
Multi-stage Attack Detection and Signature
Generation with ICS Honeypots

Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero, Max Mühlhäuser
Center for Advanced Security Research Darmstadt (CASED)

Telecooperation Lab, Technische Universität Darmstadt
{vasilomano, garcia, max}@tk.tu-darmstadt.de, {shreyas.srinivasa}@stud.tu-darmstadt.de

Abstract—New attack surfaces are emerging with the rise
of Industrial Control System (ICS) devices exposed on the
Internet. ICS devices must be protected in a holistic and efficient
manner; especially when these are supporting critical infrastruc-
ture. Taking this issue into account, cyber-security research is
recently being focused on providing early detection and warning
mechanisms for ICSs. In this paper we present a novel honeypot
capable of detecting multi-stage attacks targeting ICS networks.
Upon detecting a multi-stage attack, our honeypot can generate
signatures so that misuse Intrusion Detection Systems (IDSs) can
subsequently thwart attacks of the same type. Our experimental
results indicate that our honeypot and the signatures it generates
provide good detection accuracy and that the Bro IDS can
successfully use the signatures to prevent future attacks.

I. INTRODUCTION

The dependence of our society to IT networks is constantly
increasing. In addition, the emergence and interconnectivity
of Industrial Control Systems (ICSs) creates a plethora of
security challenges that need to be addressed. Recent highly
sophisticated and tailored attacks against these systems, e.g.,
Stuxnet [5] and Flame [16], are already here to highlight this
fact.

Intrusion Detection Systems (IDSs) are nowadays con-
sidered a mandatory line of defense for the protection of
critical networks [15]. The majority of IDSs in real world
networks are passively monitoring and performing signature-
based detection. As such, the accuracy of these systems is
highly influenced by the quality of the utilized signatures.
Security mechanisms that exhibit more active monitoring can
act as an additional line of defense by complementing existing
systems. In this paper, we introduce a honeypot capable
of providing such an active monitoring approach that can
generate signatures of detected attacks on-the-fly.

Honeypots are systems whose only value is to be probed,
attacked and compromised [11]. Their purpose is to attract
malicious users, study their activities and, at the same time,
reduce the attack surface. It is important to note that since
honeypots do not feature any other purpose, by definition, any
interaction with them is considered an attack. Thus, they do not
exhibit false positives, i.e., all incoming traffic is considered
malicious.

In this paper, we extend our previous work in the area
of honeypots [13] with the focus of detecting sophisticated

attacks in ICS networks. We specialize in the identification of
attacks that originate from the same entity and make use of
multiple protocols. We argue that these attacks can realistically
describe cases of Advanced Persistent Threats (APTs) and
targeted real world attacks. Our honeypot is able to extract
signatures from detected attacks which can subsequently be
imported into the Bro IDS [7]. We compare our solution
with another honeypot from the related work, discuss the
possibility of evading the honeypots and evaluate the quality
and applicability of the generated signatures.

The remainder of this paper is as follows. In Section II, we
present the related work in the areas of honeypots and alert
generation. Section III provides an overview of the system as
a whole; we give a formal model for the detection mechanisms
and describe the signature generation process. Section IV
presents and discusses the results of our evaluation. Lastly,
Section V concludes this paper.

II. RELATED WORK

In this section we discuss related work in the areas of
honeypots and signature generation with an emphasis on ICS
networks.

In our previous work [13] we presented HosTaGe, an open-
source low-interaction mobile honeypot. The idea was to
introduce lightweight portable honeypots for mobile devices
that aim at detecting malicious devices in wireless networks.
HosTaGe supports the identification of attacks in all major
protocols, e.g., HTTP, SMB, Telnet, FTP, MySQL, SIP and
SSH. We enhance our system in a twofold manner: first, we
add support for ICS protocols and, second, we focus on de-
tecting attacks triggered from the same entity and manifested
in multiple protocols. In addition, we formalize such attacks
via state machines and generate corresponding signatures for
them to be used by IDSs.

