

Constructivist and Constructionist Approaches to Algorithm Visualization
Construction: A Proposal

Ming-Han Lee Guido Rößling

Department of Computer Science
TU Darmstadt

Darmstadt, Germany
{minghan, guido}@tk.informatik.tu-darmstadt.de

Abstract—The didactic focus on the use of algorithm
visualization has been shifting to its construction and
presentation by students. Reviewing the principles of
Constructivism and Constructionism, this paper proposes
some new approaches to constructing algorithm visualizations.

Keywords-Algorithm Visualization, Computer Science
Education, Constructivism, Constructionism

I. INTRODUCTION
 CS educators have used algorithm visualization (AV)

animating abstract programming languages to facilitate
learning. Researchers conclude that passive viewing of
computerized animations contributes little to the learning
experience [7]. Stastko [18] suggests that students construct
their own visualizations instead of relying on instructors as
content-providers. Hundhause et al. [5] also recommend that
students not only construct but also present their AV
constructions. Both approaches are in accordance with the
principles of Constructivism and Constructionism.

 Drawing on the Constructivist and Constructionist
learning theories, we have reflected on new approaches to
the AV system design and AV deployment that may shed
some light and expand the current practice of algorithm
visualization construction.

II. THE V WORD AND THE N WORD
Papert refers to ConstructiVism and ConstructioNism as

the V word and the N word [15] respectively due to their
close kinship. This paper addresses Constructivism with
reference to Piaget’s learning theories, upon which Papert’s
Constructionism is based.

A. Constructivism
Let us imagine for a moment that all IKEA assembly

instructions came in pages of writing without any
illustrations. No matter how good the writing is, putting
together a piece of furniture just seems a lot more
formidable. In the similar way IKEA’s graphical
illustrations considerably lessen the cognitive load
demanded of customers; visualizing programming code
converts abstract process and state changes into tangible
representations. Doing so alleviates the students’ cognitive
load by giving them direct mental mappings and auxiliary

memory capacities. It is about using dynamic visual artifacts
in our everyday experiences such as numbers, colors and
shapes to represent imperceptible mathematical calculation
or evanescent functional sequences.

The idea of deploying AV technology in the classroom
corresponds with the Constructivist learning theory. It
postulates that knowledge is never simply passed from the
giver to the receiver, but a product of active construction
based on an individual’s experience and disposition.

B. Constructionism
The Constructivist theorists have provided IKEA

customers with graphical illustrations as step by step
instructions. However, they are inherently more attentive to
the utilization of familiar symbol systems to enhance
customers’ comprehension; the focus is on knowledge
construction by providing a mental image. Constructionist
theorists, on the other hand, are concerned with the actual
building of a piece of furniture. In other words,
Constructionists encourage direct hands-on experience by
putting together a piece of furniture before or without
consulting an instruction manual.

Whereas Cognitivism came into being as a contending
response to Behaviorism, Constructionism evolved out of
Constructivism. Constructivism spotlights knowledge as a
cognitive construction internally. Constructionism, on the
other hand, underlines the external construction of entities
as a learning process.

III. OUR PROPOSAL
We believe both learning theories contribute directly to

the pedagogical effectiveness of AV deployment in the
curriculum. Following is a set of outlines we derived from
the constructivist and constructionist principles. We propose
that an AV system can improve its pedagogical
effectiveness by the following five guidelines.

A. Institute A Platform for Experimentation
By virtue of the terminology, visualization comes after

algorithm. Current AV systems are historically
conceptualized and designed as a tool that generates
animations to make code understandable. Students would
first encounter a certain algorithm they need to learn for the

course, and are then given the visualization or asked to
construct the visualization for it. No code, no visualization.

The Constructivist and Constructionist theories, however,
inspire a different didactic methodology. What if we reverse
the usual practice, and have visualization come first and
code second? What if we have the students tackle a given
problem first before teaching them the algorithm?
Classically, we employ the Instructionist approach where an
instructor teaches bubble sort by first presenting the code
and then uses illustrations and examples to explain its inner
workings. Alternatively, why not give our students an actual
sorting problem which they need to solve with constructing
visualizations before they actually know what bubble sort
does? In this scenario, students do not simply construct
visualizations to reflect the workings of a certain algorithm;
they explore their own algorithmic solutions of the problem
before learning the “official” solution. We will not be too
surprised if students stumble upon bubble sort or related
sorting algorithms on their own, or even come up with their
own algorithms.

