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Abstract. The evaluation of the trustworthiness of complex systems is a
challenge in current IT research. We contribute to this field by providing
a novel model for the evaluation of propositional logic terms under un-
certainty that is compliant with the standard probabilistic approach and
subjective logic. Furthermore, we present a use case to demonstrate how
this approach can be applied to the evaluation of the trustworthiness of
a system based on the knowledge about its components and subsystems.

1 Introduction

The evaluation of the trustworthiness of complex systems is one of the major
challenges in current IT research, as – following the visions of the Internet of
Services, the Future Internet and Cloud Computing – IT systems become highly
distributed, dynamically composed, and hosted and managed by multiple par-
ties. For example, in the field of Cloud Computing, people and enterprises are
still hesitating to move to the Cloud due to missing transparency and security
concerns. However, it is not only the users who are interested in evaluating the
trustworthiness of a service, infrastructure, or platform, but also the providers
and accreditation authorities.

Currently, there are several approaches supporting those stakeholders in as-
sessing the trustworthiness of such kind of systems, e.g., from the field of trusted
computing, experience-based trust and reputation models, and security [1]. How-
ever, for complex systems there is a lack of models that provide means for deriv-
ing the trustworthiness of the overall system considering (1) the trustworthiness
of the subsystems and atomic components (independently from how these trust
values are assessed), (2) the uncertainty associated to this information. For ex-
ample, reputation values might be based on insufficient information and current
solutions from the field of trusted computing cannot effectively capture dynamic
changes in trust [2]. Also when considering the recent advances in the field of
property-based attestation (e.g., [3]), there is a need for modeling trust and un-
certainty in order to deal with the fact that (1) the state of the system that
was measured at the time of booting does not necessarily reflect the state of the



system at the time of attestation and (2) that the authority that provides the
property certificates might only be trusted to a certain degree [4].

As the core contribution of this paper, we define operators for AND, OR,
and NOT for the evaluation of propositional logic terms under uncertainty and
we give the properties of these operators. The operators have been designed to
be compliant to the standard probabilistic approach and subjective logic [5, 6],
which also provides the justification for the mathematical validity of the model.
Furthermore, we introduce a use case to show how this approach could be used
for evaluating the trustworthiness of a system in a Cloud Computing scenario
and to show how the evaluation of the trustworthiness of a complex system
relates to the evaluation of propositional logic terms. The paper is structured as
follows: Sec. 2 presents the related work, Sec. 3 introduces a use case and Sec. 4
presents the model. Finally, we draw our conclusions in Sec. 6.

2 Related Work

In the field of trust modeling – for a definition of trust see [7] – there is a
number of approaches modeling the (un-)certainty of a trust value, well-known
approaches are given in [8–11]. However, those approaches do not tackle the is-
sue of deriving the trustworthiness of a system based on the knowledge about
its subsystems and components, instead the challenge of these approaches is to
find good models for deriving trust from direct experience of a user, recom-
mendations from third parties, and sometimes additional information, e.g. social
relationships. Especially, those models aim on providing robustness to attacks,
e.g., misleading recommendations, re-entry, Sybil attacks. For those tasks they
usually provide operators for combining evidence from different sources about
the same target (also called consensus) and for weighting recommendations based
on the trustworthiness of the source (also called discounting).

Although, there are researchers in the field of trust focusing on modeling
(un-)certainty [5, 9, 12, 13], they do not provide operators for the evaluation of
propositional logic terms, except for “subjective logic” [5, 6].

Furthermore, there are well-known approaches for modeling uncertainty out-
side the trust field. At first, there is the standard probabilistic approach. How-
ever, this approach only allows to deal with the uncertainty of the outcome of
the next event, but probabilities are assumed to be known.

Fuzzy logic [14] seems to be related, however, it models another type of
uncertainty, which could be typed as linguistical uncertainty or fuzzyness.

There is the field of (Dempster-Shafer) belief theory, which again leads to
“subjective logic” [5]. The main drawback of this model is that the parameters for
belief, disbelief, and uncertainty are dependent on each other, which introduces
an unnecessary redundancy from the perspective of modeling and prevents one
from re-assign just a single parameter.

Beyond subjective logic there are numerous other approaches for probabilistic
reasoning, see e.g. [15]. However, as we argue for the mathematical validity of our
model based on its compliance to subjective logic and the standard probabilistic
approach, we do not provide a discussion of probabilistic reasoning in general.