In their recent work, Minn et al. [6] proposed IoTPOT,
a honeypot that emphasizes on IoT devices by emulating
the Telnet protocol. Their results show an increase of at-
tacks on Telnet that target Internet of Things (IoT) devices,
which also corresponds to our previous work’s findings [14].
However, their focus is limited only into Telnet-based attacks
(and different CPU architectures). Conpot [9] is another low
interaction honeypot that focuses on emulating server side
ICSs. Conpot was one of the first honeypots detecting ICS978-1-5090-0223-8/16/$31.00 c© 2016 IEEE

network attacks and is considered the state-of-the-art in this
area. Conpot has a few disadvantages however; first, it does
not support the emulation of Telnet, and the information that
is logged, e.g., for Modbus attacks, is not always sufficient
for an in-depth analysis of an attack. Moreover, as we will
demonstrate in Section IV, Conpot can be identified as a
honeypot by specialized tools. Nevertheless, as this honeypot
is, with respect to its ICS support, the closest to ours, we
compare these two systems in Section IV.

In the recent years there have been proposals in the area
of signature generation via the utilization of honeypots [4],
[12], [3]. For instance, HoneyComb [4] is a system that makes
use of the honeyd honeypot [8] to generate alert signatures.
It has the advantage of only using honeypot network traffic
and thus reducing false positives. However, as a result of
utilizing honeyd, only high level TCP or UDP information can
be examined, making it unsuitable for payload-level analysis.
Additionally, neither HoneyComb, nor any honeypot, is able
to identify multi-stage attacks.

Finally, with regards to generic signature generation, in [10],
Sengar et al. proposed a novel intrusion detection mechanism
for Voice over IP (VoIP) that utilizes protocol-level state
machines. Our approach is inspired by this work and builds
on top of it. We move beyond VoIP and focus on attacks that
target ICS networks. Our finite state machines are higher level
as we focus on the detection of multi-stage (and thus multi-
protocol) malicious activity. Furthermore, we utilize this state
machine-based detection mechanism in our honeypot only as
the initial step for improving intrusion detection. Our aim
is to utilize the results gathered from Extended Finite State
Machines (EFSMs) to automatically generate signatures and
security policies that can be deployed in existing state-of-the-
art IDSs, i.e., Bro, rather than proposing a new IDS.

III. HosTaGe ICS HONEYPOT

In this section, we first give an overview of our system,
discuss the ICS-specific protocols simulated by HosTaGe
followed by the formal model used to describe the detection
mechanisms we employ. Lastly, we discuss the signature
generation of our proposal.

HosTaGe is a lightweight low-interaction honeypot for mo-
bile devices. It is an open source project, written in Java, con-
sisting of more than 15, 000 lines of code. As a low-interaction
honeypot, HosTaGe simulates protocols in the TCP/IP stack,
emulating many typical protocols utilized by adversaries, e.g.,
HTTPS, FTP, MySQL, SIP, SSH, etc. In order to support
the protection of ICS networks, we modified, included and
rewrote protocol detection mechanisms to follow the model we
describe in this section. Moreover, we argue that a honeypot
can be a supplemental security mechanism. Hence, we support
such a task by generating signatures that can be automatically
used in IDSs. A practical usage scenario can be the following.
HosTaGe can be placed in the perimeter of a corporate network
that, internally, includes ICSs. In the case of an adversary who
aims at attacking the internal network, it is highly possible that
the honeypot will be triggered during either the reconnaissance

phase or the actual attack. If this is the case, HosTaGe will not
only notify the network administrators but will also produce
a signature for the attack and forward it to the internal IDSs.

A. ICS Specific Protocol Emulation

We extend the protocol emulation capabilities of HosTaGe
by adding (or improving) support for protocols that are utilized
in ICSs, i.e., Modbus, S7, SNMP, HTTP, Telnet, SMB and
SMTP. In the following we briefly discuss these protocols and
how they are emulated in our honeypot.

Among the various profiles supported by ICS devices,
Modbus acts as a backbone for device communication. Modbus
is a serial communications protocol initially published by
Modicon for usage in its Programmable Logic Controllers
(PLCs). It is now considered as the standard that connects
industrial devices, and in particular it establishes communi-
cation between master and slave devices. As Modbus can
also be used in a wireless mode for Remote Terminal Unit
(RTU)-based communication, it is widely used in various ICS
networks, e.g., nuclear power plants, gas and oil distribution,
for communication between the PLCs.

