POSTER: The Quest for Security
against Privilege Escalation Attacks on Android

Sven Bugiel’, Lucas Davif, Alexandra Dmitrienko®, Thomas Fischer?,
Ahmad-Reza Sadeghitt, Bhargava Shastry®

TSystem Security Lab/CASED
Technische Universitat Darmstadt
Darmstadt, Germany

ABSTRACT

In this paper we present the design and implementation of
a security framework that extends the reference monitor of
the Android middleware and deploys a mandatory access
control on Linux kernel (based on Tomoyo [9]) aiming at
detecting and preventing application-level privilege escalation
attacks at runtime. In contrast to existing solutions, our
framework is system-centric, efficient, detects attacks that
involve communication channels controlled by both, Android
middleware and the Linux kernel (particularly, Binder IPC,
Internet sockets and file system). It can prevent known
confused deputy attacks without false positives and is also
flexible enough to prevent unknown confused deputy attacks
and attacks by colluding applications (e.g., Soundcomber [11])
at the cost of a small rate of false positives.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection

General Terms: Security

1. INTRODUCTION

Google Android [1] is a modern software platform for
smartphones with rapidly expanding market share [8]. The
software stack of Android includes Linux kernel, middleware
and an application layer. Android devices run applications
that are distributed through the Android market. Google’s
application distribution model is not very restrictive and
allows anyone who has registered as an Android developer
(and paid $25 fee) to publish apps. This implies that some
of these apps are very likely to be malicious.

To mitigate the malware threat, Android deploys security
mechanisms, such as application sandboxing and a permis-
sion framework. The standard Android permission system
limits access to sensitive data (SMS, contacts, etc.), resources
(battery or log files) and to system interfaces (Internet con-
nection, GPS, GSM). Each application at installation time
requests permissions (from the user), and, if granted, An-
droid reference monitor enforces permission checks at runtime.
These measures are intended to confine damage imposed by
malware within the privilege boundaries of an application
sandbox.

However, as it has been shown [4, 7, 5], Android’s security
model is vulnerable to application-level privilege escalation

Copyright is held by the author/owner(s).
CCS’11, October 17-21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

tSystem Security Lab
Ruhr-Universitat Bochum
Bochum, Germany

$Fraunhofer SIT
Darmstadt, Germany

attacks. Privileges assigned to applications at install time
can be escalated at runtime. This implies that in contrast to
the general belief the damage imposed by Android malware
is not limited to the application’s sandbox.

Application-level privilege escalation attacks. The
recent privilege escalation attacks range from unauthorized
phone calls [6] and text messages [4] to illegal downloads of
malicious files [10] and context-aware voice recording [11]. In
most scenarios, an application under control of the adversary
escalates privileges by misusing a so-called confused deputy,
a privileged application that exposes privileged interfaces for
public use and does not check if the caller has appropriate per-
missions. Resent research results show that confused deputy
vulnerabilities are common in third party applications [4, 7] as
well as in Android default apps (web-browser [10], Phone [6],
DesckClock and Settings [7]). Further, a very recent privilege
escalation attack [11] demonstrates a severe attack scenario
where two malicious applications collude in order to merge
their permissions to get a permission set which might not be
approved by the user when requested by a single app.

Remarkably, all application-level privilege escalation at-
tacks occur by means of communication with other appli-
cations. Standard mechanism for communication among
applications is a Binder-based lightweight Inter-Process Com-
munication (IPC) provided by Android middleware. However,
applications can also communicate through other channels
that bypass the middleware, e.g., by sharing files or by es-
tablishing a local network connection [4]. Further, colluding
applications can communicate directly with each other, or
indirectly, by using another application or component in
between. In the latter case, a mediating component can
provide either covert (e.g., via a power manager or screen
settings [11]) or overt (e.g., via a contacts database) channels
to communicating applications.

Very recent security extensions to Android, QUIRE [5] and
IPC Inspection [7], aim to address confused deputy attacks
that occur over Binder IPC. QUIRE tracks the IPC call
chain and recognizes the initiator of a security-critical request,
giving the possibility to a potential confuse deputy to validate
privileges of the call originator. This approach has the same
deficiencies as the basic Android system due to the fact that
the application developer is obliged to enforce security checks,
thus developers without appropriate skills in security will
most likely continue to produce vulnerable applications. The
key insight of IPC Inspection is to reduce the permissions of
an application when it receives an input from a less-privileged
one. This approach requires the creation and maintenance of

multiple application instances with different sets of privileges,
and thus seems to be inefficient. Moreover, IPC Inspection
may result in false positives and requires to overprivilege
applications to tackle this issue. Also, neither IPC Inspection
nor QUIRE are able to deal with confused deputy attacks
launched via channels that bypass Binder IPC, e,g., attacks
over socket connections [4].