Finally, it is possible to model uncertainty using Bayesian probabilities [16],
this usually leads to probability density functions, e.g., the Beta probability
density function. For the approaches in [5,13], it has been shown that there are
bi-directional mappings between the representations proposed in those papers
and the Beta probability density function. It is possible to apply the proposi-
tional standard operators to probability density functions, however, this leads
to complex mathematical operations and multi-dimensional distributions, which
are also hard to interpret and to visualize. In our proposed approach, we will
not increase the dimensions when calculating AND and OR.

3 Use Case

Fig. 1. System architecture (incl. infor-
mation about redundant components)

We introduce a scenario from the field
of Cloud Computing, and show how
the evaluation of the trustworthiness
of the overall system can be carried
out, if there is an appropriate ap-
proach for the evaluation of proposi-
tional logic terms (see also [17]). We
evaluate the trustworthiness of a sim-
ple Customer Relationship Manage-
ment (CRM) system focusing on the
availability of the system.

In the example (see Fig. 1), the CRM system S directly relies on two sub-
systems, S1 providing authentication capabilities, S2 offering storage capacity
for sales data and data mining capabilities, and an atomic component C for
the billing. Subsystem S1 consist of two authentication servers (A1 and A2),
where at least one of the servers has to be available. Similarly, subsystem S2 is
composed of three redundant databases servers (only one needs to be available).

Based on the description above and assuming that the information about the
trust values of the atomic components is known, the evaluation of the trustwor-
thiness of the complete system in the context of availability, can be carried out
by evaluating the following propositional logic term:

(A1 ∨A2) ∧ (B1 ∨B2 ∨B3) ∧ C

where A1 is a proposition that is true if the component A1 behaves as expected
(e.g., the component replies to requests within a certain time limit); the inter-
pretations of the other propositions are assigned in the same way. Although, we
restricted the scope of our example to availability, please note that it is possi-
ble to model statements about the fulfillment of other relevant properties (e.g.,
attested / self-evaluated security properties or reputation of a component or
subsystem) as propositions and to consider them in the evaluation of the overall
trustworthiness of the system using propositional logic terms. However, as the
knowledge about the fulfilment of the propositions is subject to uncertainty, the
evaluation method has to take this uncertainty into account when calculating
the trustworthiness of the overall system.



4 CertainLogic

In the following, we introduce a novel model, which we call CertainLogic, for
evaluating propositional logic terms that are subject to uncertainty. Especially,
we define the standard operators of propositional logic: AND, OR, and NOT .
However, before introducing these operators, we have to introduce a way for
modeling probabilities and uncertainty.

4.1 CertainTrust - Representation

The model for expressing opinions, this is how we call the construction for model-
ing probabilities that are subject to uncertainty (in accordance with [5]), is called
CertainTrust [13]. CertainTrust (CT) bas been designed as a representation for
evidence-based trust, but may also serve as a representation for uncertain proba-
bilities. Additionally, it supports users with a graphical, intuitively interpretable
interface (see [13,18]).

Definition 4.1 (Representation CertainTrust)
In CertainTrust, an opinion oA about the truth of a proposition A is given as

oA = (t, c, f) where the parameters are called average rating t ∈ [0, 1], certainty
c ∈ [0, 1], and initial expectation value f ∈]0, 1[. If it holds c = 0 (complete
uncertainty), the expectation value (see Def. 4.2) depends only on f , however,
for soundness we define t = 0.5 in this case.

The following introduces the basic semantics of the parameters3. The average
rating t indicates the degree to which past observations (if there are any) support
the truth of the proposition. It can be associated to the relative frequency of
observations supporting the truth of the proposition. The extreme values can be
interpreted as follows:

– average rating = 0: There is only evidence contradicting the proposition.
– average rating = 1: There is only evidence supporting the proposition.

The certainty c indicates the degree to which the average rating is assumed
to be representative for the future. It can be associated to the number of past
observations (or collected evidence units). The higher the certainty of an opinion
is, the higher is the influence of the average rating on the expectation value in
relation to the initial expectation. When the maximum level of certainty (c = 1)
is reached, the average rating is assumed to be representative for the future
outcomes. The extreme values can be interpreted as follows:

– certainty = 0: There is no evidence available.
– certainty = 1: The collected evidence is considered to be representative.

3There are additional parameters defined in [13], i.e., the weight w of the initial
belief, the number of expected evidence units N , and a parameter for considering the
age of evidence. When deriving the parameters (t, c, f) from past evidence, one could
assume w = 1 and lim N →∞. The param. age is not directly relevant for this paper.