a) Modbus: Modbus has instruction sets for the inter-
action of devices. PLCs have registers1 as memory units.
The instruction sets are specified as functions which denote
Read/Write (R/W) operations on the registers of the PLCs.
Modeling the correct behavior of Modbus requires simulating
the responses of the Modbus system for a command issued
by a Modbus master device. HosTaGe simulates the Modbus
communication protocols by implementing the request/reply
mechanism. The Siemens PLCs also have registers as memory
units, which store sensor data and application logic. The
registers have the memory mapped to blocks at the register
level. Through the Modbus protocol, the data in registers
can be accessed and set. HosTaGe supports this request/reply
paradigm for the memory mapped registers through dedicated
data structures. Furthermore, the honeypot also supports the
instruction set of Modbus, which is implemented as function
codes. The instruction set involves registers’ R/W, as well as
the Modbus service diagnostics. Furthermore, in our Modbus
implementation we aim on avoiding detection from well-
known reconnaissance tools. In more details, the Nmap port
scanning tool, with special scripts, is able to perform Modbus-
specific detection and reconnaissance. Similarly, the Metas-
ploit exploit toolkit also provides support for the detection and
exploitation of Modbus. HosTaGe is able to respond correctly
in all these cases. In Section IV-C, we discuss the importance
of this in the context of honeypot evasion attacks.

b) S7: The S7 protocol (S7 Communication) is a
Siemens proprietary protocol utilized in PLCs of the Siemens
S7-300/400 families. It is used for PLC programming, ex-
changing data between PLCs, accessing PLC data from
SCADA systems and for diagnostic purposes. The protocol
forms as a base for accessing the registers for R/W operations

1For simplicity we include coils in the term registers, even though strictly
speaking they exhibit differences.

and also programming the PLC for user defined tasks. The S7
protocol has been implemented to simulate the communication
with the PLC with the memory mapping of the Siemens S7
300.

c) SNMP: The Siemens S7 family of PLCs supports the
configuration of client devices through SNMP. This allows to
remotely manage devices on the network. The SNMP protocol
has been implemented (using the open source snmp4j library)
to simulate an SNMP agent working on the Modbus slave
profile and SNMP manager on the master profile.

d) HTTP: HTTP is supported by the majority of the
PLCs for remote configuration purposes. The HTTP web
server in the PLC enables GET/POST messages for informa-
tion exchange. This HTTP server is simulated by HosTaGe
through its dynamic HTTP protocol implementation. A default
welcome page that simulates the configuration website of a
PLC is displayed when an adversary tries to access port 80.

e) Telnet: The Telnet protocol allows accessing a basic
shell on devices in order to read memory, delete files and
execute commands. The Siemens S7 PLC also supports Telnet;
users or applications can communicate with the PLC for
file and backup operations. As such, HosTaGe supports this
protocol by providing shell emulation for the attackers.

f) SMB: The SMB protocol enables network file sharing
between devices of the same network. Previous analysis of
the Stuxnet malware made evident that many attacks targeting
ICSs make use of SMB to propagate. In Modbus, master
systems control slaves and disseminate commands. These
systems are usually control servers or host systems connected
to PLCs or slaves that receive critical information and updates
from the sensors placed on devices and PLCs. The master
system is frequently a Windows XP host connected in a LAN.
By emulating the SMB protocol, along with Modbus, it is
possible to detect not only external attacks but also malicious
activities originating from the Intranet, e.g., the propagation
of Stuxnet. Thus, in HosTaGe the SMB protocol has been
implemented and customized to simulate a Modbus master
system. The customization involves using the SMB protocol
to simulate HosTaGe as a shared network drive to which a
malware might attempt to propagate after infiltrating a host
machine. The propagated file is detected, by the so-called file
injection module, and its hash value is sent to VirusTotal for
further analysis.

g) SMTP: Lastly, SMTP is used as a notification system
for ICSs; it is utilized to notify devices about changes that
trigger tasks. The SMTP service implemented in HosTaGe
does not provide the notification service, rather, it provides
a very basic protocol emulation for simple service discovery.

In the remainder of this section we go deeper into the
detection and signature generation mechanisms of HosTaGe.
We first provide the fundamental formal model, in the form of
EFSMs, followed by a discussion of the signature generation.

