grained CFI policy.
Our system was capable of detecting this violation. We also
redirected the return to arbitrary return sites with equal re-
sults. Our exploit also allowed us to change the target of
an indirect call in the program’s code to an arbitrary loca-
tion. The violation on control flow was detected whenever
an invalid location, function or otherwise, was targeted.

7. RELATED WORKS
In the original CFI work, Abadi et al. [3] propose a label-

based mechanism using a software based implementation.
Unfortunately, software-based instrumentation induces too
high performance penalties. A number of coarse-grained
CFI approaches aim at tackling the performance overhead
with some solutions building on heuristics or relaxing the
CFI scheme [17, 9, 24]. However, a number of recent attacks
against CFI demonstrates that such policies are bypassable
[6, 20]. In contrast, our hardware-based CFI scheme allows
for fine-grained policies that resist these attacks while still
being highly efficient.

Architectural fine-grained CFI support, as proposed by [5],
introduced hardware support for fine-grained CFI protection
via integrity checking of control-flow graph (CFG) encoding.
For forward-edge protection, Budiu et al. [5] leverage a CFI
label register similar to our LSR. However, for backward-
edge protection, they assume a shadow stack which incurs
more performance overhead compared to our LSS. Similarly,
Davi et al. [12] introduce hardware-assisted CFI instructions
but only focus on CFI backward edges, and bare metal code.

In contrast, we support highly efficient CFI for shared li-
braries, multitasking, and support of legacy code.

8. CONCLUSION AND FUTURE WORK
Within this paper we present the design and implemen-

tation of a lossless, scalable and highly efficient hardware-
enhanced CFI platform. The new framework leverages dedi-
cated CFI instructions to losslessly enforce any CFG and di-
verse CFI policies within our model. Our hardware-enhanced
CFI significantly lowers the performance overhead when ap-
plied to several SPEC INT2006 and CoreMark benchmarks.
Further, if provided with a precise CFG we show compre-
hensive protection from many traditional and recently pro-
posed code-reuse attacks. The goal of our work is the design
and implementation of a hardware-enhanced CFI framework
that can losslessly support CFI policies with varying preci-
sion. Our future work will investigate both CFG generation
and extend support to additional instruction set architec-
tures (ISAs).

9. ACKNOWLEDGEMENTS
We would like to extend our gratitude to Christopher

Liebchen for his input at the start of this project. This
work has been co-funded by the German Science Founda-
tion as part of project S2 within the CRC 1119 CROSSING
and the European Union’s Seventh Framework Programme
under grant agreement No. 609611, PRACTICE project.

10. REFERENCES
[1] SPARC International Inc. SPARC V8 processor.

http://www.sparc.org.
[2] The embedded microprocessor benchmark consortium:

EEMBC benchmark suite. http://www.eembc.org.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity: Principles, implementations,
and applications. In Proceedings of the 12th ACM
Conference on Computer and Communications Secu-
rity, CCS’05, 2005.

[4] W. Arthur, S. Madeka, R. Das, and T. Austin. Locking
down insecure indirection with hardware-based control-
data isolation. In Proceedings of the 48th International
Symposium on Microarchitecture, pages 115–127. ACM,
2015.

[5] M. Budiu, U. Erlingsson, and M. Abadi. Architectural
support for software-based protection. In Proceedings of
the 1st Workshop on Architectural and System Support
for Improving Software Dependability, ASID’06, pages
42–51, 2006.

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and
T. R. Gross. Control-flow bending: On the effective-
ness of control-flow integrity. In Proceedings of the 24th
USENIX Security Symposium, 2015.

[7] N. Carlini and D. Wagner. ROP is still dangerous:
Breaking modern defenses. In Proceedings of the 23rd
USENIX Security Symposium, 2014.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented pro-
gramming without returns. In Proceedings of the 17th
ACM Conference on Computer and Communications
Security, CCS’10, 2010.

[9] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng.
ROPecker: A generic and practical approach for de-
fending against ROP attacks. In Proceedings of the 21st
Annual Network and Distributed System Security Sym-
posium, NDSS’14, 2014.

[10] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen,
M. Negro, C. Liebchen, M. Qunaibit, and A.-R.
Sadeghi. Losing control: On the effectiveness of control-
flow integrity under stack attacks. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 952–963. ACM, 2015.

[11] T. H. Dang, P. Maniatis, and D. Wagner. The per-
formance cost of shadow stacks and stack canaries. In
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, pages
555–566. ACM, 2015.

[12] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koe-
berl, D. Sullivan, O. Arias, and Y. Jin. HAFIX:
Hardware-Assisted Flow Integrity Extension. In Pro-
ceedings of the 52nd Annual Design Automation Con-
ference, page 74. ACM, 2015.

[13] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection. In Proceedings
of the 23rd USENIX Security Symposium, 2014.

[14] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portoka-
lidis. Out of control: Overcoming control-flow integrity.
In Proceedings of the 35th IEEE Symposium on Security
and Privacy, SP’14, 2014.

[15] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev,
and N. Abu Ghazaleh. Signature-based protection from
code reuse attacks. Computers, IEEE Transactions on,
64(2):533–546, 2015.

[16] Microsoft. Data execution prevention (DEP), 2006.
[17] V. Pappas, M. Polychronakis, and A. D. Keromytis.

Transparent ROP exploit mitigation using indirect
branch tracing. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[18] G. Research. LEON3 synthesizable processor.
[19] R. Roemer, E. Buchanan, H. Shacham, and S. Sav-

age. Return-oriented programming: Systems, lan-
guages, and applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1–2:34, 2012.

[20] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit object-oriented pro-
gramming: On the difficulty of preventing code reuse
attacks in C++ applications. In Proceedings of the 36th
IEEE Symposium on Security and Privacy, SP’15, 2015.
To appear.

[21] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address space
layout randomization. In Proceedings of the 34th IEEE
Symposium on Security and Privacy, SP’13, 2013. Re-
ceived the Best Student Paper Award.

[22] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,

Ú. Erlingsson, L. Lozano, and G. Pike. Enforcing
forward-edge control-flow integrity in GCC & LLVM.
In Proceedings of the 23rd USENIX Security Sympo-
sium, 2014.

[23] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning. On the expressiveness of return-into-
libc attacks. In Proceedings of the 14th International
Conference on Recent Advances in Intrusion Detection,
RAID’11, 2011.

[24] F. Yao, J. Chen, and G. Venkataramani. Jop-alarm:
Detecting jump-oriented programming-based anomalies
in applications. In Computer Design (ICCD), 2013
IEEE 31st International Conference on, pages 467–470.
IEEE, 2013.

[25] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A sandbox for portable, untrusted x86
native code. In Proceedings of the 30th IEEE Sympo-
sium on Security and Privacy, SP’09, 2009.

[26] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. Mc-
Camant, D. Song, and W. Zou. Practical control flow
integrity & randomization for binary executables. In
Proceedings of the 34th IEEE Symposium on Security
and Privacy, SP’13, 2013.

