UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher

UPGRADE is published on behalf of CEPIS (Council of European Profes-
sional Informatics Societies, <http://www.cepis.org/>) by Novética <http://
www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI (Asociacion
de Técnicos de Informatica, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version printed;
summary, abstracts and some articles online) by Novética

UPGRADE was created in October 2000 by CEPIS and was first published
by Novética and INFORMATIK/INFORMATIQUE, bimonthly journal of SVI/
FSI (Swiss Federation of Professional Informatics Societies, <http://
www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European NETwork),

the network of CEPIS member societies' publications, that currently includes

the following ones:

« Informatik-Spektrum, journal published by Springer Verlag on behalf of
the CEPIS societies Gl, Germany, and S, Switzerland

+ ITNOW, magazine published by Oxford University Press on behalf of the
British CEPIS society BCS

+ Mondo Digitale, digital journal from the Italian CEPIS society AICA

+ Novatica, journal from the Spanish CEPIS society ATI

+ OCG Journal, journal from the Austrian CEPIS society OCG

« Pliroforiki, journal from the Cyprus CEPIS society CCS

« Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

Editorial Team

Chief Editor: Lloreng Pagés-Casas, Spain, <pages@ati.es>
Associate Editors:

Frangois Louis Nicolet, Switzerland, <nicolet@acm.org>
Roberto Carniel, Italy, <carniel@dgt.uniud.it>

Zakaria Maamar, Arab Emirates, <Zakaria. Maamar@ zu.ac.ae>
Soraya Kouadri Mostéfaoui, Switzerland,
<soraya.kouadrimostefaoui @gmail.com>

Rafael Fernandez Calvo, Spain, <rfcalvo@ati.es>

Editorial Board

Prof. Wolffried Stucky, CEPIS Former President

Prof. Nello Scarabottolo, CEPIS Vice President

Fernando Piera Gémez and Lloreng Pagés-Casas, ATl (Spain)
Francois Louis Nicolet, SI (Switzerland)

Roberto Carniel, ALSI - Tecnoteca (ltaly)

UPENET Advisory Board

Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)

Franco Filippazzi (Mondo Digitale, Italy)

Lloreng Pagés-Casas (Novatica, Spain)

Veith Risak (OCG Journal, Austria)

Panicos Masouras (Pliroforiki, Cyprus)

Andrzej Marciniak (Pro Dialog, Poland)

Rafael Fernandez Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur Cook,
Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore, Hilary Green,
Roger Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"The Natural man" / © ATl 2007

Layout Design: Frangois Louis Nicolet
Composition: Jorge Llacer-Gil de Ramales

Editorial correspondence: Lloreng Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http:/www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright

© Novatica 2007 (for the monograph)

© CEPIS 2007 (for the sections UPENET and CEPIS News)

All rights reserved under otherwise stated. Abstracting is permitted with
credit to the source. For copying, reprint, or republication permission, con-
tact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (October 2007)
" Advanced Information
Systems Project Management "
(The full schedule of UPGRADE is available at our website)

©@cers PHPGRADE

The Evropean Journal for the Informatics Professional
http:/ /www.upgrade-cepis.org

Vol. VI, issue No. 4, August 2007

2 Special Contribution. The Current State of European Co-operation
in e-Skills and Related Matters for IT Star — Geoff McMullen (Presi-
dent of CEPIS)

4 Presentation. Ambient Intelligence today — Julio Abascal-Gonzalez,
Alberto Lafuente-Rojo, Yang Cai, and Tom Gross

8 Ambient Intelligence: Chronicle of an Announced Technological
Revolution — Alberto Lafuente-Rojo, Julio Abascal-Gonzalez, and
Yan Cai

13 Ambient Intelligence at Home: Facts and Future — Xavier Alaméan-
Roldan, Francisco Ballesteros-Camara, José Bravo-Rodriguez, and
Diego Fernandez-Aparicio

19 Ambient Intelligence, from the Vision to Reality. Perspective of a
Telecom Operator — Rodrigo Gonzélez-Martinez

25 A Middleware-based Approach for Context-aware Computing —
Zigor Salvador-Artola, Mikel Larrea-Alava, Daniel Cascado-Cabal-
lero, José Luis Sevillano-Ramos, Roberto Casas-Nebra, and Alvaro
Marco-Marco

