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Abstract—State-of-the art trust and reputation systems seek
to apply machine learning methods to overcome generaliz-
ability issues of experience-based Bayesian trust assessment.
These approaches are, however, often model-centric instead
of focussing on data and the complex adaptive system that
is driven by reputation-based service selection. This entails
the risk of unrealistic model assumptions. We outline the
requirements for robust probabilistic trust assessment using
supervised learning and apply a selection of estimators to a
real-world data set, in order to show the effectiveness of su-
pervised methods. Furthermore, we provide a representational
mapping of estimator output to a belief logic representation
for the modular integration of supervised methods with other
trust assessment methodologies.

Keywords-supervised prediction; trust models; machine
learning

I. INTRODUCTION

Computational trust models provide a grounding for trust
assessment within the extended framework of probability
theory. A commonly accepted (though somewhat reduction-
ist, cf. [1]) point of view holds trust to be a “subjective
probability with which an agent [the trustor] assesses that
another agent [the trustee] /... ] will perform a particular
action” [2]. In this paper, we will follow this definition of
trust, as well as the notion that trust is a dyadic, directed
and conditionally transitive relation. Furthermore, trust as-
sessment will refer to the estimation of the trustworthiness
of the trustee by the truster, using an appropriate statistical
estimator.

Experience-based Bayesian prediction methods are the
mainstay of computational trust models. However, reinforce-
ment learning, prevalent in their model design, still offers
room for improvement. The reliance on a single type of
predictor (either direct or reputation-mediated experience),
for instance, leads to poor generalizability. While better
generalizability can be reached by direct modification of the
trust model and the introduction of new assumptions and
model parameters, the resulting increase in model complex-
ity is undesirable.

A number of approaches, particularly stereotyping trust
models [3], [4], seek to address the generalizability issue
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by leveraging supervised learning for trustworthiness pre-
diction. These approaches provide monolithic trust models
centered around supervised feature-based prediction. Their
focus, however, is on model-building and the presented
models require a high discriminatory power of the provided
feature set. Additionally, the distributional assumptions that
enable supervised learning methods to build a prediction
model depend heavily on the process that generates the
data. Here, the influences of a reputation system on the
selection and data generation process are often not taken into
account, leading to unrealistic distributional assumptions
when creating simulated datasets for model validation.

Consequently, since the quality of the prediction is there-
fore predicated on the quality of the data that is presented to
the prediction model, trust assessment has to be considered
not just from a model-based, but also from a data-driven
perspective. To this end, we have compiled a real-world
dataset! of hotel features and ratings, which exhibits distri-
butional properties induced on the data generation process
by reputation-based selection. To this dataset, we apply
several off-the-shelf machine learning algorithms, in order to
investigate to what extent the features presented on a hotel
booking website encode a hotel’s trustworthiness.

In the latter part of this paper, we will discuss the
peculiarities of the dataset, the results of applying supervised
learning methods, and describe how to integrate them with
existing trust models, e.g., reputation-based methods, by
providing a mapping to a belief logic representation.

In the following, we present the assumptions and pre-
conditions for performing non-parametric and model-free
supervised prediction in trustworthiness assessment (section
II). The hotel dataset is explored and different regression
machines are tested on this real-world data in section III.
In sections IV and V, we present and discuss the results
and propose a mapping of the estimates to the opinion
space representation of commonly used belief logics. Finally,
we briefly reference related work (sec. VI) and provide a
concluding section that also outlines future work (sec. VII).

IThis dataset, containing more than 3000 hotels, with 33 features for
each hotel, is made available, so that our results can be reproduced (and
improved upon).



II. METHODS

This paper will not attempt to present a complete trust
model based around a specific supervised prediction method.
Rather, we will present the requirements that a supervised
prediction approach for trust assessment has to meet, discuss
its application to the data-set and provide a mapping (in
section V) that enables the integration of the prediction
results with existing trust models.

Furthermore, we will use non-parametric, model-free
learning methods in order not to be constrained by model
assumptions and ease the burden of excessive parameterising
for the user.

