
VirtualStack: A Framework for Protocol Stack
Virtualization at the Edge
Jens Heuschkel, Immanuel Schweizer, Max Mühlhäuser

Telecooperation, Computer Science, TU Darmstadt, Hochschulstr. 10, D-64289 Darmstadt, Germany
{jens.heuschkel, schweizer, max}@tk.informatik.tu-darmstadt.de

Abstract—Applications require connectivity and the network is
treated as a black box providing it. Striving to improve this black
box, recent research efforts attempt to make the core network
more adaptive leveraging new technologies (e.g., software-defined
networking). Obviously, any attempt to improve the core network
misses out on the first and last hop. Hence, we require solutions
that decouple the applications’ requirements from the network
at the edge.

In this paper, we present VirtualStack, as a framework ad-
dressing this issue. For each individual application, VirtualStack
supports multiple optimized network stacks and dynamically
chooses the current optimal network stack, possibly taking into
account measurements and commands received from the core
network. As a proof of concept, our paper demonstrates protocol
transformations between UDP and DCCP without any changes
to the application, switching delay, or loss in throughput. While
the prototype introduces some overhead, it provides a maximal
throughput of 4.36 GBit/s.

Index Terms—protocol virtualization, application decoupling,
network virtualization, software-defined networking

I. INTRODUCTION

Applications today are built on the assumption of connec-
tivity. This increases the strain on the network. One solution to
cope with increasing application demands is a move towards
more adaptivity in the core network. This is accelerated
through trends such as software-defined networking (SDN) and
network function virtualization (NFV).

However, these solutions cannot influence the application
demands themselves. Unfortunately, applications and operat-
ing systems are not adaptive in their request for network
resources. Instead, they mostly rely on a limited set of standard
protocols (e.g., TCP/IP, and static request patterns). Regardless
of the state of the network, an application will request the
same protocols for a given connection. Thus, we would like to
always adapt the network to best suit the application demands,
instead of shaping these demands to the network. Ideally, we
mediate between application requirements and the optimal
network configuration at the edge node – before the first
network hop.

To this end, we introduce VirtualStack (VS), a framework
that decouples the application’s demands for connectivity
from the network stack. VS manages several independent
network stacks – from the physical to the transport layer –
per application flow. Applications request a connection from
the provided virtual network interface (VNIC), enabling trans-
parent network adaptivity without any application changes.

Hidden behind the VNIC are VS’s decision and execution
engine. These engines will analyze incoming packets, create
and manage different network stacks, and decide on the
optimal stack per application per packet. VS also provides
network address translation per application in case connections
have to be re-routed transparently. With these pieces in place,
VS enables seamless adaption of the network stack, from the
physical interface up to the transport layer. By acting as a
virtual network interface, any application developed today can
benefit from the adaptive network stack management.

To further motivate VS, we shortly discuss three possible
use cases: (i) Protocol transformation, (ii) Multipath routing,
and (iii) Flow migration.

(i) Protocol Transformation: In fully managed networks,
providers will implement special protocols or cross-layer
stacks to achieve better quality-of-service or performance,
e.g. link utilization [1]. Across domains, developer default to
standard protocols to achieve interoperability at the cost of
network performance. VS enables transparent protocol trans-
formation at the edge. Applications can request a connection
using standard protocols. However, new protocols can be
implemented and applied on-the-fly. This allows for better
performance and much faster adaption rates for new protocols.
In fact, our evaluation will focus on a simple transformation
from UDP to DCCP [2] as a proof-of-concept. Other more
elaborated transformations could, add security primitives to
connections on the fly for example.

(ii) Multipath Routing: Many devices today feature mul-
tiple network interfaces. Laptops are equipped with Ethernet
and WiFi. Mobile devices offer cell and WiFi connectivity.
Protocols such as Multipath TCP exploit this opportunity by
utilizing multiple paths [3]. However, these are inflexible in
the sense that each path is a TCP connection. VS can decide
on the optimal network interface per packet. Additionally, VS
can adapt the remainder of the network stack, e.g., UDP can be
used to reduce overhead for the reliable Ethernet connection,
while TCP is used for the unreliable WiFi connection.