31 Designing and Implementing Smart Spaces — Erwin Aitenbichler,
Fernando Lyardet, and Max Mihlh&user

38 Ambient Media — Artur Lugmayr

44 Time, Space, Connection: Scaling Ambient Intelligence — Mirko
Fetter and Tom Gross

50 From ITNOW (BCS, United Kingdom)
Social Impact of ICT
A - hunting we ... won’t go — Andrew Skeates

51 CEPIS Projects. CEPIS/Harmonise Newsletter — Francois-Philippe
Draguet

52 CEPIS Projects. EUCIP: News from across Europe — Neil Farren
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some

articles online) by Novatica, journal of the Spanish CEPIS society ATl (Asociacion de Técnicos de
Informatica) at <http://www.ati.es/novatica/>.



Ambient Intelligence

Designing and Implementing Smart Spaces

Erwin Aitenbichler, Fernando Lyardet, and Max Mihlh&user

The Mundo project at the Telecooperation Group is concerned with general models and architectures for ubiquitous
computing. The Mundo Smart Environments system provides the necessary core services and tools to build applications
for such environments. While the development of single services is common practice, the matter of how to coordinate
services and how to make service bundles behave in a "smart" manner is still a research issue. We present a software
development process for the systematic development of smart space applications. This process is supported by a set of
common services and tools for modelling, inspection, debugging, testing, and rapid prototyping. We describe how these

tools are applied in certain phases to support the process.

Keywords: Context Awareness, Pervasive Computing,
Rapid Prototyping, Smart Space, Smart Environment, Ubiq-
uitous Computing.

1 Introduction

Smart spaces or smart environments are living or work
areas where computer technology is integrated into the build-
ing infrastructure. Typically, the goal is to ease interaction
with the computer system or to make work processes more
efficient. Smart spaces are inherently distributed systems
with many heterogeneous computing nodes. State-of-the-
art applications are based on service-oriented architectures
(SOA). While it is common knowledge how to engineer
single application services, the problem of how to efficiently
coordinate services and how to make service bundles "smart"
is largely unresolved.

In this article we focus on the context-based coordina-
tion of services on the infrastructure side. To do so, we de-
scribe a middleware layer containing a set of services use-
ful for any smart space application. It supports the three
important areas of communication, context, and coordina-
tion.

Communication: A smart space contains a multitude
of heterogeneous devices. The integration of all these sys-
tems is always achieved at the software level. Thus, at a
basic level, a distributed runtime system is the glue that binds
together all the software services running on different plat-
forms, operating systems, or programming languages. In
addition, it must support spontaneous networking with de-
vices brought into the environment by users.

Context: In smart spaces, interactions no longer occur
in one place - they take place at changing locations or in a
freely moving context. For that reason, the location of peo-
ple and objects in the space play an important role. Loca-
tions of stationary objects can be modelled in a world model,
while locations of mobile objects can be determined with
sensors. Beside location context, various other sensors (tilt,
acceleration, or weight sensors, microphones, etc.) or serv-
ices (calendars, schedules, room reservation system, etc.)
can provide valuable information about users and their tasks.

© Novatica

Authors

Erwin Aitenbichler received his M.Sc. in Computer Science
from Johannes Kepler Universitét in Linz, Austria and his Ph.D.
in Computer Science from Technische Universitat Darmstadt,
Germany. He is currently a post-doctoral researcher in the
Telecooperation Group in the Department of Computer Science
at the Technische Universitat Darmstadt. His research interests
are smart environments, and ubiquitous computing. Erwin is a
member of the ACM. <erwin@tk.informatik.tu-darmstadt.de>.

Fernando Lyardet obtained his MSc in informatics from the
Universidad Nacional de La Plata (UNLP), Argentina, and is
currently a research assistant at the Telecooperation group,
Technische Universitat Darmstadt, Germany. His research
interests include smart environments, smart products, and
ubiquitous computing. Fernando is also member of the ACM
and the AAAI. <fernando@tk.informatik.tu-darmstadt.de>.