We will consider prediction methods that operate in batch
mode. The data we are evaluating in section III are stable
with regard to concept drift — that is, the value of the regres-
sand does not change rapidly. In the given scenario (Hotel
Ratings), dataset updates, in the form of newly added hotels
and ratings, are comparatively infrequent. Therefore, we do
not consider online training. Model update is achieved by
retraining the regression machines with the entire, updated
dataset. It is therefore fundamentally equivalent to estimator
training, and will not be specifically discussed in detail.

A. Pre- and Postconditions

As a training precondition, trust computation based on
supervised learning requires a training dataset consisting
of n € Nyn > 0 records in the form (x,y) =
(z1,22,...,Zm,y). y is the dependent variable, in the
case of trustworthiness assessment ideally the true trust-
worthiness score of a particular trustee, and the vector x
consists of a number m of observable attributes (or features)
Z1,T3, ..., Ty, that are used as input variables. A model-free
supervised learning mechanism creates its own prediction
model from the data.

As an assessment precondition, trust computation re-
quires, once a trained regression machine is available, a
feature vector (z1, 9, ..., x,,) for computing an estimated
trustworthiness score 7.

Within the scope of a formal trust model defining trust as
a probability, the postcondition of the trust computation is,
at the least, a probability score. The further specifics of this
postcondition is determined by the representational model
used, for instance for decision making. Thus, when using
the CertainTrust [5] representational model, we require a
proper probability score, as well as a goodness-of-fit (gof)
characteristic for determining the certainty parameter.

When estimating probabilities that are to be used in
rigorous reasoning, the consistency [6] of the estimate is
an important prerequisite (see section II-B). A definition of
the consistency of estimators will be given in the following.
Consistency of the estimator is not only an important post-
condition for probability machines, but it also enables us to
use a experience-based Bayesian trustworthiness estimate as

an estimate for the unobservable trustworthiness of a trustee,
ie., y.

In particular, we will investigate two distinct cases. First,
we consider a regression model in which a trustworthiness
score of a particular trustee is available in the training dataset
as a probability score 0 < y < 1. Since this is unobservable,
we will substitute an estimate in the form of a reputation
score. In order to meet the consistency requirement for
reasoning, this estimate itself should be consistent.

Second, we will consider a case where only a class label in
{0; 1} is available in the training data to classify a particular
trustee. However, our goal is still to determine an actual
probability score p € [0; 1] for each trustee. For this, we will
use so-called probability machines [7]; that is, supervised
estimators that are known to provide consistent probability
estimates from binary regressands.

B. Consistent Trustworthiness Estimation

In the broadest sense, we consider the decision whether
or not to trust as a binary classification problem — a truster
classifies a trustee as either trustworthy or untrustworthy. In
this sense, trustworthiness classification is a discriminatory
problem suitably assigned to statistical learning methods.
However, in order to satisfy the definition of trust as a
subjective probability [2], assigning a class label is insuf-
ficient. Rather, the goal in trust assessment is estimating the
probability of class membership, establishing just how likely
a particular trustee is to be trustworthy.

Thus, the aim of trustworthiness prediction is to reliably
estimate the probability of the trustee acting in a trustworthy
manner in the next interaction with the truster, based upon
representative input data. Thus, if y € {0;1} is the outcome
of such a future interaction, the goal is to compute a
conditional probability P(y = 1|x) given the features x. For
binary outputs, it follows that P(y = 1|x) = E(y|x). Both
trustworthiness assessment by experience-based Bayesian
prediction methods and probability machines leverage this
equality in the estimation process.

1) Experience-based Bayesian Trustworthiness Predic-
tion Model: State-of-the-art trust models [8] rely on
Bayesian prediction models that take experience from past
interactions as inputs to compute a probability score. This
probability score can be interpreted as the probability that
the trustee will act as expected in a future interaction. Tech-
nically, we face a classification task with binary class labels
for the input (and output) data, i.e., class labels trustworthy
and untrustworthy. The posterior probability distribution we
want to estimate is a Bernoulli distribution. In particular, the
desired probability score is the point estimate of its expec-
tation value. This can easily be obtained by computing the
expectation value of the Bernoulli distribution’s conjugate
prior, a Beta distribution.