(iii) Flow Migration: The third use case is motivated by the
rise of network function virtualization or in-network process-
ing. In this approach, lightweight virtual machines (VMs) are
deployed into the network infrastructure to provide services.
With user and VM mobility, connections between applications
and VMs get lost. VS is capable of seamlessly re-establishing
lost connections and provide address translation capabilities.
Hence, from the application’s perspective the connection will

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 595

Fig. 2: The VirtualStack Architecture

not be lost, reducing service interruptions.
Our contribution in this paper is VS. VS provides the

means to decouple applications from the network. Using VS
will increase performance, security, and protocol diversity as
motivated in the three use cases. In our evaluation, we focus on
one usecase: (i) protocol transformation. We switch between
UDP and DCCP during runtime without any reduction in per-
formance, illustrating the feasibility of the VS approach. Even
though VS is an early prototype, the overhead is reasonable
and we achieve a maximum throughput of 4.36 GBit/s.

The remainder of this paper is organized as follows. First,
we will present the detailed architecture of VS in Section II.
Next, Section III presents the results with a short discussion
on the overhead imposed by VS . Then Section IV introduces
the related work. Finally, Section V concludes the paper and
presents some ideas for future work.

II. ARCHITECTURE

VirtualStack (VS) decouples applications and their require-
ment for connectivity from the instantiated network stack.
Applications open a connection to the VNIC provided by VS.
Thus, we avoid the need for reprogramming, as applications
will send standard IP packets to provide the payload. In
the following, we describe the VS architecture and discuss
different implementation challenges and how we solve them.

Figure 2 illustrates the architecture of VS with two flows:
The data flow of the network packets is illustrated by black
arrows on the left side. The corresponding management data
flow is shown on the right by blue arrows.

Obviously, the data flow starts with an application initializ-
ing a connection. The application will generate a payload and
send it as IP packets through the VNIC over a standard socket

using the tools of the respective programming language. Then
the packets are processed by VS.

VS can be divided into three main parts required to process
these incoming packets: (1) Analysis, (2) Decision, and (3)
Execution. Each of them consists of several subsystems.

The analysis component (1) will parse incoming packets
to extract required information. It is further divided into the
classifier and the ID extractor. The classifier extracts meta-
information about the packet and the requested connection,
e.g., the protocol or set flags. Identification of the respective
flow id is done in the ID extractor.

This information are fed into the decision part (2), where the
decision engine will decide on the optimal network stack. The
decision is based on the information provided by the analysis.
It is also based on commands coming in from the management
interface, where monitoring or control packets from the core
networks facilitate better decisions at the edge.

The main part of VS is the execution of the decisions. This
component (3) consists of the flow manager, the stack engine,
and the physical network interfaces. The flow manager assigns
every incoming packet to the respective stack engine. This is
done based on the flow id extracted during analysis. If a new
flow is registered, the flow manager will set up a new stack
engine. The stack engine is the main component. It contains
the application endpoint, a NAT engine, a stack manager, and
the corresponding stacks of this application.

Every application flow managed by VS will be terminated
at the associated endpoint. The endpoint will handle the
connection to the application and the payload is passed to the
stack manager. The stack manager will send the payload over
the respective stacks picked by the decision engine, given the
target server address from the NAT engine. If a new protocol
is required, a new stack will be built and activated by the
decision engine.

Additionally, VS offers the raw stack, which is a special
stack engine for unsupported protocols. Incoming packets that
cannot be parsed will be sent over the raw socket without any
changes. Hence, any existing application will work with VS.

VS was implemented as a user-space program in C++. From
a performance perspective, it adds another layer of processing
to the network interface. Thus, it was important to mitigate the
impact as much as possible. To enable high CPU utilization,
we tried to reduce any unnecessary waiting time for memory
operations. Hence, network packets are not copied inside VS.
They are read from the VNIC into an internal buffer. VS
then relies on pointers to the respective part of the buffer for
any further processing. Therefore, there are only three copy
operations of the data in total. First, the copy generated in the
kernel-space as the packet is generated. Second, the copy from
the kernel-space to the VNIC and into the VS buffer. Third,
the copy from the VS buffer back to the kernel-space to send
the packet over the respective network interface.

III. EVALUATION

We implemented a prototype of the VirtualStack (VS)
architecture outlined in the previous section. We know that

596

0 5 10 15 20
Time [s]

0

1000

2000

3000

4000

5000

Pa
ck

et
s

UDP
DCCP
AVG

Fig. 1: Number of processed packets per 10 ms for both UDP and DCCP

under certain conditions using DCCP is beneficial compared
to UDP (e.g., in congested networks with lots of TCP traffic).
Hence, we evaluate a client requesting a UDP connection
and VS seamlessly switching between UDP and DCCP con-
nections (cf. use case (i) protocol transformation). To study
feasibility, we evaluate the switching delay and performance
impact. Since the stacks are build once and then cached,
we expect almost no impact on the performance and instant
switching time. We also study the overhead of the prototype,
by evaluating maximal throughput.