B. Formal Model

Our detection mechanism is formalized with an Extended
Finite State Machine (EFSM). An EFSM has all the properties

of a normal Finite State Machine (FSM) with the added feature
of utilizing if -conditions, instead of only boolean conditions,
to specify how a state transitions to a new state [2]. The
formal model of our proposed detection mechanism is given
by the Attack Detection EFSM M = (S, s0, I, O, V, P, δ, λ)
illustrated in Figure 1.

Fig. 1. EFSM of the attack detection and signature generation mechanism.

The set of all states are represented with S. The EFSM
starts in the Normal Behavior state, represented by s0. If
any protocol communication is detected by the honeypot,
the EFSM transitions to the Attack state. For as long as the
same protocol attack is observed, the state remains the same.
If a timeout occurs the EFSM transitions to the Generate
Signature state followed by the Issue Alert state. The signature
generation is optional and will capture either single attack
or multistage attack types. After an initial attack, observing
attacks originating from other protocols (but the same host)
that have not yet been observed moves the state to the next
Multistage Attack Level x, where x corresponds to the number
of different protocols observed after the first one.

The inputs I , outputs O, variables V and predicates P
are tightly linked together. State transitions are carried out
whenever specific inputs i ∈ I are received. This transitions
may also generate an output o ∈ O. In the Normal Behavior,
Attack and Multistage Attack Level x states, the supported
protocols are used as inputs and outputs. As such, {Modbus,
S7, SNMP, HTTP, Telnet , SMB, SMTP, HTTPS, SSH, FTP}
∈ I ∈ O for these states. The inputs I are not limited,
however, to only ports. Special activities of interest on a
protocol are also considered inputs. For instance, the act of
requesting a file through the SMB protocol (see Section III-A)
is an input on itself. V is a finite set of variables. These
variables are used to construct a set of predicates P used for
determining if a state transitions to another one. Each attack
state hold a boolean variable v ∈ V for each emulated port.
If a particular port has been observed in the entire life of the
EFSM, the corresponding variable for that port will be set
to true. Besides variables, predicates P consist of the logic
operator AND and the arithmetical operator =. We define the
Protocol Connection predicate as the condition where a new
protocol is observed without having observed other protocols
yet. The Different Protocol predicate indicates, as the name
suggests, that a new protocol has been observed after having
seen at least one other. If any of these predicates is true a state
transition takes place.

The final element of our model is the set of transitions
δ(si, i, p) = sj and the outputs λ(si, i, p) = o generated by the
transition itself. The set of transitions specify that whenever
state si ∈ S receives the input i and the predicate p ∈ P is
satisfied, the EFSM transitions to state sj and outputs o ∈ O.
The outputs are used by the Generate Signature state to create
signatures for misuse analysis.

C. Detection Mechanisms in HosTaGe

HosTaGe can distinguish between three different classes of
attacks: Single-Protocol Level Detection (SPLD), Multi-Stage
Level Detection (MSLD) and Payload Level Detection (PLD).

SPLD attacks refer to those that occur on a single protocol,
e.g., HTTP connection attempts without observing other pro-
tocols or any extraordinary payload-level information. This is
the simplest type of detection which still contains interesting
analysis potential. For example, we can infer that a multitude
of malware is trying to exploit the Telnet protocol (see Section
IV) due to the increasing amount of IoT devices such as
IP Webcams. As this is the simplest of the three cases, we
omit the description of its respective EFSM due to space
constrains. In fact, the EFSM shown in Figure 1 can be seen
as a generalized example of MSLD.

MSLD refers to attacks that originate from the same source
and attempt to exploit different types of protocols within a
small window of time. These type of attacks are identified by
our honeypot with the EFSM shown in Figure 1, as described
in Section III-B. An important factor in MSLD is the time-
window (tw) that determines whether an attack should be
mapped as the SPLD or the MSLD class. This means that
when the EFSM is on the Attack state and no further activity
is detected (for a maximum of tw) a timeout will occur and
the attack will be identified as SPLD. The tw can be adjusted
with respect to the monitored network and its requirements. In
this paper (see Section IV), we experimented with the tw value
of 15 minutes. In practice, this suggests that when tw = 15,
a transition from the Attack to the Multistage Attack Level 1
state (via the Different Protocol predicate) is possible when a
new attack occurs within the specified tw.