Bayesian trust estimators (e.g., [5]) use experience from
prior interactions as input. Their output (in the case of binary



input variables) is the probability that the next interaction
with a specific trustee will be a positive one. A funda-
mentally important quality of naive Bayesian estimation
is its consistency [6]. Informally speaking, an estimator is
consistent, if the error of the prediction converges to zero in
the limit with high probability.

Formally, the consistency of an estimator can be defined
thusly [6]:

Definition 1: Let sample X = (X4,...,X,,) be a mem-
ber of a sequence corresponding to n = ng,ng + 1,....

1) A sequence of random variables X, defined over sam-

ple spaces (X, B,,) tends in probability to a constant

c (X, L c) if for every a > 0 it holds that
P[| X, —c| >a] = 0asn— oo.

2) A sequence of estimators d,, of some parameter g(6) is
consistent if for every 6 € ) it holds that ¢, RGN g(0).

The basic prediction model of the estimators used in [9],
[5] is a point estimate of the expectation value of the prior
Beta distribution. That is, if  and s are the sum of positive
and negative prior interactions between truster and trustee,
the probability estimate? is r:-—.:j-z' Here, the use of the
expectation value as an appropriate estimator is due to the
equality P(y = 1|x) = E(y|x). The consistency of this
estimator follows from the consistency of the mean as an
estimator.

Consequently, experience-based naive Bayesian prediction
yields accurate trust scores, under the assumptions that
prior experience is a reliable predictor for future behaviour
and that the available prior experience is sufficient — with
regard to both quality and abundance — for obtaining a
representative point estimate.

The consistency of the estimation method is an important
prerequisite for rigorous reasoning. The quality of conver-
gence in the limit enables reliable probability assessment
of past performance, which is the primary predictor for
trustworthiness in computational trust models. Based on the
consistency properties of the mean as an estimator of the
expectation value, we will, in the following, assume that
Bayesian trustworthiness estimators represent an adequate
regressand for supervised machine learning approaches.

2) Regression Machines for Trustworthiness Prediction:
A key argument behind the introduction of experience-based
computational trust modelling was the scarcity of traditional
cues related to trustworthiness in computer mediated in-
teractions [8]. A cue for trustworthiness can be thought
of as a feature or set of features that a trustee possess
that are supposedly representative of its trustworthiness.
While traditional cues learned from interactions in brick-
and-mortar environments often cannot be applied to online
interactions, modern online services expose a wealth of
observable features. These can form the basis for learning

2We present a basic version here; [9], [S] allow for a further parameter-
isation of the prediction model.

new cues, which in turn can provide better generalizability
for computational trust assessment.

Data mining approaches for exploiting high-dimensional
feature spaces for probability estimation tasks are numerous.
Parametric models, such as logistic regression, are tradition-
ally applied there. However, they suffer from considerable
drawbacks that limit their use in trust assessment in com-
puter mediated interactions. In particular, parametric models
have to be specifically fitted to the problem they are to
address. In order to avoid model misspecification, predictors
and supposed interrelations have to be input correctly. This
limits their use considerably considering the scalability and
flexibility required in data-rich environments where features
can exhibit different scale types, dimensionality and corre-
lation structures [7].

Model-free, non-parametric regression machines support
the robust estimation of conditional probabilities from fea-
ture sets of different scale types and potentially high dimen-
sionality. They make no distributional assumptions for the
vector of features, make no restrictions on the length of the
feature list, and do not rely on a specified model as a starting
point [7]. In order to allow for robust probability estimation
and thereby enable rigorous and meaningful inferences with
regard to the trustworthiness of a trustee, consistency of
the regression model has to be established. When using a
Bayes estimate of the trustworthiness score as regressand,
consistency is inherent in the consistent Bayes estimator.