A. Evaluation Environment
For our evaluation, we used a Intel Core i5-4690k 4x3,5

GHz with 16 GB DDR3-1800 RAM. However, VS uses one
core with a high utilization of nearly 100% and less than 2
MB of RAM. We used the operating system Ubuntu 14.04
LTS x64 with a 3.13.0-45-generic kernel. Our measurement
software and VS are running on bare metal hardware without
additional virtualization layers.

In our scenario, we implemented a packet generator appli-
cation sending packets to two local servers, one for UDP and
one for DCCP. A simple python script sends UDP/IPv4 packets
with s = 1500 byte (20 byte IP header + 8 byte UDP header +
16 byte timestamp string + 1458 byte random string) through
the virtual network interface provided by VS. The number of
packets c are counted per 10ms, due to the timestamp accuracy
in Python on this system.

With this setup, we evaluate the following scenario: VS and
the corresponding VNIC are initialized, before the application
is started. Any packets sent through the virtual network
interface are, by default, sent to the first server using a stack
transmitting via UDP/IPv4. Every five seconds, VS will switch
the stack. The second stack transmits to the second server over
DCCP/IPv4. When the first switch occurs, VS will build the
new stack. Afterward, the stack is cached for further use.

B. Results
Figure 1 illustrates the number of received packets at the

UDP and the DCCP server per timestamp. It also shows the

average performance of the respective UDP or DCCP block.
We observe that, with UDP, we constantly receive about 3500
packets per timestamp. With DCCP we get bursts of about
4000 packets per timestamp, with short occasional breaks of
about 200 ms. This is probably due to the congestion control.
On average the performance of DCCP is almost equal to UDP
not considering any packet loss. In summary, we already stated
that DCCP can provide benefits compared to UDP especially
in congested networks. Applications can now continue to
request UDP connections, but VS may provide DCCP, if it
is beneficial to the overall network performance.

However, VS adds another software layer to the operat-
ing system possibly impacting performance. Fortunately, we
observe 3700-3900 packets over more than 3 seconds as
peak performance. This amounts to a peak network speed
of: cmax ∗ s ∗ 800 = 3900 ∗ 1500 ∗ 800 = 4.36GBit/s
On average we get about 3.78 GBit/s, which is excellent for
a first prototype and more than enough for most real-world
applications.

Figure 1 also shows the real time switch from the UDP
stack to the DCCP stack. At the first switch, VS builds the
new DCCP stack (at second 5). After this point in time, there
is a 200 ms gap needed to conduct the DCCP handshakes
and establish the connection. We observe no performance loss,
because the stack is built very fast.

VS can now reuse the cached DCCP stack for the second
switch (at 15s). In comparison to the first switching point,
we observe no time needed to create a stack and establish a
new connection. Hence, switching time is practically zero and
we have absolutely no performance drop during the switch.
However, after about 50 ms, we observe a drop which is most
likely caused by congestion control.

The evaluation shows that it is feasible to perform real
time protocol transformation using VS. Also, the change of
a stack with an active connection is possible and introduces
no additional overhead. Even building an entirely new stack at
run time introduces only a one-time time penalty of 200 ms.

597

IV. RELATED WORK

In [4], Fish et al. present DRoPS, a reconfigurable stack to
adapt protocols at runtime. To realize dynamic reconfiguration,
protocol stacks are built as a composition of microprotocols,
offering simple functions like a checksum up to more complex
functionality like TCP. Therefore, the interconnection of these
microprotocols is enforced by a configuration, which could
either be some initial default configuration or specified by the
application through a provided API. Adaptation agents execute
policies, to define the information that needs to be monitored
by microprotocols. This information then serves as a basis for
optimization of the current configuration. However, the pre-
sented solution requires close interaction of the application and
the actual stack for reconfiguration. For automatic adaptation,
Fish et al. sketch a design consisting of a heuristic control
mechanism, but do not implement this solution.

