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ABSTRACT

Knowledge work at computer workplaces involves execution
of multiple concurrent tasks with frequent task interrup-
tions. The complexity of the resulting work processes makes
task externalization a desired goal towards facilitating anal-
ysis and support of knowledge work, e.g. by extracting and
disseminating best practices.

In this paper, we present a task mining method that iden-
tifies tasks based on interaction histories. The method gen-
erates instances of a semantic hierarchical task model which
captures an abstraction of the work processes. A specific
characteristic of the method is that it mines tasks based
on a combination of semantic and temporal features, ex-
tracted from enriched interaction histories. The use of se-
mantic similarity results in a high robustness of the system
with respect to task interruption and concurrent task exe-
cution. An evaluation of our task mining method based on
a study with users executing frequently interrupted tasks is
presented. One element of the evaluation is the assessment
of different algorithms for semantic similarity computing,
namely Term Matching (TM), Vector Space Model (VSM)
and Latent Dirichlet Allocation (LDA). For an approach
using VSM a precision of 0.83, a recall of 0.76 and a F1-
measure of 0.79 is reached.
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1. INTRODUCTION

The externalization of knowledge work execution is an ef-
ficient foundation for various knowledge work support sce-
narios such as the mitigation of prospective memory failures
[9, 18], the automation of recurring work, improved informa-
tion access/organization [13], and knowledge dissemination
[21]. User interaction histories are frequently used for such
externalization [13, 18, 17]. These histories are temporally
ordered lists of classified events that stand for user-system
interactions, and generally comprise complex mixtures of in-
formation about resources a user operated on, using different
applications. The complexity of these histories results from
the fact that knowledge work in organizations includes fre-
quent disruptions and task-switches [9] that veil the struc-
ture of work execution, i.e. it remains unclear which acts
serve similar goals and are constrained by situational re-
quirements or individual competencies.

Task mining is the identification of tasks as logical units of
work in interaction histories resulting from externalization
of work execution. This paper contributes to the research
on unsupervised task mining based on interaction histories
(c.f. [18, 17, 5]). Our mining method emphasizes robustness
of the system with respect to task switches and a process
representation of the mined task instances. Task switch ro-
bustness is the result of a clustering of interaction history
elements based on semantic similarity, not mainly on tempo-
ral relations. The process representation follows a Semantic
Hierarchical Task Model (SHTM) that presents work execu-
tion processes as action and operation hierarchy, following
Activity Theory (AT). SHTM enables the mining of abstract
process representations of tasks.

The remainder of this paper is organized as follows. First,
background on task execution is given. Second, a SHTM
to capture task execution processes is presented. Then, a
task mining process to generate task model instances is in-
troduced and the task mining is evaluated by a user study.
Finally, related work is discussed and the conclusion is given.

2. BACKGROUND

A decent understanding of knowledge work execution at
computer workplaces, their formation and externalization
opportunities is essential for task mining. Task execution at
computer workplaces generally addresses different concur-
rent goals, resulting in parallel or rapid succession of task ex-
ecutions. Task interruptions occur frequently and stimulate
task switches. Studies report 50 task switches over a single
week [9]. Thereby, execution processes for similar tasks are
not uniform, but emerge in an individual, intentional prob-



lem solving process to reach a goal in reaction to situational
dependencies [16, 25, 23, 6]. One can distinguish an exter-
nal and a subjective perspective on the execution process.
From an external perspective, a work process manifests as a
series of objective observable acts. For a subject, the work
process is a dynamic sequence of hierarchically related goal
episodes which involve subgoals and the realization by acts
[16, 25].

The computer workplace is an environment for work ex-
ecution, that shapes work execution through its intrinsic
design, i.e. supported interactions and available tools. Nev-
ertheless, the mediation by the computer is given implicitly
as the computer as tool has no prominent influence on the
work. Individuals plan and perceive their interaction with
the computer in terms of goals with accompanying tasks
rather than in terms of system commands [2]. The technol-
ogy disappears although it shapes the individual interaction.
From this perspective, two characteristics of computer work-
places are striking:

e Relevance of text: Computer work boils down to the
creation, consumption and transformation of encoded
signs that transfer information. The importance of
the relationship between text and activity with respect
to Vygotsky, Leonitev, Bakhtin and Burke’s idea of
“Language as Symbolic Action” has been highlighted
in [7].

e Highly structured environment: Regular computer work-
places include a set of standard software that follows
common interaction paradigms. The standardized in-
teraction is familiar to individuals and performed with-
out cognitive efforts i.e. in the form of operations.