However, when using a class label, instead of an already
consistent estimate of the trustworthiness score, the super-
vised estimator itself has to be consistent. Malley et al. [7]
term consistent non-parametric and model-free probability
estimators that estimate the conditional probability function
for a binary outcome as probability machines. We will
apply several different probability machines to the task of
trustworthiness assessment, namely, Random Forests [10],
k-Nearest Neighbour [11] approaches and Decision Trees
[12], [13] .

Regression Model: Following [7], we will treat the
probability estimation problem constituted by trust assess-
ment as a non-parametric regression problem. Thus, the
regression machine will serve to estimate the non-parametric
regression function f(x) = E(y|x) = P(y = 1|x), where x
is a vector of features (regressors).

Methods of web data extraction, for instance, can be em-
ployed for gathering relevant information. However, the true
regressand, that is the intrinsic trustworthiness of the trustee,
is an unobservable variable in real-world applications. In
its place, a point estimate from an experience-based naive
Bayes estimation method can be used. Ideally, this is a robust
reputation-based trust model, such as [9], [5]. Due to the
mostly academical nature of these works and the consequent
absence of their real-world application, widely-used basic
reputation systems will have to be substituted instead. For
testing of estimators as probability machines, we will use a



binary dichotomisation of the reputation score.

Random forests [10] are non-parametric ensemble classi-
fiers consisting of a multitude of decision trees. They are
generally considered to be fast and and accurate classifiers
that offer considerably better performance than single trees
[11], for instance, CART[12] or M5 [13].

Random forests have several strengths that make them
theoretically well-suited to trustworthiness assessment. In
particular, they can handle high dimensional feature spaces
of different scale types, with little user input. Thus, they can
be presented with arbitrary sets of feature vectors that result
from web data extraction, without requiring user-driven
feature selection or model specification. Additionally, they
typically provide robust estimates, even under conditions
of missing data. Conveniently, Random Forests perform
rudimentary error estimation using an OOB method?® during
the learning process.

In classification tasks, the output of a random forest is
the mode of the classification outputs of its constituent
classification trees. Instead of outputting a class label, the
random forest can also return an estimate of the conditional
probability P(y|x). As we are concerned with probability
estimation of binary classes, the probability estimate can be
obtained by computing the proportion %, averaged
over all constituent trees, when running the random forest
in classification mode. In regression mode, the random
forest consists of regression trees instead of classification
trees. Thus, the probability estimates are averaged over
the regression results of the individual trees, instead. For
the prediction of hotel ratings (section III), we will use
a random forest estimator in classification and regression
mode, termed classRF and regRF.

The consistency of random forests has been shown by
Biau et al. [14]. For a detailed description of random forest
bootstrapping and classification procedures, see [10], [7].

K -Nearest Neighbour (k-NN) estimators are a special
case of kernel density balloon estimators. The (simplified)
classification process is intuitive: An unlabelled sample is
classified by comparing its feature vector to labeled samples
from a training set and choosing the %k closest according to
an appropriate distance metric. The class of the unlabelled
sample is estimated by determining the mode of the k
labels of the labeled neighbours. In a regression model with
a continuous regressand, the mode can, for instance, be
replaced by an inverse distance weighted average function.

Breiman [15] introduced a variation of nearest neighbour
classifiers that combines several k-Nearest Neighbour into
an ensemble classifier, using bagging (bootstrap aggregat-
ing). This is analogous to formation of random forests from
decision trees. Thus, the output of the bagged k-NN (b-
NN) is the mode of its constituent k-NN estimators for a

3Therefore, they do not necessarily require dedicated cross validation to
control overfitting.

classification task. A probability estimate can be obtained
in the same manner as for the classRF random forest [7].

In recent publications dealing with the application of
machine learning to trustworthiness assessment tasks [3],
[16], decision trees have been used for classification tasks.
There are several decision tree algorithms that can perform
regression and are suitable for trustworthiness assessment.
Specifically, we will test CART [12] and M5 [13] decision
tree algorithms on the dataset.