B. Use Real-World Model
In many cases, text books, instructors and a number of

AV systems have used weighted numbers or sticks arranged
in random order lined up in an array to illustrate various
sorting procedures. Numbers and sticks are indeed very
effective in getting the message across due to their instant
accessibility. However, such genericness may leave less of a
long-term impression compared to visualizations
constructed based on real-world examples, such as the
Storyboard technique pioneered by Hundhausen et al. [5],
that makes learning anchored in students’ experience and
therefore meaningful. When trying to solve a problem or
quickly comprehend something, it is helpful and effective to
reduce our problem to a set of numbers or simple graphics.
Such abstraction helps us to arrive at a solution more
quickly. However, by reversing that abstraction process and
encourage students to relate to their personal experience and
seek out real-world examples when constructing their own
AV, students are more likely to think outside of the box and
transfer their algorithmic knowledge from a binary
environment to concrete and real applications. Learning
should not be merely effective; more importantly, it needs to
be meaningful too.

C. Enable Direct Manipulation
Looking at the evolution of AV construction methods,

we observe a trend in which the creation of graphical
objects through strenuous coding is gradually replaced by
more natural and intuitive human behaviors that does not
require much learning. While manually sketching graphics -
- as opposed to clicking on a button to generate pre-made
graphics -- is already supported by a few AV systems, we
hope for a system that support the direct manipulation of
sketched graphical objects without having to describe the

action [14]. This has more to do with the essence of
constructing something than just saving the time overhead.
Writing or something is debatably a more immediate and
authentic experience than typing, and the experience of
clicking on a button to generate a pre-made graphic is
understandably a less expressive and less memorable one
compared to what users experience when they are given free
reign to their imagination and can draw anything they wish.
To be able to move objects freely without a formal
description also emphatically adds spatial movement, an
important signifier for state changes to the repertoire of
visual representations that are otherwise difficult to illustrate
with other properties.

D. Incorporate Audio into AV Construction
Many students will attest that only when they are

capable of explaining a subject matter, either to themselves
or someone else, can they be sure of that they have really
understood something. By speaking out loud, students can
“hear themselves learn” by making the internal and implicit
external and explicit. The contemporary support for AV
construction has mainly focused on the visual, but neglected
the audio. In our experience, however, almost all students
that are asked to visualize algorithms with simple art
materials would invariably explain orally what they are
doing. We see no convincing reason why the support of
audio input, with which students capture not only the visual,
but also the audio part of their AV construction, should be
left out of the system implementation. Not only will the oral
narration augment the visual representation and therefore
avoid ambiguity and increases understanding, it also allows
the students to hear themselves think. When both the visual
and audio are available for playback, it also makes it easier
to identify logical or semantic errors, if there are any.
Should students for some reason be unable or unwilling to
provide a voice narration during AV construction, they
should have the option of writing down and documenting
their thoughts. The idea here is to capture and document as
much the reasoning and thinking process as possible as a
public entity Papert speaks of for future reference.

E. Open Access to Peer-Generated Content
By constructing their own algorithm visualization,

students construct their own version of that algorithmic
knowledge. By making their constructed version of
knowledge accessible to other students, they invite feedback
and comments. By comparing their own interpretation of
that piece of knowledge with others’, it induces the
assimilation and accommodation processes, two
fundamental phenomena crucial to learning theorized by
Piaget. Old, false mental models are disregarded and
updated by new ones; incomplete information is
complemented or supplemented. The concept of
collaborative learning also envisions an AV system where
students can even work in groups to construct AV together.

Doing so brings about the social interaction that is favorable
to successful knowledge construction [2]. When we make
the sharing, debating, collaborating and evaluating part of
their active learning process, students are truly conducting a
dialogue of collaborative construction of knowledge.

IV. CONCLUSION AND FUTURE WORK
Having understood the importance of active learning, and

with the intention of increasing student engagement in using
the AV technology, educators and researchers have
implemented new features into AV systems, most notably
the support for students to construct their own algorithm
visualization. Studies have indicated that having students
construct their own algorithm visualization has more impact
on learning than having them passively view AV pre-made
by instructors. With the methods for constructing
visualization improving with each iteration in terms of user-
friendliness, intuitiveness and time efficiency; with the
didactic discourse centers around the construction and
presentation of algorithm visualization, there is all the more
reason to address pedagogical effectiveness of the AV
construction methodology based on an appropriate
theoretical framework.