Table 1. Definition of the operators

OR

cA∨B =cA + cB − cAcB −
cA(1− cB)fB(1− tA) + (1− cA)cBfA(1− tB)

fA + fB − fAfB

tA∨B =

{
1

cA∨B
(cAtA + cBtB − cAcBtAtB) if cA∨B 6= 0 ,

0.5 else .

fA∨B =fA + fB − fAfB

AND

cA∧B =cA + cB − cAcB −
(1− cA) cB (1− fA) tB + cA (1− cB) (1− fB) tA

1− fAfB

tA∧B =

{
1

cA∧B

(
cAcBtAtB +

cA(1−cB)(1−fA)fBtA+(1−cA)cBfA(1−fB)tB
1−fAfB

)
if cA∧B 6= 0,

0.5 else .

fA∧B =fAfB

NOT t¬A = 1− tA, c¬A = cA, and f¬A = 1− fA

The initial expectation f expresses the assumption about the truth of a propo-
sition in absence of evidence.

The assessment of those parameters can be achieved in multiple ways, e.g.,
direct assessment by an expert, or derived from a Bayesian reputation system,
subjective logic, or a Beta probability distribution.

Definition 4.2 (Expectation value of CT)
The expectation value of an opinion E(t, c, f) ∈ [0, 1] is defined as E(t, c, f) =

t ∗ c + (1− c) ∗ f .

It expresses the expectation about the truth of the proposition taking into
account the initial expectation, the average rating and the certainty.

4.2 Logical Operators

Having introduced the representational model, we define the operators of propo-
sitional logic (OR, AND, and NOT ). These operators are defined in a way
that they are compliant with the evaluation of propositional logic terms in the
standard probabilistic approach. However, when combining opinions, those op-
erators will especially take care of the (un-)certainty that is assigned to its input
parameters, and reflect this (un-)certainty in the result.

Operator OR The operator OR is applicable when opinions for two indepen-
dent propositions need to form a new opinion reflecting the degree of truth for
at least one out of both propositions.

Definition 4.3 (Operator OR)
Let A and B be two independent propositions and the opinions about the truth

of these propositions be given as oA = (tA, cA, fA) and oB = (tB , cB , fB), respec-
tively. Then, the resulting opinion is denoted as oA∨B = (tA∨B , cA∨B , fA∨B)
where tA∨B, cA∨B, and fA∨B are defined in Table 1 (OR). We use the symbol
′∨′ to designate the operator OR and we define oA∨B ≡ oA ∨ oB.



Operator AND The operator AND is applicable when opinions for two inde-
pendent propositions need to be aggregated to produce a new opinion reflecting
the degree of truth of both propositions simultaneously.

Definition 4.4 (Operator AND) Let A and B be two independent proposi-
tions and the opinions about the truth of these propositions be given as oA =
(tA, cA, fA) and oB = (tB , cB , fB), respectively. Then, the resulting opinion is
denoted as oA∧B = (tA∧B , cA∧B , fA∧B) where tA∧B, cA∧B, and fA∧B are defined
in Table 1 (AND). We use the symbol ′∧′ to designate the operator ′AND′ and
we define oA∧B ≡ oA ∧ oB.

Operator NOT The operator NOT is applicable when an opinion about an
proposition needs to be negated.

Definition 4.5 (Operator NOT )
Let A be a proposition and the opinion about the truth of this proposition

be given as oA = (tA, cA, fA). Then, the resulting opinion is denoted as ¬oA =
(t¬A, c¬A, f¬A) where t¬A, c¬A, and f¬A are given in Table 1 (NOT). We use
the symbol ′¬′ to designate the operator NOT and we define, o¬A ≡ ¬oA

The operators for AND and OR are commutative and associative. The proofs
for Theorem 4.1 and Theorems 4.2 are given in [19].

Theorem 4.1 (Commutativity)
It holds oA∧B = oB∧A and oA∨B = oB∨A

Theorem 4.2 (Associativity)
It holds oA∧(B∧C) = o(A∧B)∧C and oA∨(B∨C) = o(A∨B)∨C .

The operators are not distributive, i.e., it does not hold that oA∧(B∨C) =
o(A∧B)∨(B∧C), as A∧B and A∧C are not independent propositions. Finally, it
can be shown that the evaluation of the operators is compliant to the standard
probabilistic approach as well as to subjective logic (see [19]).