Max Muhlh&user is a Full Professor of Computer Science at
Technische Universitat Darmstadt, Germany. He received his
Doctorate in Informatics from the Universitat Karlsruhe and
founded a research centre for Digital Equipment. Since 1989,
he has worked either as a professor or visiting professor at
Universities in Germany, Austria, France, Canada, and the US.
Max has published over 200 articles and co-authored and edited
books about e-learning, distributed and multimedia software
engineering, and ubiquitous computing. <max@tk.informatik.tu-
darmstadt.de>.

The raw data obtained from sensors must be processed and
transformed into context information that is useful for ap-
plications.

Coordination: After programming application function-
ality in a set of services, the logic of the overall application
must either be programmed in some programming language
or designed with suitable tools in a model-based approach.
In this area, Rapid Application Development (RAD) tools
are highly beneficial. Firstly, they allow applications to be
prototyped rapidly, which is important in ubiquitous com-
puting research. Secondly, technicians or end-users with-

UPGRADE vol. viil, No. 4, August 2007 31



Ambient Intelligence

Tocls
I 'u'n'-::rld'l.l'ial.-'.rl
SYECAAD
Application L .
Application Services ] Dislr, Test
| Inspect I
Smart Space Location Caontext Senvice Warkflow
Middlewars Systems Sarver Discovery Engine
Communication MundoCiara
Mickdleware

Figure 1: Mundo Smart Environments Software Architecture.

out programming skills are able to customize high-level
application functionality.

This article describes the Mundo Smart Environments
system. The work is part of the Mundo project [1] which is
concerned with general models and architectures for ubig-
uitous computing. We present a software architecture for
smart environments, the necessary core services, and de-
velopment tools which provide solutions for the three areas
described. We then describe a software development proc-
ess for smart space applications and show how our tools are
used in this process.

Our article is structured as follows. In Section 2 we give
an overview of our Mundo Smart Environments software
architecture. Based on this platform, applications are de-
veloped according to the process described in Section 3.
We show how our tools are used to support certain tasks in
this process. The application example in Section 4 demon-
strates the application of this process. Related work is de-
scribed in Section 5 and we finally conclude the article in
Section 6.

2 Smart Environments Platform

The overall structure of our smart environment applica-
tions is based on a service-oriented architecture as shown
in Figure 1. The communication middleware MundoCore
[2] provides the common software basis and enables com-
munication between the computers in the distributed sys-
tem. Classical distributed systems middleware supports as-
pects such as naming, remote procedure calls, and distrib-
uted object computing. In ubiquitous computing, there are
several new kinds of services that are required by almost
any application. It is therefore useful to move this function-
ality into the middleware layer. Common services for smart
environments include location tracking, context processing,
service discovery, and workflow support. The middleware
and its services will be explained in greater depth in the
following sections.

2.1 MundoCore
MundoCore is the lowest middleware layer of our smart

32 UPGRADE vol. viil, No. 4, August 2007

environments platform. It is responsible for all communi-
cation-related aspects and was specifically designed for the
needs of services in the higher layers. The original aim of
distributed object computing middleware was to enable the
cooperation of objects that are independent of devices, op-
erating systems, and programming languages. Over time,
personal computer and server platforms became more pow-
erful and had no problems running large, monolithic, and
not well-optimized middleware software. Ubiquitous com-
puting introduces a wide spectrum of new computing plat-
forms, vastly different in terms of size, mobility and usabil-
ity. The lower end of this spectrum is marked by computers
embedded into everyday objects and small sensor nodes that
often have only very limited processing capabilities.

MundoCore is based on a microkernel design, supports
dynamic reconfiguration, and provides a common set of
APIs for different programming languages (Java, C++, Py-
thon) on a wide range of different devices. With its small
footprint it can also be run on many embedded systems.
The advantage of C++ is that it is easy to access hardware,
low-level operating system APIs, and program efficient
audio and video processing services. MundoCore C++ is
therefore primarily used for low-level services and for serv-
ices where performance is critical. Most higher-level serv-
ices are programmed in Java, because of the higher produc-
tivity. The various versions of MundoCore are compatible
at protocol level.