The characteristics of the computer workplace shape and
structure the work process. Actions and operations of knowl-
edge workers at computer workplaces are not directly ob-
servable, as an externalization by an interaction history only
includes acts as event representation. Nevertheless, it is ben-
eficial to abstract from observable acts and describe knowl-
edge work processes by means of actions and operations.
Such abstraction unfolds the solution processes which struc-
ture the work processes of individuals.

3. SEMANTIC HIERARCHICAL TASK
MODEL (SHTM)

The SHTM is a task model for work execution at computer
workplaces that follows the terminology of activity theory
that decomposes activities into actions and operations [14].
This understanding is explained in detail in [20]. SHTM
stipulates the transition from objectively observable acts at
computer workplaces to the hierarchical structure of opera-
tions and actions. The model supports the process of task
extraction from interaction histories. SHTM is a semantic
model, as it includes information about user-system interac-
tion that enriches information included in interaction histo-
ries and enables abstraction from single interaction events to
abstract representations of work episodes. For example, for
an authoring process with different applications the model
does not suggest representing a set of application switches
but extraction of the interactions of the different used ap-
plication and the purpose of the interactions.

SHTM decomposes a task t into knowledge-intensive ac-
tions, termed knowledge actions in the following and repre-

sented by the attribute knowledgeActions : Knowledge
ActionList of t. Knowledge actions themselves are decom-
posed into operations at the computer desktop, termed desk-
top operations in the following and represented by the at-
tribute desktopOperations : DesktopOperationList for a
knowledge action k. By organizing tasks based on knowl-
edge actions, an abstraction from the actual execution pro-
cess is realized that describes tasks in terms of aggregated
and classified execution process fragments. The connection
between the different concepts is visible in figure 1 and is
discussed in the following.

Knowledge Action Desktop Operation Situation

ionType : Kno ige ionType

Task -resources : URLList

l-process : string

-resource : URLList
-start : Date

-wordCount : Map: ,Integer>

4+ |start:Date 1

-end : Date -end : Date

Event

Desktop Operation
-type : EventType

Interaction History -atTime : Date

-process : string
1 »  |-content : string
-associatedResources : URLList

-operation : DesktopOperationType
-start : Date
-end : Date

1 |-object : DesktopOperationObjectType

Figure 1: Main elements of SHTM

3.1 Desktop Operations

A desktop operation is a user-system interaction that fol-
lows standard interaction-patterns. These paradigms are
well trained by individuals and can be applied without much
cognitive effort. In terms of AT, a user-system interactions
at computer workplaces is situated on the operation level.

A desktop operation d is specified by a tuple of opera-
tion and object, represented by the attributes operation :
Desktop OperationType and object : DesktopObjectType.
A desktop operation references events that are the objective
indicators of the desktop operation (e.g. a set of events in
an interaction history) by the attribute event : EventList.
Additional information is the start : Date and end : Date of
a desktop operation. The following objects are considered
for desktop operations:

e Application: An application is a piece of software that
can be run in the computer environment and is used to
transform information. An operating system process
is a running instance of an application.

e File: A file is a container structure for information.
Files have an address and permission structures to or-
ganizes access and modification.

e Folder: A folder is a container structure to organize
files. Generally, folders have an address, encapsulate
an arbitrary number of files and are described by a
label.

e Information Object: Information objects are pieces of
information presented to the user. This includes, for
example, textual information represented by a string of
characters. Information objects often have a structure
to make them accessible by functionalities of software
system. One method to persist information objects are
files.



Opr Ob] App | File | Folder | Information| Window
Object

Open X X X

Close X X X

Save X

Rename X X

Delete X X X

Cut X X X

Paste X X X

Print X

Create X X X

Execute X

Focus b'e b'e

Table 1: Desktop operations: pairs of operation

(OPR) and object (OBJ)

Possible associations of desktop operation types and desktop
object types are given in table 1.

Desktop operations that are executed in sequence for the
same resource using the same application are combined to
desktop operation situation. I.e. a desktop operation situa-
tion is considered as a continuous work episode with a single
application on a specific resource. A desktop operation sit-
uation dos has the attributes process : String, resource :
URL, start : Date, end : Date and desktopOperations :
DesktopOperationList.