Decision trees offer white box behaviour and interpretabil-
ity of the generated models. They are also reasonably robust,
performant and can deal with different scale types as input
data.

We omit another popular estimator, support vector ma-
chines (SVM), because it cannot guarantee universal consis-
tency [7].

In section III we present a real-world dataset and test
the methods on it — with regard to their capability to
predict reputation scores from the given features. We do
not present synthetic data. This is done intentionally. The
power of the machine learning methods described above
is well-established. Generating synthetic data to show the
discriminatory qualities of these methods would thus be only
an — inadequate — replication of work. For an application of
probability machines to benchmarking datasets, the inter-
ested reader is referred to [7].

III. DATA

Hotel booking and ranking sites represent a real-world
application of reputation systems that combine both elec-
tronic availability of the reputation data, as well as physical
service provisioning in a mature and regulated market. The
records furnished by hotel booking sites actually guide real
customers to make a trust decision and, through their rating
feature, provide a feedback mechanism. They provide the
user not only with reputation scores for hotels, but also
with collections of features, that are standardised, complete
and verifiable to some extent. The physical nature of the
service provisioning and the correspondingly required mon-
etary collateral (e.g., costs of realty, furnishings, personnel,
etc.) justify assumptions of slow concept drift and market
persistence of individual hotels.

In order to test regression machines for trustworthiness
assessment, we acquired a dataset of 3,006 hotel records
for hotels in 9 major European cities from a German hotel
booking site. Each record consists of an ID, an aggregated
rating score, the number of individual binary ratings that
were aggregated into the rating score, as well as 33 features
of various scale types (table I).

When rating a hotel, raters were asked ‘Would you rec-
ommend this hotel?” and could answer either yes or no.
Individual ratings, therefore, are binary. Rating aggregation
into an aggregate recommendation score is achieved via
simple averaging. Ratings are only available as aggregate



Scale Type | Feature

Nominal ID, City

Binary Payment Options:

Master, Visa, AmEx

Hotel Ammenities:

Laundry Service, WiFi, Restaurant, Bar, Bistro and Cafe, Steam Bath, Elevator, Special Access, Gym, Sauna, Solarium

Room Ammenities:

Telephone, TV, Radio, AC, Safe, Minibar, Desk, Hair Dryer, Bath Tub

Ordinal Hotel Stars

Ratio Aggregate Recommendation, Number of Recommendations

Distances to next:

Airport, Highway Access, Railway Station, Commuter Station

Number of Rooms:
Total, Single, Double

Price

Table 1
SCALE TYPES AND FEATURES FOR THE HOTEL DATASET

recommendation scores. In particular, no time series of
individual ratings was available. Furthermore, raters were
only able to rate hotels that they had booked through the
booking site.

Overall, raters contributed 199,168 ratings, of which
151,868 (= 76%) were positive and 47,300 (= 23%) were
negative ratings. Of the 3,006 hotels in the dataset, 356
(~ 11.8%) have not been rated. Of those 2,650 hotels that
have been rated, the mean number of ratings per hotel is
75.16 — the median, however, is considerably lower at 25
(for a summary, see table II). Figures 1(a), 1(b) show his-
togram information of aggregate recommendations, clearly
displaying the peakedness of the empirical distribution and
the effect of the excess positive individual and aggregate
ratings (see also table II).

Figure 1(c) shows a long-tailed distribution of the number
of recommendations per hotel, i.e., a small number of hotels
have a high number of recommendations, while the vast
majority of hotels have a comparatively small number of
recommendations. Figure 1(d) plots the distribution of the
recommendation score against the number of recommen-
dations. The distribution evident in these figures hints at
preferential attachment processes that are induced by the
decision making and feedback mechanisms of the reputation
system.