MundoCore’s internal architecture addresses the need
for different transport and invocation protocols, automatic
peer discovery, peer-to-peer overlays, different communi-
cation abstractions, and proper language bindings. An ef-
fective API must provide programmers with functions that
are appropriate to their specific application scenarios. Dis-
tributed object computing is a widely accepted and easy-to-
use programming model. In context-aware and other infor-
mation-driven systems, publish/subscribe is a better abstrac-
tion for distributing events because it supports multicasting
and decouples data producers from data consumers. Hav-
ing the right abstractions provided by middleware leads to
lower application development time and a reduction in the

© Novatica



Ambient Intelligence

BESIDTrarlaar

| PAEELE e L rd

|3—€. CEATTR |3—E| wESEadgdlaakup |3—G|

BRISIDTrardliar

AL prelsakup P

| ek ri

1

IRiSNgsrralizer

| BISEwentReceiner |3—EE '3—4 IESCanrd Trans P—q

IRIFIMGipkug

] HU .

ihisenseiBTranslanar

RN | ;

E CeardSaare El SearDevidelaskug J]—tl Siziehelatizn J:|
!

!

SmreCosed

|l.|.-w--.f=..-:--ﬁ-=-.-rw- |'l—l-‘| Utisbraessmralizer |'I—F UbssgsseloodTrans l‘-&—l-‘l UbisenbeiDloma [

d- Cantaireleabup P

Figure 2: Context Server Widget Configuration for Locating Users.

size of application code.

In addition to events, remote method calls can also be
implemented based on the publish/subscribe system. In this
way, services are decoupled from one another and gain ac-
cess and execution transparency. When a client sends re-
quests to a service, the publish/subscribe abstraction pro-
vides a functionality similar to a simple naming service.
Because services subscribe their interfaces at the place of
execution, services can be started anywhere in the system.
This allows us to define the places of execution of services
at deployment time in a flexible way or to migrate services
at runtime dynamically.

2.2 Context Server

The Mundo Context Server [3] is responsible for trans-
forming readings gathered from sensors into information
that is meaningful to applications. The context server pro-
vides the following functionality:

m Interpreting data received from sensors and trans-
forming this data into a common representation.

m  Maintaining a geometric world model of the smart en-
vironment and supporting geometric operations and queries.

m Inferring "higher-level” context from "lower-level"
context.

m Notifying applications when certain context proper-
ties change.

m Storing histories of sensed and inferred context and
supporting queries in those histories.

The server is based on the notion of widgets to process
context information. The data produced by sensors is now very
heterogeneous. First, the server transforms the gathered data
into a small number of common data representations. For ex-
ample, the different data formats and events from RFID read-
ers, transponder readers, or infrared badge systems are trans-
formed into acommon ID data type and a set of common reader
events. Similarly, positions and orientations from 3D tracking
systems are transformed into a common coordinate system.
Up to this point, the I1Ds stand for tags, transponders, or badges.
The next step is to map these IDs to the IDs of persons or
objects carrying those tags.

To derive higher-level context information, the context
server uses modelled context, i.e., a detailed geometric (2D
or 3D) world model. A world model is the virtual counter-
part of the real environment targeted by the application and

© Novatica

is basically a detailed geometric model containing walls,
furniture, and other objects. The model is augmented with a
metadata layer describing objects and regions of interest.
With the help of this modelled context, the server is now
able to infer higher-level context information from location
systems that provide 3D coordinates and orientations, such
as which room a user is in, which objects are near the user,
or which object the user is currently looking at. Conse-
quently, the information delivered to applications is already
abstracted from the underlying sensors and describe changes
in higher-level context.

For example, consider the widget configuration shown
in Figure 2. It is used to derive certain relations between
users and objects based on three different location tracking
systems: the Mundo badge system, an IR optical tracking
system, and the Ubisense tracking system. The badge sys-
tem directly provides symbolic location information. Thus,
only a mapping from system-specific badge and room 1Ds
to global IDs is necessary.

Data from the 3D tracking systems must also be inter-
preted using the world model. All derived relations are writ-
ten into a tuple space. With the widget configuration shown
in Figure 2, the situation in Figure 4, and given that users
can be tracked by at least one of the three location systems,
the context server would derive the relations for room A112
shown in Table 1.

