
POSTER: Control-Flow Integrity for Smartphones

Lucas Davi1, Alexandra Dmitrienko2, Manuel Egele3, Thomas Fischer4,
Thorsten Holz4, Ralf Hund4, Stefan Nürnberger1, Ahmad-Reza Sadeghi1,2

1

Technische Universität Darmstadt, Germany
2

Fraunhofer SIT, Darmstadt, Germany
3

University of California, Santa Barbara, USA
4

Ruhr-Universität Bochum, Germany

ABSTRACT
Despite extensive research over the last two decades, run-
time attacks on software are still prevalent. Recently, smart-
phones, of which millions are in use today, have become an
attractive target for adversaries. However, existing solutions
are either ad-hoc or limited in their effectiveness.

In this poster, we present a general countermeasure against
runtime attacks on smartphone platforms. Our approach
makes use of control-flow integrity (CFI), and tackles unique
challenges of the ARM architecture and smartphone plat-
forms. Our framework and implementation is efficient, since
it requires no access to source code, performs CFI enforce-
ment on-the-fly during runtime, and is compatible to mem-
ory randomization and code signing/encryption. We chose
Apple iPhone for our reference implementation, because it
has become an attractive target for runtime attacks. Our
performance evaluation on a real iOS device demonstrates
that our implementation does not induce any notable over-
head when applied to popular iOS applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

1. INTRODUCTION
Although runtime attacks on software are known for about

two decades, they are still one of the major threats we need
to deal with today. Such attacks compromise the control-
flow of a vulnerable application during runtime based on
diverse techniques (e.g., stack smashing or heap overflows).
Many current systems offer a large attack surface, because
they still deploy large amounts of native code implemented
in unsafe languages such as C/C++. In particular, modern
smartphones have recently become an appealing attack tar-
get (e.g., [11, 8]).

A general approach to mitigate runtime attacks is the
enforcement of control-flow integrity (CFI) [1]. This tech-
nique asserts the basic safety property that the control-flow
of a program follows only legitimate paths determined in
advance. If an adversary hijacks the control-flow, CFI en-
forcement can detect this divergence and prevent the attack.

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

In contrast to many proposed ad-hoc solutions, CFI does not
only consider a specific attack, but instead provides a gen-
eral solution against control-flow attacks. Surprisingly, and
to the best of our knowledge, there exist no published CFI
approach for smartphone platforms.

In this poster, we present the design of a CFI enforcement
framework for smartphone platforms. Specifically, we focus
on the ARM architecture since it is the standard platform
for smartphones. The implementation of CFI on ARM is
often more involved than on desktop PCs due to the follow-
ing subtle architectural differences: (1) the program counter
is a general-purpose register, (2) the processor may switch
the instruction set at runtime (3) there are no dedicated re-
turn instructions, and (4) control-flow instructions may load
several registers as a side-effect.

Although our solution can be deployed to any ARM based
smartphone, we chose Apple iPhone (iOS) for our reference
implementation because of three challenging issues: First,
iOS is a popular target for runtime attacks due to its use
of the Objective-C programming language. Second, iOS is
closed-source: We can neither change the actual operating
system nor can we access the source code of an application.
Third, applications are encrypted and signed by default.

Contribution.
To the best of our knowledge, we present the first gen-

eral CFI enforcement framework for smartphone platforms.
Our solution tackles unique challenges of smartphones, does
not require access to source code, and can be transparently
enabled for individual applications. Moreover, we launched
popular iOS applications as well as computationally inten-
sive algorithms under the protection of our CFI framework,
and can show that our implementation efficiently handles
them. To this end, we first implemented a system to re-
cover the control-flow graph (CFG) of a given iOS applica-
tion in binary format. Based on this information, we per-
form control-flow validation routines that are used during
runtime to check if instructions that change the control flow
are valid. Our prototype is based on library injection and
in-memory patching of code which is completely compatible
to memory randomization and code signing.

2. PROBLEM DESCRIPTION
Figure 1 depicts a sample control-flow graph (CFG) of

an application. Basically, the CFG represents valid execu-
tion paths of a program. It consists of basic blocks (BBLs),
instruction sequences with a single entry and a exit instruc-
tion (e.g., return, call, or jump), where the exit instruction



entry 
ins, ins, ins, … 
exit 

BBL 1 

entry 
ins, ins, ins, … 
exit 

BBL 3 

entry 
ins, ins, ins, … 
exit 

BBL 2 

entry 
ins, ins, ins, … 
exit 

BBL 4 

Shellcode 

Malicious Code 

Instruction Sequences 
Library Functions 

Library Code 

entry 
ins, ins, ins, … 
exit 

BBL 5 

1 

2 

Figure 1: Schematic overview of control-flow attacks

enables the transition from one BBL to another BBL. Any
attempt of the adversary to subvert the valid execution path
can be represented as a deviation from the CFG, which re-
sults in a so-called control-flow or runtime attack.