3.2 Knowledge Actions

Knowledge actions are techniques applied to execute work-
ing tasks. These techniques are tangible subgoals that sup-
port an individual in structuring a task execution process.
An example is the goal of writing a document. An individual
structures the respective working process by subgoals that
can be directly translated to an interaction with a tool, e.g.
using the knowledge action authoring. Still, the authoring
is not straight forward but needs adaptation for the specific
task and the specific working situation. Thus, knowledge ac-
tions accomplish the transition from planning to actual work
execution combined with a process of situative adaptation.
At the computer workplace knowledge actions are executed
by means of desktop operations. As the adaptation of the
technique to an explicit goal requires cognitive efforts, the
described techniques are situated on the action level of AT
(see also [11]).

For the computer workplace a set of knowledge actions
has been identified based on a literature review [11, 24] and
discussions. The SHTM includes the following knowledge
actions:

e Consuming: A knowledge worker focuses a resource on
the computer desktop and focuses his attention to the
visual representation of an information.

e Authoring: A knowledge worker creates a representa-
tion of information in an existing or new information
object through a knowledge transformation process.

e Communicating: A knowledge worker shares informa-
tion with others.

e Organizing: A knowledge worker organizes existing in-
formation resources.
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e Browsing: A knowledge worker reviews different infor-
mation objects in rapid succession.

A knowledge action k is modeled as a classified carrier for
desktop operations. k is classified by the attribute action :
KnowledgeActionType. A knowledge action has the at-
tribute situations : DesktopOperationSituationList. To
specify knowledge actions, they additionally contain the at-
tributes resources : URLList for all resources required for
the execution and wordCount : Map < String, Integer >
for an abstract representation of the textual content of the
knowledge action (what it is about). The duration is cap-
tured by start : Date and end : Date.

4. TASK MINING USING A SEMANTIC
TASK MODEL

The following section describes task mining as extraction
of SHTM instances based on ex post analysis of interaction
histories. Basically, the mining process presents itself as
connection of the user-interaction events contained in inter-
action histories with the SHTM in a bottom-up process of
data aggregation as depicted in figure 2. Interaction history
events are aggregated to desktop operations which them-
selves are combined to knowledge actions which finally en-
able the identification of tasks. The task mining method
reflects concurrent task executions and task switches, as it
ignores temporal information, but focuses completely on se-
mantic similarity of enriched textual content included in the
interaction histories.

Task Instances

Text similarity algorithms,
Hierarchical clustering

@

S5

2

Knowledge Actions
Heuristics, Aggregation

Based on he associated
resources

Desaapoperions A A A
meionvwary SRS AT ATR AN
OO0OO00OOO0OOOOOOO

Figure 2: Hierarchy of Behavior Situatedness in Ac-
tivity Theory

4.1 Interaction History Creation

Interaction histories can be basically considered as logs
of user-system interactions. The literature describes dif-
ferent applications to generate this type of data [18, 13].
Interaction history data gives an insight into work as tem-
porally ordered information about user-system interaction.
The approach presented in this paper requires interaction
histories that extract text displayed to the user and include
information about the time frame during which the text
was visible. An event e has the attributes name : String
to classify an event, atTime : Date to specify the occur-
rence, content : String for the textual content, process :
String for the application generating the event and option-
ally associatedResource : URLList for resources that are
locked by the process



To create interaction histories, a sensor application has
been developed for the Windows operating system (see fig-
ure 3 for an excerpt from an interaction history). The sen-
sor application has been developed in C# and generates a
sensor stream that can be subscribed by other applications
via a CORBA interface. The monitor includes a keyboard
hub, mouse hub and listeners to different applications (in-
cludes: Microsoft Business Office Suite, web browser, Adobe
Reader, Process Monitor, Mouse and Keyboard Hub). Addi-
tionally, the UI Automation Framework is used to generate
rich information about each focused user interface element.
Filter methods like black lists and comparison of temporally
related events are applied to optimize the quality of the in-
teraction history, as the system events often send events
twice or internal methods may fail. The sensor application
realizes events as aforementioned. For technical reasons at-
tributes not mentioned here are included additionally in the
actual implementation. The sensor application generates an
interaction history as a stream of temporal ordered events
€1...€n.