Applications can query the tuplespace or subscribe to
changes. A query operation returns all relations matching a
specified pattern. When an application subscribes to the
tuplespace, it will be notified each time a new or updated
tuple matching the specified pattern is written to the space.

There are two major reasons why context processing is
implemented as part of the middleware, separate from ap-
plications. Firstly, this service is required by many ubiqui-
tous computing applications and if it is part of a common
middleware it can be easily reused. Secondly, context
processing is a long-running task and may need to record
information over a long time.

Applications may run only for a short time but may need
to access context information from the past, collected over
a long period of time. Accessing information from the past
requires this information to have been recorded beforehand.
Consequently, the context server must also be configured
so that it records all the information that will be needed
later.

UPGRADE vol. viil, No. 4, August 2007 33



Ambient Intelligence

User:Erwin in Room:A112
User:Erwin near | Device:PolyvisionBoard
User:Andreas | in Room:A112

Table 1: User Relations for Room 112 as Derived by the
Context Server.

3 Development Process

Figure 3 shows the different phases of the software de-
velopment process. It is based on the waterfall model and
has been refined for certain tasks. In many phases existing
tools are sufficient, e.g., an IDE for Java programming, or
JUnit to perform unit tests. For several other phases we in-
troduce additional tools to support the development proc-
ess. In the following section we describe how these tools
support the different phases of software development.

3.1 Analysis Phase

In the analysis phase, it is first necessary to identify
which context information the application can benefit from.
Because the use of context information is highly applica-
tion-specific, it is hard or impossible to create a universal
context model which covers every possible requirement.
Instead, our aim is to define processes describing how to
select sensors, configure processing, and how to make this
context information accessible to applications.

On the basis of information requirements, the necessary
sensors can be selected. Especially for location tracking
systems, the required resolution and accuracy plays a ma-
jor role in this selection process.

Next, the interface to the application is defined. This
includes message format and the kinds of subscriptions and
queries needed by the application.

Finally, the context server is configured such that it trans-
forms the raw sensor readings into what the application
needs. Because context information will only be available
for later retrieval when it is recorded in time, database
widgets must be configured accordingly. It must be decided
which information has to be stored and for how long.

3.2 Design Phase
WorldView is a versatile tool with functions to support
the modelling, implementation, and testing phases. In the

Inialization Anatyaie | Design

Impdermaniatisn + Tesling

modelling phase, WorldView is used to create a spatial model
of the smart space. It supports 2D models as well as de-
tailed geometric 3D models. In the map window, the appli-
cation shows the floor layout and provides an overview of
the available resources and their locations. Resources in-
clude tags and sensors of different location systems, wall
displays, and smart doorplates.

WorldView provides an easy way to define "regions of
interest”. These are regions of arbitrary shape which can be
annotated with metadata. Regions can be uploaded to the
context server as part of the world model and accessed by
context widgets in order to derive higher-level context.
Location-aware applications can then specify subscriptions
based on semantic location instead of having to work with
coordinates of the underlying location tracking system. In
this way, WorldView provides a simple way to define the
regions of interest that should trigger spatial events.

3.3 Implementation Phase

A lot of research into ubiquitous computing is being
conducted around possible application scenarios that can
be put to daily use. Many of these scenarios are quite sim-
ple and straightforward to implement. However, many of
these applications never come to fruition, because the whole
process from development to deployment is still very com-
plex. To write a new application, the developer typically
has to start his or her IDE, install all required libraries, write
and test code and then deploy the application on a server.
For that reason, we wanted to make this development proc-
ess as quick and easy as possible. One aim was to enable a
wide variety of people with some basic technical back-
ground, but not necessarily with knowledge of a program-
ming language, to create and customize applications. Sim-
ple-structured applications can be directly developed with
the tools provided, while more complex applications can
be prototyped.

The SYstem for Easy Context Aware Application Devel-
opment (SYECAAD) [4] facilitates the rapid development
of context-aware applications. Simple applications can be
completely developed with this tool and more complex sys-
tems can be prototyped. Applications are built using a
graphic-oriented block model. The basic building blocks
are called functional units. Functional units have input and
output pins and are interconnected to form functional as-
semblies.