In particular, Figure 1 illustrates two typical control-flow
attacks at BBL3: (1) a code injection attack, and (2) a code
reuse attack. Both attacks have in common that the control-
flow is not transferred to BBL 5, but instead to a piece
of code not originally covered by the CFG. A conventional
control-flow attack is based on the injection of malicious
code into the program’s memory space [2]. However, modern
operating systems (such as iOS) enforce the W⊕X (Writable
xor Executable) security model that prevents an adversary
from executing injected code. On the other hand, code-
reuse attacks such as return-oriented programming [3, 7, 9,
10] bypass W ⊕X by redirecting execution to code already
residing in the program’s memory space.

Recent news underline that control-flow attacks are a se-
vere problem on smartphones. In particular, control-flow at-
tacks can be utilized to steal the user’s SMS database [11],
to open a remote reverse shell [8], or to launch a jailbreak [5].
Unfortunately, there exist no general countermeasure to de-
feat such attacks on smartphones.

3. DESIGN OF OUR CFI FRAMEWORK
In this section we introduce the high-level idea of our CFI

framework for smartphone platforms. Our general architec-
ture is shown in Figure 2. Although the depicted design
applies in general to all CFI solutions, our design requires
a number of changes, mainly due to (1) the architectural
differences between ARM and Intel x86, (2) the missing bi-
nary rewriter and automatic graph generation for ARM, and
(3) the specifics of smartphone operating systems.

From a high-level point of view, our system is separated
in two different phases: static analysis and runtime enforce-
ment. The static tools perform the initial analysis of the
compiled iOS binary file: we first decrypt and disassemble
the binary and then extract the control-flow graph (CFG)
and all meta information necessary for rewriting a particular
iOS binary in the enforcement phase. We monitor the ap-
plication at runtime by applying our CFIKit shared library
that rewrites the binary at load-time and enforces control-
flow restrictions while the application executes.

3.1 Control-Flow Graph Generation
Since no binary instrumentation framework for ARM ex-

ist we developed own techniques to accurately generate the
CFG. First, we disassemble the application binary (step 1).

In our case, this is impeded by the fact that iOS executables
are encrypted. We thus obtain the unencrypted code of a bi-
nary through process dumping [6]. The decrypted and disas-
sembled iOS binary is afterwards persistently stored (step 2).
Subsequently, we generate the CFG and the rewriting infor-
mation for the runtime components (step 3 and 4). The
latter contains information on where and how the rewriting
engine should dispatch the application’s code to its valida-
tion routines. To generate the CFG we developed static
tools that calculate the targets of indirect jumps and calls.

3.2 Load-Time Module: Binary Rewriting
The binary rewriting engine is responsible for binding ad-

ditional code to the binary (step 5) that checks if the appli-
cation follows a valid execution path of the CFG. Typically,
one replaces all branches in the binary with a number of new
instructions that enforce the control-flow checks [1]. How-
ever, replacing one instruction with multiple instructions re-
quires memory adjustments, because all instructions behind
the new instructions are moved downwards.

Due to the limited possibilities to change iOS binaries
(code signing) and the missing full binary rewriter, we opted
for the following approach: Based on the extracted rewrit-
ing information we replace all relevant branches with a single
instruction, the so-called trampoline instruction. The tram-
poline instruction redirects execution to our CFIKit library.

3.3 Runtime Module: CFI Enforcement
The key insight of CFI is the realization of control-flow

validation routines. These routines have to validate the tar-
get of every branch (step 6) to prevent the application from
targeting a BBL beyond the scope of the CFG and the cur-
rent execution path. Obviously, each branch target requires
a different type of validation. While the target address of an
indirect jump or call can be validated against a list of valid
targets, the validation of function returns require special
handling because return addresses are dynamic and cannot
be predicted ahead of time. To address this issue, CFIKit
reuses the concept of shadow stacks that hold valid copies of
return addresses [4], while the return addresses are pushed
onto the shadow stacks when function calls occur.

A very challenging issue on iOS are method calls to an
Objective-C object. These are resolved to a call to the
generic message handling function called objc_msgSend. The
name of the actual method (called selector) to be called is
given as a parameter. While the traditional CFI approach
omits the handling of direct function calls, our CFIKit has to
consider direct calls to Objective-C objects. Otherwise, an
adversary might mount an attack by modifying the method
parameters of objc_msgSend, thus diverting the control-flow
to an invalid method. We built upon PiOS [6] and use it to
generate call graph information for objc_msgSend calls.

4. IMPLEMENTATION
Our prototype implementation targets iOS 4.3.2. We de-

veloped the static analysis tools with the IDC scripting lan-
guage featured by the well-known disassembler IDA Pro 6.0.
Moreover, we used Xcode 4 to develop the CFIKit library.