4.2 Desktop Operation Extraction

The SHTM describes desktop operations d as classified by
the attributes d.operation and d.object. The events deliv-
ered by the sensor application are basic events and need to
be processed to identify desktop operations. Mapping events
to desktop operations is a process of abstraction, as different
interaction types are traced back to the basic terminology
of desktop operations. This desktop operation identifica-
tion is identified through complex event processing: rules
are modeled to create desktop operations based on sensor
events. Extraction of desktop operations requires basic rules
RL of the form antecedent = consequent. The antecedent
relates to the attributes of the events e. The consequent
is a new desktop operation d. The aforementioned stream
of temporal ordered events ej...e, is processed by the rules
RL;...RL, which results in the creation of new desktop op-
erations do...dn.

A realization of the concept has been implemented using
Drools Fusion (JBoss Drools, http://jboss.org/drools) which
is capable of event processing and temporal reasoning. In
total 98 different rules were developed to extract desktop
operations. The amount shows the complexity of the ab-
straction process, as a large set of interaction types needs
to be traced back to the respective desktop operations (e.g.
rules for 15 different types of file closing were modeled).

4.3 Knowledge Action Extraction

Knowledge actions as work techniques present themselves
as disjoint units of continuous work on a single resource,
i.e. desktop operations that stand for the same knowledge
action are scattered among the interaction history due to
disruptions and a mixture of subgoals executed in parallel.
Consequently, knowledge action identification turns out as
collection and classification of scattered desktop operations
belonging to the same knowledge action. The respective
method steps are described in the following:

Create situations: Desktop operation situations dos are
used to organize desktop operations. Two desktop opera-
tions d; and d; get associated to a situation dos, if d;.process
= dj.process and no dy, exists with dy.process # d;;;.process
and d;.atTime < di.atTime < di.atTime. A list of desktop
operation situations dos;...dos,, is created.
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Create unclassified knowledge actions: Sets of desk-
top operation situations are created. dos; and dos; are in-
cluded in the same set, if dos;.process = dos;.process and
dosi.resource = dosj.resource is valid. This connection to
situations as sets of desktop operations based on process and
resource is visible in figure 4. Each set of situations repre-
sents an unclassified knowledge action k without specifica-
tion of k.action. Knowledge actions, which have a duration
of less than six seconds are filtered as irrelevant which is
based on detailed review of interaction histories and compa-
rable to [18] where durations below four seconds are filtered.

Classify knowledge actions: For the detected k the
type k.action is identified based on heuristics that make use
of an application taxonomy. Each unclassified k contains the
desktop operations (k.situations.desktopOperations) exe-
cuted at k.process. The heuristics decide for a knowledge
action based on the types of desktop operations (e.g. con-
sume, focus) and the classification of k.process in the appli-
cation taxonomy. For example, the usage of Microsoft Word
is generalized to the usage of a word processor. Using this
information, one can classify the knowledge actions based
on the desktop operations they contain. The desktop opera-
tion “Creating”-“Information Object”, for example, indicates
a knowledge action of the type “Authoring”. “Renaming’-
“Folder” indicates the knowledge action “Organizing”.

Content extraction For each classified knowledge action,
the map k.wordCount is extracted. Therefore, the e.content
attribute of each event contained in k.situations.desktop
Operations.events is subject to tokenization, stop-word-
detection, part-of-speech tagging, filtering, stemming and
term counting to create a bag-of-words. The bag-of-words
contains all terms considered relevant (nouns, verbs) and
the number of times they occur. The content extraction has
been implemented, using a UIMA [10] pipeline of processing
resources.

e
—

Figure 4: Aggregation of desktop operations
to knowledge actions (R=Resource, DO=Desktop
Operation, DOS= Desktop Operation Situation,
KA=Knowledge Action)

@
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4.4 Task Instance Mining

Task instance mining uses knowledge actions ko...k, as
generated by the aforementioned method. Each knowledge
action stands for a work technique applied at a similar re-
source with a similar application. Task instances are col-
lections of knowledge actions that serve a similar goal, with
other words related knowledge actions.