In section IV we apply the off-the-shelf regression ma-
chines described in section II to the hotel dataset. We follow
the non-parametric regression function f(x) = E(y|x) =
P(y = 1]x), where x is a vector of features (regressors). The
aggregate recommendation score is used as regressand, while
the 33 features listed in table I (omitting ID and Number
of Recommendations) will serve as regressors. We assume
that the aggregate recommendation score is an adequate
surrogate for the unobservable true trustworthiness of each
trustee (i.e., hotel), which is justified by the arithmetic mean
being a consistent and stable estimator.

IV. RESULTS

In the following, we apply the estimators that were
introduced in section II. First (section IV-A), we test the

random forest, k-NN, CART and M5 decision tree algorithms
in a regression scenario with the aggregate recommendation
scores as unmodified regressands y. In addition, logistic
regression was performed to provide a baseline.

Second (section IV-B), we use the probability estimation
capabilities of the regression machines in a classification
scenario (i.e., in a dichotomous regression scenario with
values 0 or 1, with the estimators operating as probability
machines). For this, we generated dichotomous outcomes
from the aggregate recommendation scores. For each hotel,
a new dichotomous response variable y was computed
by using a binomial random number generator with the
hotel’s recommendation score as the corresponding proba-
bility. Random forests, k-NN, b-NN, CART and M5 decision
tree estimators were trained using the new binary response
variable and the 33 features of the hotel dataset as regressors.
The estimators were not presented with the recommendation
scores or the number of ratings per hotel.

In both cases, the area under the curve (AUC) was
computed against the dichotomised response, based on the
receiver operator characteristics (ROC).

10-fold cross validation (CV) was performed to check
for overfitting. None of the estimators exhibited tendencies
towards overfitting the data and the goodness-of-fit gof did
not vary noticeably between random forest OOB estimates,
standard holdout and CV. We evaluated gof according to
several standard error measures (see table III) based on
the difference between the estimates P(y = 1) and the
recommendation score, which we assume to represent the
true trustworthiness P(y = 1).

Random forest estimators were applied in regression
mode (regRF, to both recommendation score and class label
regressands) and classification mode (classRF, to class label
regressand). For each of these, two distinct configurations
were chosen: one that guarantees consistency (according
to [7]), in which individual trees were not fully grown,
and one that grows the individual trees to their full extent,
according to the default settings [10] for regRF and classRF.
In the latter case, universal consistency of the random forest
estimator cannot be guaranteed.



Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. SD Skew | Kurt

Number 2 9 25 75.16 78 1531 | 13240 | 4.03 | 23.08

Score 0.0 0.65 0.75 0.73 0.83 1.0 0.138 -0.89 1.38
Table 1T

DISTRIBUTION OF NUMBER OF RECOMMENDATIONS AND RECOMMENDATION SCORE
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Figure 1.

A. Regression to Recommendation Score

The results of applying the regression machines can be
seen in table III, in terms of various goodness of fit mea-
sures (for a documentation of the measures, see [17]). The
normalised root mean square error (nrmse, see definition
2) indicates that the Random Forest estimators perform
marginally better than the decision trees. As per the mapping
presented in the discussion section (section V), we consider a
prediction informative, if the percentage nrmse (nrmse%)
is smaller than 100. While all tree-based estimators (regRF,
M5, CART) achieve an nrmse% < 100, nearest neighbour
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Recommendation Score

(d)

Aggregate Recommendations in the Hotel dataset

and logistic regression return no informative results.

When considering the AUC, as per table IV, the random
forests outperform the other estimators. However, the margin
between the different methods is small, and the overall
performance of all methods is only slightly better than
random guessing (as indicated by an AUC of 0.5).