Functional units come in three different flavours: sen-

Taglrg + Iragralian i Mainberance

Serace | L] sy
Calibratian Fasdback

i i Mrck-hagai Sarvica
I:l——lj_"l Vetorkd ”M'”'H Implem=niation H Implementtion
ot L b SR

W .

Additianal
Toals:

Wilorkd et
SYECAND

SYECAAD
Eclipsa Plig-n

Wirldyiew

nit Disinuled v L[ Eyatemn
Tesis Tests Tesls Tesls
e

Figure 3: Tool Support for the Different Phases of Software Development.

34 UPGRADE vol. viil, No. 4, August 2007

- T Weore” L L
Inspect, WorkdView:  Warkd View: WarkdWiew MurdaCore
Distribubed  Sansor Kanianing Leggng
Seripls Sirnulatian
© Novética



Ambient Intelligence

sors, operations, and actors. A sensor unit either receives
data directly from a sensor or pre-processed data from the
context server. Operations perform logical or arithmetic
operations, implement dictionaries, render HTML pages,
etc. On the output side, actors can control the smart envi-
ronment or send feedback to users by publishing MundoCore
events or by invoking methods on arbitrary remote serv-
ices. This way, an application can, say, control smart power
plugs, control data projectors, send emails, send SMS to
mobile phones, send instant messenger messages, or dis-
play information on electronic doorplates.

Functional assemblies are a modularization concept.
Assembles can be installed, removed, restarted, and edited
independently. In practice, the logic for each room in a build-
ing would be modelled in a separate assembly. A special
feature of SYECAAD is that it can compute the output states
of functional units based both on an event-based and a state-
based model. Each time the value of a sensor changes, all
operations depending on this value must re-evaluate their
state. In an event-based model, changes are propagated as
messages throughout the system. However, when a func-
tional unit is started, output values are not available until
all inputs have propagated change messages. This is very
impractical during system development. In a state-based
model, the state of all units is evaluated at a fixed interval.
This approach is not efficient, but all output states are avail-
able immediately. The hybrid model used in SYECAAD
permits an efficient execution and still allows changes to be
made in the running system almost without losing state.

SYECAAD uses a client/server architecture. The server
hosts the applications. Clients connect to the server and al-
low running applications to be controlled, edited, and tested.
The Application Logic Editor in WorldView is such a client
to edit applications (Figure 4). This system significantly
simplifies application development. It is no longer neces-
sary to set up a development environment, because all the
application logic is centrally stored on the application server.
The development environment is a client application that
connects to this server. In this way, an application can be
loaded from the server, displayed, edited, and deployed with
the click of a button.

If the standard sensor, operation, and actor blocks are
not sufficient, the system can be extended by programming
new blocks in Java. A plug-in for the Eclipse IDE supports
the programmer with code templates and help documents.

3.4 Testing Phase

Implementations of abstract data types and smaller units
of frameworks can be successfully tested with unit tests.
However, to verify the correct behaviour of a distributed
system, it is also essential to run integration tests across
multiple computers.

! Local Operating Network: a bus system for building automation

© Novatica

To conduct such tests, we have implemented a Distrib-
uted Script Interpreter. Script server processes are started
on multiple hosts in the network. The script servers and the
master script interpreter are based on MundoCore for com-
munication. This allows them to automatically discover each
other on startup. To run a test, the name of an XML script
file is passed to the master interpreter. The master inter-
preter then distributes the subtasks to the server processes
in the network and finally collects all test results.

The MundoCore Inspect tool is a low-level tool that di-
rectly builds on the communication middleware. It can con-
nect to an arbitrary remote node and manage the hosted serv-
ices. The program makes it possible to view the routing ta-
bles, list the import and export tables of message brokers,
monitor the messages sent over a channel, view service in-
terfaces, dynamically call remote methods with a generic
client, view service configuration information, and
reconfigure services.

With VR-Tests it is possible to test applications from the
desktop. WorldView can be used to simulate certain track-
ing systems. In this case, the user can move around the sym-
bols on the map and WorldView generates the same kind of
events the actual tracking system would. This significantly
reduces application development times because users do not
have to get up from their workplace and move physical
objects around every time they want to test their applica-
tions.