Our goal and contributions. We aim for a security
framework that addresses privilege escalation attacks and
considers the above mentioned problems. In particular, we
require an efficient and system-centric monitoring that con-
trols communication channels in Android’s middleware and
in the Linux kernel, and tackles the known confused deputy
attacks without false positives, but is also flexible enough to
cover future privilege escalation attacks. In particular, our
contributions are the following;:

e We present the design and implementation of a security
framework which extends the Android’s reference mon-
itor concept at both middleware and kernel level, that
monitors communication links between applications
and verifies them against rules defined in a security
policy. Our framework is system-centric, efficient and
can prevent known confused deputy attacks without
false positives.

e The framework allows to cover unknown confused deputy
attacks and attacks by colluding applications that com-
municate either directly or indirectly. Particularly, the
attacks of Soundcomber [11] can be prevented that rely
on indirect communication of colluding malicious apps
over covert channels in Android system components.
However, prevention of unknown attacks may have
false positives, thus would require a trade-off between
security and usability.

2. FRAMEWORK DESCRIPTION

Our framework performs runtime monitoring and analysis
of communication links across applications in order to prevent
potentially malicious communication based on the defined
system-centric security policy.

State of Android system is represented as a graph, where
vertices are application sandboxes, world-wide readable files*
and Internet sockets. Edges in the graph show granted IPC
calls, allowed file access or allowed socket connections.

Our extension is invoked when applications establish IPC
connection, access files or connect to sockets. The framework
validates whether the requested operation can potentially
be exploited for a privilege escalation attack (based on the
underlying security policy).

Architecture.

The architecture of our framework is shown in Figure 1.
Generally, it builds upon XManDroid [3] — a framework that
extends Android middleware, and enhanced with a kernel-
level module?. In the following, we will explain components
of our architecture and their interaction in the following use

!By default, all files created by applications are stored in
private directory and inaccessible by other applications. How-
ever, files can be explicitly marked as world-wide readable
to allow external access

2QOur implementation integrates Tomoyo [9] Linux extension
to enable kernel-level mandatory access control

cases: (i) IPC call handling (steps 1-11), (ii) application
(un-)installation (steps a-b), (iii) file/socket creation (steps
A-C), (iv) file/socket read/write access (steps i-iv), and (iv)
policy installation (steps I-III).

Application B

Application A
Application Layer

Android
Permissions

File/[Socket

File/| Socket

Decision
Engine

Kernel MAC

File System/Internet Sockets

. New components

() unmodified components () Modified components

Figure 1: Framework architecture

IPC call handling. At runtime all IPC calls are inter-
cepted by Android ReferenceMonitor (step 1). It obtains infor-
mation about permissions from AndroidPermissions database
(step 2) and validates permission assignments. If Reference-
Monitor grants access, it invokes DecisionEngine (step 3) to
ensure the communication also complies to a system security
policy. DecisionEngine first requests a record corresponding
to this particular IPC call from PolicyDecisions (step 4). If
the record is found, it means that a previously made de-
cision can be applied. Otherwise, DecisionEngine makes a
fresh decision which requires inputs from AndroidPermissions
(step 5), SystemPolicy (step 6) and SystemView (step 7). The
resulting decision is stored in PolicyDecisions (step 8), and if
it is positive, SystemView is updated (step 9) reflecting that
a communication link exists among applications A and B.
Further, DecisionEngine informs ReferenceMonitor about the
decision it has made (step 10), and ReferenceMonitor either
allows (step 11) or denies the IPC call.

Application (un-)installation. Installation procedure
involves a standard PackageManager of Android. Typically
it extracts application permissions from the Manifest file
(included in the application installation package) and stores
them in a system database AndroidPermissions (step a). Ad-
ditionally, PackageManager adds a new application in Sys-
temView (step b).

Upon application un-installation, PackageManager revokes
permission labels granted to the un-installing application
from the AndroidPermissions database (step a) and removes
this application from SystemView (step b).

File/socket creation/deletion. When an application
requests to create or delete a world-wide readable file, the
request is intercepted by KernelMAC - a mandatory access
control (MAC) module deployed in Linux kernel (step A).
KernelMAC updates SystemView (inserts/deletes a vertex
which corresponds to a file/socket in the system graph) (step
B) and performs the requested operation (step C).

File/socket read/write access. Read/write access to a
wold-wide readable file or an Internet socket is intercepted by
KernelMAC. Before access is granted, KernelMAC asks for a
decision DecisionEngine. DecisionEngine runs a policy making
algorithm on the graph (steps 4-9) and returns a decision
(step iii). If decision is positive, access is granted (step iv).

Policy installation. Policylnstaller writes/updates the
system policy rules to the SystemPolicy database (step I).
Next, it removes all decisions previously made by Decisio-
nEngine, as those may not comply to a new system policy
(step II). Also, SystemView component is reset into a clean
state (step III). Note, that SystemView state is only reset
upon update of SystemPolicy and persist across reboots.