Fig. 2. EFSM for PLD in the case of Stuxnet propagation

PLD extends the applicability of the EFSM with respect to
the input I . Referring back to our formal model, the outputs
o ∈ O from the Attack and Multistage Attack Level x states
are used in the Generate Signature state to create signatures.
Signatures are also EFSMs that comply with the presented
model. As we already mentioned, the input is not limited
only to a port or protocol but also to potentially interesting
payload-level information. Take Figure 2 as an example of an

EFSM that represents a signatures generated by PLD. This
signature identifies Stuxnet attacks from the set of outputs O
obtained from the Attack Detection EFSM shown in Figure 1.
The Detection of Stuxnet EFSM assumes an initial Normal
Behavior state and transitions to SMB Attack if an SMB
protocol is observed. Stuxnet tries to inject an infected file
through SMB. After a file is received, it (or its hash value)
is sent to VirusTotal and, if the file is indeed malicious, the
EFSM transitions to the Stuxnet Attack state in which the
presence of Stuxnet is reported.

D. Signature Generation

As discussed in the previous section, upon detecting an
intrusion, HosTaGe is able to generate signatures for the Bro
IDS. IDSs usually inspect all incoming packets for malicious
content and make use of signatures to determine whether
traffic is malicious or not. HosTaGe captures not only the
attack packets, but also all received connection requests at
the packet level. In addition, it records the entire connection
tear-down that takes place between an adversary and the
honeypot. HosTaGe utilizes specific modules to handle the
above features, i.e., the listener, logger, connection guard,
HosTaGe service, multistage attack detection, and file injec-
tion detection modules. The Bro IDS uses the so-called Bro
language, an event-driven scripting language that can be used
for extending and customizing the IDS’s functionality. Bro’s
signatures rely on packet data to check for the content to
be matched for incoming packets. The signature generation
module in HosTaGe is used to generate the signature files 2 for
Bro. By specifying the protocols for the signature generation
mechanism, the packet information of the connection are
derived through the attack records module from HosTaGe to
a template signature file which is used to generate signature
files for Bro. The attack record module of HosTaGe generates
signature files for a protocol.

An example of a signature generated by HosTaGe, for the
Modbus protocol, is shown in the Listing 1. This signature,
automatically created from HosTaGe and written in the Bro
language, is able to detect the well-known Metasploit script
for Modbus services identification.

Listing 1. Modbus attack signature generated by HosTaGe
signature modbus-signature{

ip-proto == tcp
dst-port == 502
payload

/\x21\x00\x00\x00\x00\x06\x01\x04\x00
event "Modbus attack"
}

IV. RESULTS

In this section we show various experiments that demon-
strate HosTaGe’s detection capabilities as well as its ability
to generate signatures from detected attacks. In addition, we

2Utilizing the Bro terminology, HosTaGe can generate security policy files.

discuss observed multi-stage attacks and give some insights
regarding the detectability of our honeypot.

A. Honeypot Comparison

In this section, the HosTaGe and Conpot honeypots will
be compared. Both honeypots were deployed in a controlled
environment with no firewalls in between the honeypots and
the Internet. The honeypots had similar IP addresses in the
sense that they were in the same /24 subnet. Note that the
IP addresses were dynamic, hence, offering more generic
observations for the two honeypots. The evaluation period for
our tests was 12 weeks for all protocols except for S7 that
was limited to eight weeks. We should note that the purpose
of this experiment is to compare the two honeypots and to
identify automated attacks that target ICS networks; thus, no
advertisement of the honeypots was made. However, as we
later show, both honeypots were probed by a certain search
engine (Shodan).

Fig. 3. Comparison of attacks on HosTaGe and Conpot for HTTP, Modbus,
S7 and Telnet. Note, that Conpot does not support the Telnet protocol.

The results of our analysis are given in Figure 3. We
compare the results gathered from the two honeypots for the
HTTP, Modbus and S7 protocols. In addition, we present
the results gathered for Telnet (even though Conpot does not
support it) as Telnet is considered an important attack factor
for ICSs networks [6]. Finally, note that the S7 protocol
comparison presented in the figure is for a shorter period of
time (i.e., 8 weeks) as S7’s implementation in HosTaGe was
completed in a later stage. As one can observe from the results,
HosTaGe exhibits good detection accuracy in comparison to
Conpot. In fact, in most cases HosTaGe detected more attacks
than Conpot (e.g., HTTP, S7), while for the case of Modbus
the number of detected attacks is almost equivalent.