3.5 Deployment and Maintenance

When the results from VR Tests are satisfactory, then
the application can be tested together with the real sensors.
In this phase, the WorldView application can be used to in-
spect the running system by visualizing the events from
certain event sources, like tracking systems. If a tag is physi-
cally moved around, the position of the corresponding sym-
bol in the map view is updated in real-time.

The MundoCore middleware implements heap debug-
ging, system resource tracking, deadlock detection, progress
monitoring, and logging. Some bugs are not discovered until
the system is tested with the real sensors. In this case, de-
tailed logs provide important information for developers to
fix the problem.

4 Application Example

We will describe three simple applications created with
our tools in the following. The configuration for three rooms
is shown in Figure 4.

Office: For the office room A109 we defined that if the
light level is below a certain threshold and there is at least
one person in the room, then the lights are turned on. Alter-
natively it is possible to use the manual light switch. This
application is based on a light sensor and a location track-
ing system as inputs, and LON? -controllable lamps as out-
puts.

Coffee kitchen: The coffee kitchen A120 configuration
describes that if at least two people stay in the kitchen for
some time, then an instant message is sent to all people in

UPGRADE vol. viil, No. 4, August 2007 35



Ambient Intelligence

ana
File Edit Wiew Toal

Morido Worddiiew 0.000: Map {3000

B OB WorldView: Schematic (SO0% =" e,
File Edit “Weew Tool

.r_.,l
) -

oL

[ =

— | P
&
B 8 WorldVies: Schematic 1500060
Filw Edn Wiew Teal

rﬂ—ufﬂ—j;l

|—‘.

Progertic
) .

N A0%EAA..
W TAG GG

widlh £3.3335..
=eight 115133,
A4 D e

charmlbl.. ALl da..

aoe
File Edit view Taal

WaifdVies: Schimatic (50.060

Figure 4: Spatial Model in WorldView and Application Logic for three Rooms.

offices nearby, inviting them for “socializing". This appli-
cation is based on a location tracking system as input and a
service implementing the Jabber protocol to send instant
messages.

Server room: In our new computer science building the
air conditioning system fails from time to time. The con-
figuration for A116 defines that if the temperature exceeds
27 degrees, then the system administrator is notified by SMS.
When the temperature drops below 25 degrees, another SMS
is sent. This application is based on an SNMP thermometer
as input and a service for sending short messages via an
Internet website.

5 Related Work

Intelligent environments are examined in numerous
projects, such as Gaia [5], Aura [6], Nexus [7] and iWork
[8], and many toolkits and infrastructures have been con-
structed for the purposes of developing and supporting such
applications. These technologies provide novel ideas to
address different design concerns such as the interface [9]
[10] [11], collaboration between heterogeneous devices [12],
and context awareness [13]. Some tools for developing envi-
ronment models are also available from commercially avail-
able LBS products such as Ubisense [14] and Elpas [15], but
their intended audience is different. While Ubisense provides
a C++ interface aimed at developers, the rule-based approach
of Elpas allows end-user development through its rule editor.

The ability of end-user development has been also pur-
sued through various approaches. For instance, CAMP [16]
provides a simplified natural language using the idea of
"Magnetic Poetry", and Hull describes a system for provid-
ing media landscapes based on environment model and
scripting [17]. Also, in the context of the Nexus project, a
tool was developed for smart environments programming
based on flow charts [7]. However, these projects cover
only very specific application and design concerns.

Contrary to the previous examples, our system covers

36 UPGRADE vol. viil, No. 4, August 2007

all phases of the development process with a flexible plat-
form and reusable services and tools. The description of the
process presented in this article is an important contribu-
tion to the standardization of the development of this kind
of applications.