B. Regression to Class Label

When operating the estimators as probability machines,
results of the probability estimation (tables V and VI)
are qualitatively broadly similar to those of the regression



ME MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD NSE mNSE d md
regRF (consistent) 0 0.1 0.02 0.13 91.8 0 092 | 0.29 0.16 0.11 0.43 | 0.32
regRF (default) 0 0.09 0.02 0.12 89.6 -0.6 0.9 0.44 0.2 0.14 0.56 | 0.41
M5 0 0.09 0.02 0.13 91.8 0 092 | 0.44 0.16 0.11 0.53 | 0.38
CART 0 0.1 0.02 0.13 94 0 094 | 0.39 0.12 0.08 0.47 | 0.35
k-NN 0 0.11 0.02 0.14 103.4 -0.3 1.03 | 0.52 | -0.07 -0.02 045 | 0.34
logit 0.29 0.33 0.17 0.42 301.2 39.3 3.01 2.37 | -8.07 -2.12 0.39 | 0.26
Table III
AVERAGE GOODNESS OF FIT OF REGRESSION TO RECOMMENDATION SCORE (FOR A DOCUMENTATION OF THE MEASURES, SEE [17])
ME MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD NSE mNSE d md
regRF (consistent) 0 0.1 0.02 0.13 94.2 -0.1 0.94 | 0.36 0.11 0.08 0.45 | 033
regRF (default) -0.02 0.12 0.02 0.15 110.6 -2.9 1.11 0.75 -0.22 -0.11 0.52 | 0.38
classRF (consistent) 0.26 0.26 0.09 0.29 212.8 35.6 2.13 | 0.13 -3.53 -1.43 0.39 | 0.29
classRF (default) -0.01 0.11 0.02 0.15 107.6 -1.7 1.08 0.7 -0.16 -0.07 0.52 | 0.38
M5 0 0.1 0.02 0.14 102.2 -0.1 1.02 | 0.59 -0.04 0.03 0.49 | 0.37
CART -0.46 0.46 0.23 0.48 347.6 -62.8 3.48 | 0.17 | -11.08 -3.3 0.3 0.19
k-NN -0.01 0.1 0.02 0.13 96.8 -1.2 0.97 | 0.28 0.06 0.04 0.36 | 0.27
b-NN -0.01 0.1 0.02 0.13 96.8 -1.1 0.97 0.3 0.06 0.04 0.37 | 0.28
logit 0.3 0.41 0.35 0.59 427.8 41.5 4.28 3.8 -17.3 -2.84 0.27 | 0.23
Table V
AVERAGE GOODNESS OF FIT FOR REGRESSION TO A CLASS LABEL (FOR A DOCUMENTATION OF THE MEASURES, SEE [17])
avg AUC | MIN | MAX + SD . . .. .
regRF (cons) | 0.590%% | 0563 | 0.604 | L 0012 score deviates from this mean. .Ma]orlty class.undersamplmg
1egRE (del) | 0.585%%% | 0.565 | 0.599 | =& 0.014 was performed to check if this was solely induced by the
M5 0.582*** | 0.565 0.6 =+ 0.012 distribution of the recommendation score. This did not lead
CART 0.56%** 0.543 | 0.575 + 0.01 .
NN 0.547 | 0543 | 035 | £0.01 to improved performance.
logit 0.582 0.563 | 0.603 + 0.014 V. DISCUSSION
Table IV

AVERAGE CLASSIFICATION PERFORMANCE WITH RECOMMENDATION
SCORE AS REGRESSAND (***: p VALUE (95 % CONFIDENCE INTERVAL)
OF ONE-SIDED WILCOXON TEST, AUC PREDICTION VS. GUESSING, I.E.

©=0.5,p < 0.001)

avg AUC | MIN | MAX + SD

regRF (cons) 0.568*#* | 0.552 | 0.585 | £ 0.013
regRF (def) 0.547#%*% 1°0.523 | 0.579 | £+ 0.019
classRF (cons) | 0.529*#* | 0.503 | 0.545 | £ 0.012
classRF (def) 0.55%3#:* 0.527 | 0.579 + 0.02
M5 0.554%##*% 10.523 | 0.584 | £ 0.019
CART 0.529*#* 1 0.505 | 0.544 | £ 0.012
k-NN 0.548*#*% 1 0.529 | 0.564 | £+ 0.014
b-NN 0.541#%% 1 0.505 | 0.564 | £ 0.024
logit 0.557##*% 1 0.535 | 0.583 | £ 0.016