Here, the term related precisely addresses semantic relat-
edness. Based on k.wordCount text similarity algorithms



<event eventName="FOREGROUND_WINDOW_CHANGED" atTime="01.02.2011 16:19:26.484" eventCategory="Process ><eventattributes>

<eventattribute name=
<eventattribute name=

‘processname” type="5tring” value="POWERPNT" />
windowtitle" type="string" value="Microsoft PowerPoint - [Planning-Roundup_v3.pptx]" />

<eventattribute name="associatedFile” type="5tring” value="‘\EBaseNamedObjects'MSCTF.Shared.5FM.AFDE" />
<eventattribute name="associatedrFile" type="string" value="C:‘Documents and Settings‘evaluationuser3‘Desktop'work'Planning-

rRoundup_v3. pptx" /=</eventattributes></event>

<event eventName="FILESYSTEM_OBJECT_DELETED" atTime="01.02.2011 16:19:26.828" eventcategory=”Fi1eS{stem“><eventattributes>

<eventattribute name="name" type="string" wvalue="C:‘Documents and Settings‘evaluationuser3

Roundup_v3. pptx" />

Desktop'\work'Planning-

<eventattribute name="notifyfilter” type="string" value="FileName" /></eventattributes></events>
<event eventName="FILESYSTEM_OBJECT_CREATED" atTime="01.02.2011 16:19:26.828" eventcategory:”Fi1es<stem“><eventattributes>

<eventattribute name="name" type="string" wvalue="C:‘Documents and Settings‘evaluationuser3

roundup_v3. pptx" />

Desktop'\work'Planning-

<eventattribute name="notifyfilter” type="string" value="FileName" /></eventattributess></events>
<event eventName="MSPOWERPOINT_EVENT_THROWN" atTime="01.02.2011 16:19:26.968" eventCategory="aApplication"=<eventattributes>
<eventattribute name="title" type="string” value="Planning-Roundup_v3.pptx" />

<eventattribute name="content" type="5tring” value="

planning Demand and Master Planning Roundup Introduction Author: aAndreas
Goeb&#xD; Date: 2011/02/01 Demand Planning Purpose&#xD; improve decisions affecting demand accurac

&#xD; calculation of buffer or

safety stocks &#xD;Results: &#xD;Demand Plan&#xD;Benefit:&#xD; Increased performance of each supply chain entity Master Planning

cyc

Purgose&#xD;synchronize the flow of materials along the supply chain&#xD;Range: Mid-term =
e&#xD; Contents : &#xD; Production&#xD; Transpor t&#xD; supply capacities&#xD; Seasonal stock &#xD;balancing of supply and

At least one seasonal

Figure 3: Excerpt from interaction history

generate input values for a clustering algorithm (used algo-
rithms are given below).

Different methods have been evaluated to calculate seman-
tic relatedness by using a bag-of-words approach. Based on
calculations applied to the bag-of-words, the similarity of
two bags-of-words is calculated, returning a similarity value
between zero and one. An important modification to the
bag-of-words was applied here to use the time as relevance
factor, i.e. text presented for a longer period of time to a
user was considered more important than text presented for
a short period of time. Therefore the duration of a knowl-
edge action k was used to weight k.wordCount. Three meth-
ods to identify semantic relatedness have been applied and
compared:

e Term Matching (TM): The number of words that occur
in both texts is calculated and scaled by the lengths
of both texts (total number of words) [3]. Here, TM is
considered as a baseline method.

e Vector Space Model (VSM): The Vector Space Model
is an algebraic model to represent text documents [19].
Every text is represented as a term-TF*IDF vector in
the N-dimensional space (N representing the number
of different terms in both documents). Text similarity
is measured by the distance of the vectors within the
model.

e Latent Dirichlet Allocation: Latent Dirichlet Alloca-
tion is a generative model which regards each text as
a mixture of topics and traces each word’s creation to
one of the text’s topics [4]. The model can be applied
to realize topic detection and map each text to a prob-
ability distribution over the detected topics. The “dis-
tance” of two probability distributions can be obtained
by utilizing a suitable divergence measure.