Lastly, Figure 4 depicts the malicious unique IP addresses
(and also their intersection) that were detected for each hon-
eypot (for the HTTP and Modbus protocols). In a glance, the
histogram shows that HosTaGe was able to consistently detect
more unique IP addresses (of attackers) than Conpot.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8 9 10 11 12

T
ot

al
 A

tta
ck

s

Week

Conpot
Common
HosTaGe

Fig. 4. Comparison of unique and common malicious IP addresses targeting
HosTaGe and Conpot

B. Multi-Stage attacks

During the observed period, HosTaGe also automatically
detected three multi-stage ICS attacks (within a time-window
of tw = 15 minutes). First, an attack from Iran was detected,
which based on the Geo-IP information, appeared to be
close to where Stuxnet was initially detected, i.e., the Tehran
Nuclear Research Center. The attack included a portscan and
sent an HTTP GET request to the honeypot. Subsequently, we
detected an Nmap script that was trying to validate whether
a Modbus service is indeed running on the host. The second
interesting multi-stage attack was originated from the Zhejiang
Nuclear Industry in China. It started with a portscan, continued
with an HTTP attack and finished with Modbus protocol
requests that queried specific ICS services. The last attack was
from an area close to a power plant in Colombia. The attack
stages consisted of a web-connection through HTTP, a general
purpose scan of the network and finally an attempted Telnet
connection to the honeypot.

C. Honeypot Evasion

One essential requirement for honeypots is their ability
to remain undetected; hiding the fact that this is indeed a
honeypot and not what is being advertised. In this section
we discuss how, in the aforementioned experimental setup,
HosTaGe managed to remain undetected (while Conpot did
not) from the Shodan3 search engine. Shodan is a specialized
search engine that crawls the Internet and attempts to iden-
tify connected devices, e.g., IP web-cameras, ICSs, etc. [1].
Through the continuous process of crawling and indexing, the
system creates an up-to-date database of systems and services
exposed on the Internet. Recently, Shodan implemented detec-
tion mechanisms to identify honeypots. It performs a series of
probes, and checks, and subsequently creates a score for each
probed device. Based on this score value, Shodan determines
whether a specific system is an honeypot or not.

3https://www.shodan.io

A few weeks after our initial experiments, both HosTaGe
and Conpot received probes from IPs that belong to Shodan.
The protocols probed were S7, Modbus, SSH and HTTP,
among others. For the SSH and HTTP protocols the messages
and requests were of low complexity; the HTTP protocol
involved a GET request and the SSH an attempt to estab-
lish a connection. The S7 and Modbus attacks were more
complicated. Our analysis indicates that the probes are most
likely the result of modified Nmap/Metasploit scripts for ICSs
identification. These probes were able to identify Conpot as a
honeypot but not HosTaGe. The S7 attack involved an audit
of the device type, location, serial number, plant identification
and module name. The Modbus attack involved fetching
details of certain units (i.e., unit number 0 and 255) and
their slave data. On the one hand, Conpot could not respond
meaningfully in all the aforementioned requests (either due to
static serial numbers or Modbus protocol simulation errors)
and thus it was classified as a honeypot. On the other hand,
HosTaGe managed to respond successfully and hence remain
undetected.

D. Signature Generation

The last part of our evaluation focuses on the signature
generation mechanism and its effectiveness. We study the
applicability of the generated signatures.

Our first goal is to generate multi-stage attack signatures.
To achieve this we manually inject attacks into a HosTaGe
instance in a controlled environment. Attacks are addition-
ally captured by the network packet capture tool Wireshark
and saved for future reference (see below). Simultaneously,
HosTaGe detects attacks and constructs signatures from both
the protocol and payload-level interaction.

For determining the applicability of the generated signa-
tures, we perform two different tests. All tests utilize publicly
available datasets of network traffic (in the form of pcap files).
They consist of synthetic and real network captures4, malware
focused traffic5, and honeypot captured traffic6

First, we determine whether the generated signatures detect
false positives. We import the signatures into the Bro IDS and
replay the network traffic of the (unmodified) test datasets.
With respect to our definitions in Section III-C, we utilize a
time-window of tw = 15 (minutes) for our tests. No multi-
stage attacks were detected by Bro, as expected. Afterwards,
we merge each dataset with the network traffic captured by
Wireshark in the initial step (that includes our injected multi-
stage attacks). Subsequently, we replay each modified network
file while Bro is running. In all cases, Bro successfully detects
all the injected attacks without generating any false positives.