This motivates us to review the Constructivist and
Constructionist learning theories and reflect on how both
interrelated theories can contribute to the AV’s pedagogical
effectiveness. Particularly compelled by the Constructionist
standpoint, this paper focuses on the AV construction
methodology as the principal factor that facilitates students’
knowledge construction. We then propose a set of
guidelines derived from both learning theories for the design
and deployment of AV systems in the curriculum.
Based on these guidelines, we have begun working on a
browser-based AV system that seeks to give students a
natural visualization construction experience through
manual sketching and direct manipulation without any
coding. The browser is to be the piece of paper where
students conceptualize, experiment and devise their
solutions for given problems. Students will not only
manually construct “low fidelity” [6] visualizations, their
oral narration during the visualization will also be captured.
Students using the AV system will have access to each
other’s work and be able to playback, evaluate and comment
on each piece of “constructed knowledge”.
 A study to determine the functionalities needed for a
computer-based AV system to replicate the low tech AV
construction experience as close as possible is currently
under way.

ACKNOWLEDGMENT
We are grateful for the funding provided by German

Research Foundation (DFG) in support of our research
project.

REFERENCES
[1] Ackermann, E. 2001. Piaget’s Constructivism, Papert’s

Constructionism: what’s the difference? In Constructivism: uses and
perspectives in education, Vol. 1&2. Conference proceedings,
Geneva: research center in education. p.85-94.

[2] Ben-Ari, M. 1998. Constructivism in computer science education. In
SIGCSE Bulletin Vol. 31 Nr.1. p.257-261. ACM, New York.

[3] Cross II, J. H., Hendrix, T. D. 2006. jGRASP: a lightweight IDE with
dynamic object viewers for CS1 and CS2. In Proceedings of the 11th
annual SIGCSE conference on innovation and technology in
computer science education, ITiCSE 2006. ACM, New York.

[4] Douglas, S., Hundhausen, C. and McKeown, D. 1996. Exploring
human visualization of computing algorithms. In GI ’96: proceedings
of the conference on Graphics interface ’96. p.9-16. Canadian
information processing society, Toronto, Canada.

[5] Hundhausen, C.D., Douglas, S. A. 2000. SALVA and ALVIS: a
language and system for constructing and presenting low fidelity
algorithm visualizations. In VL, p.67-68.

[6] Hundhausen, C. D., Douglas, S. A. 2000. Shifting from “high
fidelity” to “low fidelity” algorithm visualization technology. In
SIGCHI 2000 extended abstracts. Conference on human factors in
computing systems. p. 179-180. ACM, NewYork.

[7] Hundhausen, C.D., Douglas, S. A. and Stasko, J. T. 2002. A meta-
study of algorithm visualization effectiveness. In Journal of Visual
Languages & Computing. Vol. 13, Nr. 3, p.259-290.

[8] Karavirta, V. et al. 2004. MatrixPro - a tool for demonstrating data
structures and algorithms ex tempore. In Proceedings of the IEEE
international conference on advanced learning technologies, ICALT
2004. IEEE Computer Society.

[9] Jonassen, D. 1994. Thinking technology: Toward a constructivist
design model. In educational technology, 34(4), p.34-37.

[10] Malmi, L. et al. 2004. Visual algorithm simulation exercise system
with automatic assessment: TRAKLA2. In Informatics in education,
Vol. 3, Nr. 2, p.267-288.

[11] Moreno, A. et al. 2004. Program animation in jeliot 3. In Proceedings
of the 9th Annual SIGCSE conference on innovation and technology
in computer science education, ITiCSE 2004. p.265. ACM, New
York.

[12] Naps, T. L., Eagan, J. and Norton, L. L. 2000. JHAVÉ – an
environment to actively engage students in web-based algorithm
visualizations. In Proceedings of the 31st SIGCE technical symposium
on computer science education. p. 109-113. ACM, New York.

[13] Naps, T. L. et al. 2002. Exploring the role of visualization and
engagement in computer science education. In ITiCSE-WGR ’02:
working group reports from ITiCSE on innovation and technology in
computer science education. p.131-152. ACM, New York.

[14] Narayanan, N. H and Hübscher, R. 1998. Visual language theory:
towards a human-computer interaction perspective. In Visual
language theory. p.87-128. Springer-Verlag. New York.

[15] Papert, S. 1991. Situating Constructionism. In Constructionism. MIT
Press. Cambridge, MA.

[16] Papert, S. 1993. The children’s machine, rethinking school in the age
of the computer. BasicBooks. New York.

[17] Rößling, G., Schüler, M. And Bernd, S. 2000. The ANIMAL
algorithm animation tool. In ITiCSE ’00: Proceedings of the 5th
annual conference on innovation and technology in computer science
education. ACM, New York.

[18] Stasko, J. T. Using student-built algorithm animations as learning
aids. In SIGCSE bulletin. Vol. 29, Nr. 1. p.25-29. ACM, New York