The resulting semantic relatedness is weighted based on
the temporal closeness of two knowledge actions. The time
acts as a gravity for semantic. The technique follows the
idea that proximity (spatial or temporal) influences seman-
tic similarity: e.g. homonyms are understood based on a
context organized based on spatial and temporal proximity
(asking someone for a bank during a finance conversation
will most probably not result in a hint for a place to sit
down). Therefore the semantic relatedness is weighted by a
factor between zero and one that can be calculated by a sig-
moid function on all temporal distances between knowledge
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actions. The weighted semantic relatedness is input for a
hierarchical clustering algorithm [12]. Hierarchical cluster-
ing is an unsupervised algorithm which builds a hierarchy of
clusters, given a set of input data, an appropriate distance
metric, and a linkage criterion. The linkage criterion deter-
mines, how the distance between clusters is computed. An
average linkage clustering was used, which means that the
distance between two clusters is computed by the average
distance of all elements within one cluster to all elements
within the other cluster. Within the task mining module,
an agglomerative variant of hierarchical clustering was im-
plemented, i.e. a “bottom up” approach is used. At the
beginning, each knowledge action belongs to its own clus-
ter. Then the algorithm finds the pair of clusters which has
the highest similarity. Those clusters are merged into a new
cluster and a new level of the hierarchy is created. The
algorithm repeats this step until only one cluster remains
and the hierarchy is complete. In order to obtain clusters of
knowledge actions which are similar to each other and rep-
resent a task, a threshold which terminates the algorithm is
required.

The last step identifies clusters that belong to one task,
even if they are not semantically connected. If a user tended
to switch very often between two clusters, i.e. used the ap-
plications and resources of both clusters simultaneously or
in rapid succession, then the clusters can be merged. For
this purpose a matrix that counts all cluster switches is cal-
culated and the clusters are merged, if one of the clusters
does not contain more elements than specified by a treshold.
As long as clusters are merged, process is repeated.

5. EVALUATION

The following section reports on a study that addresses
important aspects of the task mining approach described
above. The first aspect is the overall applicability of the ap-
proach to task mining in interaction histories. The second
aspect is the effect of different methods of semantic similar-
ity calculation (Comparison of TM, VSM and LDA).

The study included eight participants that work for an
international software company in the field of IT research.
The participants executed a set of predefined, knowledge-
intensive tasks (see table 2). Five participants had post-
doctoral positions and three participants were PhD students.
The tasks were executed in random order and were disrupted
during execution. Disruption means that tasks were inter-
rupted randomly to generate task switches as shown in figure



Task 1 | Provide information on related work on individual
topic

Task 2 | Set up meeting to discuss conference paper review

Task 3 | Decide on applicant invitation and communicate your
decision

Task 4 | Plan a trip and inform your colleague with all involved
information

Task 5 | Present a paper from a foreign language to your col-
leagues

Task 6 | Find Application partners and experts for research
project

Task 7 | Search for Information on software functionality and
save for later use

Table 2: Tasks used for the user study

5. During the execution of the tasks, an interaction history
was captured, using the sensor application. The created in-
teraction histories were used as input to the task mining
method discussed in the previous section.

Task switch Task execution

Task 1

.

Task 2 -

Task 3

Task 4

Task 5 || J

Time line

Figure 5: Example for task execution process with
task switches

5.1 Evaluation Methodology

The interaction history of each user including the execu-
tion process of five frequently switched tasks was input for
the task mining method. The mined task instances were
assessed against a manually created ground truth. Task in-
stance and ground truth can be considered as clusters of
knowledge actions. Input for the creation of a ground truth
and task mining were knowledge actions that were extracted
from interaction histories based on the aforementioned pro-
cesses of desktop operation extraction and knowledge action
extraction. For these knowledge actions the following pro-
cess was performed:

e Ground truth generation: The study supervisors
used interaction logs and notes taken during study exe-
cution to validate the quality of knowledge actions and
create clusters of knowledge actions that were labeled
with the respective task numbers. Thus, the ground
truth assigns a task number to each knowledge action
extracted from an interaction history.

e Task mining: Semantic similarity is the most impor-
tant aspect of the task mining method. To evaluate the
performance of different textual similarity measures,
three different cluster distributions (TM, VSM, LDA)
were produced and used as input for the hierarchical
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clustering algorithm. The algorithm requires a thresh-
old as termination criterion. Tresholds for TM, VSM
and LDA were identified in a different study. For the
other study, clustering results for input data of interac-
tion histories generated by 90 minutes work executed
by 20 users was analyzed to identify optimal treshold
values (VSM=0.15, LDA=0.9, TM=0.05).

e Labeling: The mined clusters should be similar to
the manually labeled clusters of the ground truth, i.e.
it should be the same number of clusters, containing
the same knowledge actions. In order to compare the
knowledge action clusters of the ground truth with the
corresponding clusters identified by the system, the fol-
lowing labeling method was applied for each identified
cluster: 1) Select a cluster from the task mining as to-
label 2) Select the ground truth cluster with the largest
percentage of knowledge actions matching the selected
cluster as compareCluster 3) Label the tolabel cluster
with the label of compareCluster (cf. [5, 17]).