5 Evaluation of the Use Case

In this section, we show how the operators of CertainLogic can be applied to
the use case presented in Section 3. The propositional logic term for evaluating
the trustworthiness of the system in the use case has been given as (A1 ∨A2) ∧
(B1 ∨B2 ∨B3) ∧ C.

For the evaluation, we assume that we have good knowledge about the com-
ponents of subsystem S1 (consisting of A1 and A2) and subsystem S2 (consisting
of B1, B2, and B3) and that the components are highly available. The opinions
for the components as well as for the resulting subsystems are given in table
2. In both cases, the subsystems are highly trustworthy (E(oS1) = 0.9963 and
E(oS2) = 0.9964) and the certainty for both systems is high.



Table 2. Resulting opinions for S1 (left) and S2 (right)

oA1 (0.90, 0.98, 0.5)
oA2 (0.99, 0.95, 0.5)

oA1∨A2 = oS1 (0.9974, 0.9956, 0.75)

oB1 (0.9, 0.8, 0.5)
oB2 (0.95, 0.8, 0.5)
oB3 (0.9, 0.9, 0.5)

oB1∨B2∨B3 = oS2 (0.9978, 0.9894, 0.875)

We show the advantage of the new operators presenting different scenarios
regarding the trustworthiness of the atomic component C. Depending on whether
the component is hosted by the owner of the overall system or by a third party,
the certainty about the behavior of this component might be higher or lower.
Here we consider two cases:

Case 1: We assume that the trustworthiness of C is given as oC = (0.9, 0.9, 0.5)
[high certainty ] or as oC = (0.9, 0.1, 0.5) [low certainty ]. For this case, the trust-
worthiness of the overall system S (consisting of S1, S2, and C) are given in Table
3 (left). In the first row, we see that the high certainty in oC is also reflected in
the resulting opinion (cS = 0.9229), whereas the low certainty in oC is reflected
in the resulting opinion (cS = 0.3315) in the second row. In this example, we
have different expectation values for oC (depending on the certainty), and thus
also different expectation values for oS .

Case 2: We assume that the trustworthiness of C is given as oC = (0.9, 0.9, 0.9)
[high certainty ] or as oC = (0.9, 0.1, 0.9) [low certainty ]. Here, both opinions lead
to the same expectation value. The expectation value for the trustworthiness of
the overall system is also the same (due to the compliance with the standard
probabilistic approach). However, in our approach the different values for the
certainty in the input parameters are still visible in the final result, for the cer-
tainty it holds cS = 0.9704 [high certainty ] and cS = 0.7759 [low certainty ] (see
Table 3 (right)).

Table 3. Resulting opinions for S – Case 1 (left) & Case 2 (right)

oC oS1∧S2∧C = oS

high certainty (0.9, 0.9, 0.5) (0.8978, 0.9229,
0.3281)

E(oS) = 0.8538
low certainty (0.9, 0.1, 0.5) (0.9556, 0.3315,

0.3281)
E(oS) = 0.5361

oC oS1∧S2∧C = oS

high certainty (0.9, 0.9, 0.9) (0.9028, 0.9704,
0, 5906)

E(oS) = 0.8935
low certainty (0.9, 0.1, 0.9) (0.981, 0.7759,

0.5906)
E(oS) = 0.8935

6 Conclusion

In this paper, we proposed a novel model for the evaluation of propositional logic
terms under uncertainty. The operators for AND and OR can be shown to be as-
sociative and commutative, which is essential for the evaluation of propositional
logic terms. Additionally, the operators can be shown to be compliant with the
standard probabilistic evaluation of propositional logic terms and with subjec-
tive logic, which finally provides the justification for the mathematical validity
of our model. However, the proposed approach is more expressive than the stan-
dard probabilistic approach, and although it is as expressive as subjective logic,
it provides a simpler representation since it is based on independent parameters
and it provides a more intuitive and more expressive graphical representation.



Finally, we have briefly indicated how the model can be applied when evalu-
ating the trustworthiness of a system in a Cloud Computing scenario. The model
provides a means (1) to derive the trustworthiness of the overall system based on
the knowledge about its components, (2) to take into account multiple criteria
(modeled by propositions), and (3) to explicitly model the uncertainty associated
to the truth of a proposition. Thus, we consider this approach an appropriate,
expressive, and well-founded tool for the evaluation of the trustworthiness of
complex systems.

While we have used the Cloud Computing scenario as a descriptive example,
the model could also be used for reasoning under uncertainty in other fields such
as those involving contextual information. Such information is also subject to
uncertainty; for instance, information collected by sensors.
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