3. POLICY

Policy consists of rules that define undesirable commu-
nication patterns among applications. Each rule describes
application properties, a communication link among them
and a decision to be made. Application properties include
permissions, a trust level and (optionally) a name. Two trust
levels are distinguished: untrusted (for third party apps) and
trusted (for system applications). System apps are trusted
not to be malicious, however, they may suffer from confused
deputy vulnerabilities and design deficiencies that allow ma-
licious applications to establish indirect communication links.
Description of communication links includes the type of com-
munication to be considered (direct or indirect) and may
(optionally) include description of data to be transmitted over
the channel. Decision has the following options: “accept”,
“deny” or “ask the user”

Policy rules are expressed in a policy language which is in-
spired by VALID [2]. In the following we provide an example
of the policy rule to defeat an attack [10]. The attack sce-
nario is like following: A malicious app without INTERNET
permission launches a web-browser to download archived
and application package files. The following rule prevents
applications without INTERNET permission from invoking
web-browser to download “.zip” and “.apk” files.

Section types:

A,B : Applications

L : Communication Link

Section goals:

goal ProtectBrowser.decision(deny) := L.hasSender(A) A

L.hasReceiver(B) A L.type(direct) A

(L.hasData(*.zip) V L.hasData(*.apk))

A.trustLevel(untrusted) A —(A.hasPermision(INTERNET)) A

B.trustLevel(trusted) A B.name(Browser) A

B.hasPermission(INTERNET)

4. EVALUATION

We successfully evaluated our framework against attacks
published in [6, 4, 10, 7, 11]. Moreover, we performed auto-
mated tests to evaluate performance. The average runtime
overhead is 13.126ms in case of an uncached policy decision
or 0.105ms in case of a cached one. Moreover, in 97% of all
cases cached policy deicions were applied. Our results show
that the performance overhead imposed by our architecture
is below human perception and the user will not notice any
performance delays.

Further, we performed user tests to evaluate our frame-
work against false positives: 20 users tested 50 third-party
apps loaded from Android market. Known confused deputy
attacks can be prevented without false positives, because
they typically feature a well-defined communication pattern
(such as a fixed data string to be transmitted to a confused
deputy). However, security rules against unknown confused
deputy attacks, as well as against attacks by colluding ap-
plications may result in small rate of false positives. Our
analysis shows that mainly false positives are induced by

security rules that aim to prevent attacks by colluding apps
that communicate indirectly, over overt/covert channels in
Android system components, such as Soundcomber [11].

5. CONCLUSION

We present the design and implementation of a security
framework for Android that aims at preventing privilege
escalation attacks. The framework analyzes application com-
munication and ensures it complies to a desired system policy.
Our framework is efficient, does not rely on developers to
perform security checks, can detect known confused deputy
attacks without false positives and monitors communication
channels in both, middleware and Linux kernel (namely,
Binder IPC, Internet sockets and file system). Moreover, it
is flexible enough to cover much broader class of privilege
escalation attacks, including privilege escalation by colluding
applications, however, at the cost of a small rate of false
positives. Our framework can prevent recently published
privilege escalation attacks [6, 4, 10, 7, 11].

6. REFERENCES

[1] Google Android. http://www.android.com/.

[2] S. Bleikertz and T. Grof88. A virtualization assurance

language for isolation and deployment. In IEEFE

International Symposium on Policies for Distributed

Systems and Networks (POLICY), 2011.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R.

Sadeghi. XManDroid: A new Android evolution to

mitigate privilege escalation attacks. Technical Report

TR-2011-04, Technische Universitdt Darmstadt, 2011.

[4] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and

M. Winandy. Privilege escalation attacks on Android.

In Proceedings of the 13th Information Security

Conference (ISC), 2010.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.

Wallach. QUIRE: Lightweight provenance for

smartphone operating systems. In 20th USENIX

Security Symposium, 2011.

[6] W. Enck, M. Ongtang, and P. McDaniel. Mitigating

Android software misuse before it happens. Technical

Report NAS-TR-0094-2008, Pennsylvania State

University, 2008.

A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and

E. Chin. Permission re-delegation: Attacks and

defenses. In 20th USENIX Security Symposium, 2011.

Gartner Inc., 2011.

http://www.gartner.com/it/page.jsp?id=1689814.

T. Harada, T. Horie, and K. Tanaka. Task Oriented

Management Obviates Your Onus on Linux. In Linux

Conference, 2004.

[10] A. Lineberry, D. L. Richardson, and T. Wyatt. These
aren’t the permissions you’re looking for. BlackHat
USA, 2010.

[11] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,

A. Kapadia, and X. Wang. Soundcomber: A Stealthy

and Context-Aware Sound Trojan for Smartphones. In
18th Annual Network and Distributed System Security
Symposium (NDSS), pages 17-33, Feb. 2011.

3

5

[7

8

9