e Assessment: A high quality is reached, if a mined
task shares many knowledge actions with the corre-
sponding cluster of the ground truth. Three quan-
titative measures were extracted: 1) Precision: The
fraction of knowledge actions in a mined cluster com-
pared to the corresponding manually labeled cluster of
the ground truth. The corresponding cluster is the one
with the largest matching percentage of items. 2) Re-
call: The fraction of all knowledge actions in a manu-
ally labeled cluster corresponding to a calculated clus-
ter. 3) Fl-measure: The weighted harmonic mean of
precision and recall. The higher the value of the F1-
measure generally the better the result of the algo-
rithm [15].

5.2 Evaluation Results

In total 120 runs of the hierarchical clustering algorithm
were analyzed. Table 3 indicates the obtained results. The
results for VSM clearly surpass those of both LDA and TM.
The low values for TM are expected as it serves as a base
line method. The values for the clustering based on LDA
are higher than the base line. However, the achieved F1-
measure of 0.59 is clearly outperformed by the clustering
based on VSM with a Fl-measure of 0.79. This result can
be partly explained by the amount of input which is used
to perform LDA. Only the data, that was collected from an
independent run of the task detection system, was used for
the similarity calculation step. This is the setup for each
similarity algorithm. LDA should produce better results if
the complete data of all participants is used to build one sin-
gle topic model. With an increasing amount of data avail-
able, the quality of the inferred topic model will increase [4].
This should be the focus of further investigation regarding
the applicability of topic models for task similarity. In the
current setup the clustering based on the VSM delivers the
best results.

On the total data set average precision of 0.83, a recall of
0.76, and an Fl-measure of 0.79 for the Vector Space Model
measure was achieved. Figure 6 shows the obtained results
for the approach using VSM for the different users. Some
differences between the results for the different users are ev-
ident. For instance, the system was able to mine tasks with
an Fl-measure of 0.91 from the task execution of user 2.



precision | recall | Fl-measure
VSM | 0.83 0.76 | 0.79
LDA | 0.66 0.57 | 0.61
™ 0.78 0.41 0.59

Table 3: Average results of the different task simi-
larity measures
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Figure 6: Precision, recall and fl-measure for VSM

For user 8 the system achieved an Fl-measure of 0.53. The
interaction histories for both task executions were analyzed
and show as reason for this difference that user 2 executed
the tasks in a fairly straightforward manner. The number of
used resources was significantly smaller than what was ob-
served for user 8. This indicates that the more complex the
task execution process gets, the harder it is for the task de-
tection system to mine tasks correctly. The combination of
semantic and temporal aspects was intended to mitigate this
problem, but did not completely resolve it. The task min-
ing method utilizes the full text contents of all associated
resources to obtain a notion of task similarity. The assump-
tion underlying the task mining method, that semantic re-
latedness is key to task clustering when mining interaction
histories is central for the discussed approach and brings
many advantages but also some disadvantages as discussed
in the following:

e Rejected resources that are semantically not
related: In the study user 8 accessed several web
resources that were not relevant for the task. These
were for example resources which were accessed and
rejected during an information search, because they
did not contain the desired information. Such rejected
resources were monitored but not assigned to the re-
spective task. Omitting rejected resources brings ad-
vantages, as these resources are not relevant for the
task.

e Relevant resources that are semantically not re-
lated: Some resources contain information that can
only be assigned to a task with a deeper understanding
of semantic relatedness. For example, a web site for
currency conversion does contain clearly different tex-
tual contents than a web site for flight bookings. A hu-
man can link these resources easily if they need to cal-
culate flight ticket prices in a different currency, but as
both web sites have different purposes it might be dif-
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ficult to relate them semantically in algorithmic fash-
ion. The same applies for resources that use a different
vocabulary while describing the same topic. More so-
phisticated text similarity measures, like LDA, could
target this problem, as they do not rely on the exact
terms, but built a generative model on how texts are
created [4]. Semantic similarities as a measure of task
similarity has clear limitations in this respect. The
final merge of clusters based on the cluster switches
help to mitigate the problem of resources that are not
semantically related but belong together.