V. CONCLUSION

The increasing number of cyber-attacks, along with the
need to protect critical infrastructure, such as ICSs, highlights
the need for tailored security mechanisms. In this paper we

4Small and Big flows datasets: http://tcpreplay.appneta.com/wiki/captures.html
5CTU-13 Dataset: https://stratosphereips.org/category/dataset.html
6HoneyBot Dataset: http://www.netresec.com/?page=PcapFiles

presented a honeypot capable of detecting attacks on ICS net-
works. We formalize the detection mechanisms with EFSMs
and discuss the ability to automatically generate signatures
from observed attacks. Our experiments show that our proposal
can be easily deployed in practice and that it is able to
support existing intrusion detection infrastructure. As future
work, we plan to further examine both honeypot evasion
mechanisms as well as honeypot-side techniques to avoid such
attacks. Lastly, we aim at further assessing Shodan’s impact
on the effectiveness of a honeypot (after its identification),
as malware might make use of this information to avoid
contacting well known honeypots.

REFERENCES

[1] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins.
Evaluation of the ability of the Shodan search engine to identify Internet-
facing industrial control devices. International Journal of Critical
Infrastructure Protection, 7(2):114–123, 2014.

[2] Marcelo Fantinato and Mario Jino. Applying extended finite state
machines in software testing of interactive systems. In Interactive
Systems: Design, Specification, and Verification (DSV-IS), volume 2844,
pages 34–45. Springer Berlin Heidelberg, 2003.

[3] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, dis-
tributed worm signature detection. In USENIX security symposium,
volume 286. San Diego, CA, 2004.

[4] Christian Kreibich and Jon Crowcroft. Honeycomb – Creating Intrusion
Detection Signatures Using Honeypots. In ACM SIGCOMM Computer
Communication Review, volume 34, pages 51 – 56, 2004.

[5] R Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security &
Privacy, IEEE, (June):49–51, 2011.

[6] Yin Pa Minn, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
and Christian Rossow. IoTPOT : Analysing the Rise of IoT Compro-
mises. In 9th USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2015.

[7] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435–2463, dec 1999.

[8] Niels Provos. Honeyd : A Virtual Honeypot Daemon. In DFN-CERT
workshop, 2003.

[9] Lukas Rist, Daniel Haslinger, John Smith, Johny Vestergaard, and
Andrea Pasquale. Conpot honeypot, 2013.

[10] Hemant Sengar, Duminda Wijesekera, Haining Wang, and Sushil Jajo-
dia. VoIP intrusion detection through interacting protocol state machines.
In International Conference on Dependable Systems and Networks
(DSN), pages 393–402. IEEE, 2006.

[11] Lance Spitzner. Honeypots : Catching the Insider Threat. In Computer
Security Applications Conference, pages 170–179. IEEE, 2003.

[12] Urjita Thakar, Sudarshan Varma, and AK Ramani. Honeyanalyzer–
analysis and extraction of intrusion detection patterns & signatures using
honeypot. In Proceedings of the Second International Conference on
Innovations in Information Technology, 2005.

[13] Emmanouil Vasilomanolakis, Shankar Karuppayah, Mathias Fischer,
Max Mühlhäuser, Mihai Plasoianu, Lars Pandikow, and Wulf Pfeiffer.
This Network is Infected : HosTaGe - a Low-Interaction Honeypot for
Mobile Devices. In Security and privacy in smartphones & mobile
devices, pages 43–48. ACM, 2013.

[14] Emmanouil Vasilomanolakis, Shankar Karuppayah, Panayotis Kikiras,
and Max Mühlhäuser. A honeypot-driven cyber incident monitor: lessons
learned and steps ahead. In International Conference on Security of
Information and Networks. ACM, 2015.

[15] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser,
and Mathias Fischer. Taxonomy and Survey of Collaborative Intrusion
Detection. ACM Computing Surveys, 47(4):33, 2015.

[16] Nikos Virvilis and Dimitris Gritzalis. The Big Four - What We Did
Wrong in Advanced Persistent Threat Detection? In International
Conference on Availability, Reliability and Security, pages 248–254.
IEEE, 2013.