The x-Kernel [5] by Hutchinson et al. is an operating system
that is optimized to construct and compose network protocols.
It provides different protocol objects, which can form a
protocol graph. Instances of theses protocol objects are called
session objects. They support pushing and popping messages.
This offers a convenient way of testing and implementing
novel protocol compositions. However, it is not meant to
interface with real-world applications.

More recent approaches [6], [7] move essential parts of
the communication stack to the user space. While Jeong
et al. [7] focus on TCP performance optimizations by limiting
system calls or leveraging multi-core functionality, Honda
et al. [6] present an approach called MultiStack to support
protocol innovation. MultiStack creates dedicated protocol
stacks to support MultiStack-aware applications. The authors
also executed their stacks in parallel to the operating system
stack to support legacy applications. MultiStack itself is built
on top of netmap [8], to access the NIC, and VALE [9], a well
performing software switch used to separate the single user-
space stacks. This solution provides powerful insight in the
potential of dedicated protocol stacks. However, the authors
require application programmers to change their applications.

Meeting application requirements by selecting the appro-
priate network interface on multi-access hosts is presented in
[10], [11], [12]. The presented approaches either define a new
socket interface to allow the application to label flows [11], to
express communication preferences by policies [10] or opti-
mize for application objectives, e.g., throughput or delay [12].
Schmidt et al. [10] and Higgins et al. [11] focus on selecting
an interface for the whole data flow. Deng et al. [12] also
aim at switching the interface during the data flow, if the used
transport protocol supports roaming. These approaches show
the benefit of choosing an appropriate interface. However, they
do not support the adaption of all layers of the stack, limiting
the impact.

VirtualStack is the first approach to support adaptation and
seamless switching of network protocols up to the transport
layer without any changes to the application or the operating
system.

V. CONCLUSION

We present VirtualStack (VS), a powerful framework to
decouple applications from the network.

VS receives payload as packets comparable to a socket
implementation. By building a specific network stack and
binding it to a specific network interface, it enables to choose
transport, network, data link, and physical layer. VS provides
a virtual network interface to redirect network packets to our
system, and with that, being compatible to legacy applications.

Switching between DCCP and UDP in the evaluation
showed the feasibility, with no performance impact. Even
though VS adds another layer of processing to the network
interface, we achieved a maximum throughput of 4.36 GBit/s.

To cope with increasing application requirements, network
management and adaptation has to start before the first net-
work hop. VS provides management and optimization at the
edge, while also being able to interface with the core network.
Future work includes applying VS to all three scenarios
discussed in the introduction and has yielded very promising
early results. We also work on a rule based decision engine
using the Fossa framework[13].

ACKNOWLEDGMENT

This work has been funded by the German Research Foundation
(DFG) as part of project B02 within the Collaborative Research
Center (CRC) 1053 – MAKI.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[2] S. Floyd, M. Handley, and E. Kohler, “Datagram congestion control
protocol (DCCP),” RFC4340, 2006.

[3] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure,
“Exploring mobile/wifi handover with multipath tcp,” in Proceedings of
the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations,
Challenges, and Future Design, 2012.

[4] R. Fish, J. Graham, and R. J. Loader, “DRoPS: kernel support for
runtime adaptable protocols,” in Proceedings of the 24th Euromicro
Conference, 1998, pp. 1029–1036.

[5] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An Architecture
for Implementing Network Protocols,” IEEE Trans. Softw. Eng., vol. 17,
no. 1, pp. 64–76, 1991.

[6] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo, “Rekindling Net-
work Protocol Innovation with User-level Stacks,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 52–58, 2014.

[7] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: A Highly Scalable User-level TCP Stack for Multicore
Systems,” in NSDI, 2014.

[8] L. Rizzo, “Netmap: A novel framework for fast packet i/o,” in USENIX
Annual Technical Conference, 2012.

[9] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
in ACM CoNEXT, 2012.

[10] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann, “Socket intents:
leveraging application awareness for multi-access connectivity,” in ACM
CoNEXT, 2013, pp. 295–300.

[11] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson, “Intentional networking: opportunistic exploitation of
mobile network diversity,” in ACM MobiCom, 2010, pp. 73–84.

[12] S. Deng, A. Sivaraman, and H. Balakrishnan, “All Your Network Are
Belong to Us: A Transport Framework for Mobile Network Selection,”
in Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications, 2014.

[13] A. Frömmgen, R. Rehner, M. Lehn, and A. Buchmann, “Fossa: Learning
ECA Rules for Adaptive Distributed Systems,” in ICAC, 2015.

598