Overall, the results indicate that the task mining method
presented in this paper can sufficiently detect knowledge-
intensive tasks. An Fl-measure of 0.79 was achieved us-
ing the Vector Space Model measure. A precision of 0.83
shows that the identified clusters already sufficiently repre-
sent task executions. Overall, the results are promising and
indicate that an automatic task detection and task model-
ing of knowledge-intensive tasks in the computer desktop
environment is possible.

6. RELATED WORK

Initial work on interaction histories addressed the analy-
sis of work execution [2]. Interaction histories have proven
useful to improve user system interaction, e.g. the UMEA
system uses interaction histories to add resources to so called
context pools [13]. Many publications involving interaction
histories focus on the identification of known task instances
generally used to proactively propose resources relevant for
the identified task to the user [22, 18]. To provide proac-
tive user support a task repository is required which can be
generated manually [1, 8], in a supervised manner through
labeled task instances [22] or in an unsupervised manner [5,
17, 18]. Here we focus on unsupervised mining [5, 17, 18]
that creates task representations based on interaction histo-
ries. Mined tasks are composed of elements of different qual-
ity in the different approaches and are evaluated differently.
For example Rattenbury et al. [18] evaluate their system by
a usefulness study and do not report any values for precision,
recall or Fl-measure. Oliver et al. [17] and Brdiczka et al.
[5] report performance values which are based on different
data sets. Thus comparison of the performance is not possi-
ble. Nevertheless, in the following different assumptions are
given about the evaluations of [17], [5] and the task mining
method presented in this paper.

Brdiczka et al. [5] perform task mining based on docu-
ment usage patterns identified by clustering of events up to
a treshold, i.e. the treshold value modifies the number of
identified tasks. An Fl-measure of 0.32 with a precision of
0.20 is reported for a data set of ten users and 50 tasks, col-
lected over up to three work days. The results are explained
by the amount of noise in the input data. By limiting the
data set to the six most frequent tasks a f-measure of 0.74
is obtained. Oliver et al. [17] report an Fl-measure of 0.58
for a data set of one user and five tasks, collected over about
four hours. The results are improved to a recall of 0.76% by
using 1 hour chunks of data. Probabilistic latent semantic
indexing is used by a mining method that requires a-priori
knowledge about the number of tasks in the data set. This
previous knowledge about the number of tasks is not re-
quired for the method presented in this paper and for [5].
Oliver et al. [17] is related to the approach presented here, as



semantic similarity is used. The difference is the amount of
text used for the semantic similarity ([17] limits the text to
the window titles), knowledge about the task number ([17]
requires a-priori knowledge) and the task model ([17] reports
about the process but does not provide a task model).

The main difference to existing task mining approach is
the obtained task model. While the reviewed systems re-
duce activities to associated window titles [17], documents
[5] or context structures (task relevant information and peo-
ple) [18], the aforementioned task mining method populates
a SHTM to provide an abstraction of the execution process,
including details about the execution process. In contrast to
existing approaches, mined SHTM instances can be used not
only to enable support in the form of resource recommen-
dation, but best practices and next step recommendations.
To this point, this quality of support was only possible, if
an expert modeled all tasks manually [1, 8].

7. CONCLUSION

Task mining is a relevant research domain to provide a
data basis to describe, analyze and support knowledge work-
ers in their daily activities. Mined tasks are foundations for
user support systems and contribute to informal learning.
This paper contributes a method that mines task instances
based on a SHTM. A specific benefit of the SHTM is the hi-
erarchical decomposition of interaction histories into knowl-
edge actions and desktop operations that preserves abstract
work execution information. Albeit the expressiveness of
the model an automatic identification of model instances in
a mining process is possible. We plan to use the mined task
instances to propose work execution processes and deliver
externalized best practices to knowledge workers.

The method of clustering by semantic similarity has been
evaluated, using different approaches, TM, VSM and LDA.
The best results were obtained for VSM. The weak results
of LDA can be explained as the text corpus of the LDA
algorithm was limited to the data of one study participant,
each time it was applied. In the future we plan to do a
longer study of knowledge workers performing their daily
work and believe that LDA will perform better in such a
setting with more data. Nevertheless, the results of the task
mining method using VSM for semantic relatedness with an
F1l-measure of 0.79 (precision of 0.83, recall 0.76) are good.
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