Our IDC scripts extract rewriting information and gener-
ate the CFG, and store both in the application bundle. To
force the loading of CFIKit into every application started
though the touchscreen, we set the environment variable
DYLD_INSERT_LIBRARIES for the SpringBoard process. This



Unprotected and 
encrypted iOS Binary 

Reverse-Engineering 
Tools and Debuggers 

Decryption 

Disassembling 

Unprotected plain   
iOS Binary 

Control-Flow Graph 
Generator 

Control-
Flow Graph 

CFIKit 

CFI-Protected   
iOS Binary 

ins 1 

jump CFIKit 

1 

2 

3 4 

6 5 Generate Rewriting 
Information 

Patchfile 

Load-Time Module Runtime Module 

Binary Rewriting CFI Enforcement 

Static Analysis Runtime Enforcement 

Unprotected and 
encrypted iOS Binary 

Unprotected      
plain iOS Binary 

Control-
Flow Graph 

Patchfile 

10011… 

01100… 

ins 1 

jump A 

Figure 2: Control-flow integrity for iOS applications

ensures that the loader always loads CFIKit before any other
dependency of the actual program binary. Note that our
solution only requires a jailbreak for performing these two
tasks. Hence, our solution can be easily integrated into Ap-
ple’s software development cycle.

Once CFIKit has been initialized, it rewrites the applica-
tion binary on-the-fly. It mainly replaces branch instruc-
tions with trampoline instructions that target a piece of
optimized assembler code, namely the trampoline, that is
used as a bridge between the application and our CFIKit
library. Specifically, we allocate dedicated trampolines for
each relevant branch in the program, where each trampo-
line (1) saves the current execution state, (2) invokes the
appropriate CFIKit validation routine, and (3) resets the
execution state and issues the original branch. Because of
step (3), we guarantee that all registers are loaded correctly,
even if the branch loads several registers as a side-effect.
Moreover, depending on the replaced branch instruction, we
allocate a THUMB or ARM trampoline to ensure the correct
interworking between the two instruction sets.

Note that we in particular faced the following challenge:
most parts of the program code are compiled in 16 Bit
THUMB mode. Nevertheless, direct branches require 32 Bits
in THUMB mode. Hence, a 16 Bit indirect branch has to
be replaced with a 32 Bit trampoline instruction. To solve
this issue, we replace 32 Bits in the program text (thereby
overwriting 2 Thumb instructions). To preserve the pro-
gram’s semantics, we execute the instruction that precedes
the branch at the beginning of our trampolines.

However, this approach only works if the mentioned in-
struction does not reference the program counter or is also
a branch. In such scenarios, we use an entirely different
approach: upon initialization, we register an iOS exception
handler for illegal instructions. The trampoline instruction
is then simply an illegal instruction that will trigger our
exception handler. Since this technique induces additional
performance overhead we only use it for exceptional cases.

Evaluation.
We applied CFIKit to a quicksort program that frequently

asks for a control-flow check. Even in this worst-case sce-
nario CFIKit performs quite well and needs only 81ms to
run a quicksort for n = 10, 000 (see Table 1). Moreover, we
successfully applied CFIKit to the iOS Facebook application
code (2.3MB containing more than 33,647 function calls and
5,988 returns) and did not notice any performance penalties
while executing the application. Further, our rewriting en-
gine only required 0.5s to rewrite the entire application.

n Without CFIKit With CFIKit
100 0.047 ms 0.432 ms
1000 0.473 ms 6.186 ms
10000 6.725 ms 81.163 ms

Table 1: Measurement results for quicksort

5. CONCLUSION
In this poster, we introduced a general countermeasure

against runtime attacks on smartphone platforms. We pre-
sented a complete control-flow integrity (CFI) framework for
the closed-source Apple iOS. Our solution requires no access
to source code, rewrites binaries on-the-fly, and performs
control-flow checks at runtime. Our performance measure-
ments demonstrate that our framework is efficient for com-
putationally intensive tasks and popular iOS applications.

6. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-Flow Integrity: Principles, Implementations,
and Applications. In ACM CCS, 2005.

[2] Aleph One. Smashing the Stack for Fun and Profit.
Phrack Magazine, 49(14), 1996.

[3] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
Programming Without Returns. In ACM CCS, 2010.

[4] T. Chiueh and F.-H. Hsu. RAD: A Compile-Time
Solution to Buffer Overflow Attacks. In ICDCS, 2001.

[5] comex. http://www.jailbreakme.com//#.

[6] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In
NDSS, 2011.

[7] R. Hund, T. Holz, and F. C. Freiling. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In USENIX Security Symposium, 2009.

[8] M. Keith. Android 2.0-2.1 Reverse Shell Exploit, 2010.
http://www.exploit-db.com/exploits/15423/.

[9] T. Kornau. Return Oriented Programming for the
ARM Architecture. Master’s thesis, Ruhr-University
Bochum, 2009.

[10] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc Without Function Calls (on
the x86). In ACM CCS, 2007.

[11] R.-P. Weinmann and V. Iozzo. Ralf-Philipp
Weinmann & Vincenzo Iozzo own the iPhone at
PWN2OWN, 2010.