6 Summary

Creating context-aware applications for smart spaces
raises the need for novel platforms and tools to support ap-
plication development. At a basic level, our middleware
MundoCore provides the necessary integration platform to
enable communication between the heterogeneous devices
in the environment. Our smart environments system sup-
ports a set of common services at the middleware layer. The
context server interfaces with sensors, transforms sensor
data to information that is meaningful to applications and
provides applications with a query and event subscription
interfaces. The WorldView tool supports modelling of smart
environments and monitoring. The SYECAAD tool facili-
tates the rapid development of context-aware applications
based on visual programming. We have described a soft-
ware development process and how these tools are embed-
ded into the process, thereby contributing to the systematic
development of smart space applications.

References

[1] Andreas Hartl, Erwin Aitenbichler, Gerhard Austaller,
Andreas Heinemann, Tobias Limberger, EImar Braun,
Max Muhlhduser. Engineering Multimedia-Aware Per-
sonalized Ubiquitous Services. In IEEE Fourth Inter-
national Symposium on Multimedia Software Engi-
neering (MSE’02), pages 344-351, December 2002.

[2] Erwin Aitenbichler, Jussi Kangasharju, Max
Miuhlh&user. MundoCore: A Light-weight Infrastruc-
ture for Pervasive Computing. Pervasive and Mo-
bile Computing, 3(4):332-361, August 2007.
doi:10.1016/j.pmcj.2007.04.002.

© Novatica



Ambient Intelligence

[3] Marek Meyer. Context Server: Location Context Sup-
port for Ubiquitous Computing. Master’s thesis,
Darmstadt University of Technology, January 2005.

[4] Jean Schitz. SYECAAD: Ein System zur einfachen
Erzeugung kontextsensitiver Applikationen. Master’s
thesis, Technische Universitdt Darmstadt, 2005.

[5] Manuel Roman, Christopher Hess, Renato Cerqueira,
Anand Ranganathan, Roy H. Campbell, Klara
Nahrstedt. A Middleware Infrastructure for Active
Spaces. Pervasive, 1(4):74-83, October 2002.

[6] David Garlan, Daniel P. Siewiorek, Asim Smailagic,
Peter Steenkiste. Project Aura: Toward Distraction-Free
Pervasive Computing. Pervasive, 1(2):22-31, April
2002.

[7] Torben Weis, Marcus Handte, Mirko Knoll, Christian
Becker. Customizable Pervasive Applications. In
PerCom 2006, 2006.

[8] Brad Johanson, Armando Fox, Terry Winograd. The
Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms. Pervasive, 1(2):71-78,
April 2002.

[9] Rafael Ballagas, Meredith Ringel, Maureen Stone, Jan
Borchers. istuff: a physical user ce toolkit for ubiqui-
tous computing environments. In CHI *03: Proceed-
ings of the SIGCHI conference on Human factors in
computing systems, pages 537-544, New York, NY,
USA, 2003. ACM Press.

[10] Saul Greenberg, Chester Fitchett. Phidgets: easy de-
velopment of physical interfaces through physical
widgets. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and tech-
nology, pages 209-218, New York, NY, USA, 2001.
ACM Press.

[11] Scott R. Klemmer, Jack Li, James Lin, James A.
Landay. Papier-mache: toolkit support for tangible in-
put. In CHI ’04: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
399-406, New York, NY, USA, 2004. ACM Press.

[12] Peter Tandler. Software infrastructure for ubiquitous
computing environments: Supporting synchronous
collaboration with heterogeneous devices. In Ubicomp,
pages 96-115, 2001.

[13] Daniel Salber, Anind K. Dey, Gregory D. Abowd. The
context toolkit; Aiding the development of context-ena-
bled applications. In CHI, pages 434-441, 1999.

[14] Ubisense. The Smart Space Company. <http://
www.ubisense.net/>, 2007. Last visited: 30.06.2007.

[15] Visonic Technologies. Elpas. <http://www. visonictech.
com>, 2007. Last visited: 30.06.2007.

[16] Khai N. Truong, Elaine M. Huang, Gregory D. Abowd.
CAMP: A Magnetic Poetry Interface for End-User Pro-
gramming of Capture Applications for the Home. In
Ubicomp 2004, 2004.

[17] Richard Hull, Ben Clayton, Tom Melamed. Rapid
Authoring of Mediascapes. In Ubicomp 2004, 2004.

© Novatica

UPGRADE vol. viil, No. 4, August 2007 37