Table VI

AVERAGE CLASSIFICATION PERFORMANCE WITH CLASS LABEL AS
REGRESSAND (***: p VALUE (95 % CONFIDENCE INTERVAL) OF
ONE-SIDED WILCOXON TEST, AUC PREDICTION VS. GUESSING, IL.E.
pn=0.5,p <0.001)

machines in section IV-A. Goodness of fit of the probability
estimates and classification performance (as AUC) are even
weaker, however. Only the consistent regRF and the two
nearest neighbour approaches achieve a nrmse% < 100.
Figure 2 shows the predictive performance and absolute
error of the best performing (in terms of AUC) estima-
tor, a consistent regRF trained on recommendation score
regressands. The distribution of the prediction versus the
actual recommendation score and the distribution of the error
indicate the limited ability of the estimator to create a good
prediction model. Predictions are centred around the mean
recommendation score, thereby decreasing the goodness
of the prediction the further the actual recommendation

The dataset presented in section III illustrates peculiarities
that are caused by the presence of reputation systems in
service selection. The data exhibits a strong prevalence of
positive ratings over negative ones (figures 1(a) and 1(b)).
Assuming that ratings are, for the most part, authentic, we
attribute this to two main reasons.

First, the type of service provided is physical in na-
ture, rather than virtual, and has a long and established
tradition, and is well-regulated by social norms, as well
as economic and legal bodies. Thus, providing a service
as advertised is strongly encouraged by the environment of
service provisioning. At the same time, there are established
expectations what a customer can expect from the service
provider/hotelier, leading to positive expectation confirma-
tion. Simply put, providing a physical service as advertised
is simply the social and legal norm, while at the same time
the customer knows what to expect from a 3-star hotel at a
given price point.

Second, and more interestingly from a data-centric per-
spective, is a tendency towards preferential attachment that is
visible from the data. Considering figures 1(c) and 1(d), we
can observe a) a long-tailed distribution signifying that only
a small number of hotels have many ratings, reminiscent of
a power law distribution; and b) high numbers of ratings
are considerably more frequent among hotels with higher
recommendations scores. Because hotels with good ratings
are preferentially selected — as a risk minimisation strategy
— and because hotels with a good rating can be considered
to be more likely to provide satisfactory service, reputation
systems contribute to the skewed distribution observable
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from the data. By design, reputation systems dissolve the
independence of service selection and feedback — a fact
that is both indicative of and contributes heavily to their
success as a soft security control instrument. Well-behaving
providers are rewarded by building a good reputation and
attracting more customers, while badly performing providers
are effectively eliminated from the selection process.

Thus, the dataset reflects the success of a functioning
reputation system in a real-world application scenario, in
which transaction costs are non-negligible. At the same time,
however, the effects of preferential attachment that are driven
by the reputation system also pose challenges. Exploitative
service selection is encouraged over explorative selection,
which leads to established markets and market entry issues
for new hotels. Not only that, but because presumably bad
providers are very quickly eliminated from the market,
by not being selected, and because these presumably bad
providers only have a low number of bad ratings, feature-
based trustworthiness prediction methods are limited in their
effectiveness. The number of negative samples is simply not
sufficient to build accurate predictive models.

Consequently, the features presented on the selected hotel
booking website encode a hotels trustworthiness to a very
limited degree. This limits the usefulness of stereotyping
approaches in service selection scenarios, because the data
foundation that is used for machine learning is necessarily
skewed by the selection process. However, the performance
of the regression machines is significantly (tables IV, VI)
better than pure guessing and therefore can (and should) be
harnessed.

o

Absolute Error by Estimator

0.25-

) ) i i )
0.00 0.25 0.50 0.75 1.00
Reputation Value

(b) Absolute Error

Predictive Performance and Error for Regression Random Forest (regRF, consistent, ntree=10%)

A. Belief Logic Mapping

The goodness-of-fit of the supervised estimators evaluated
in section IV does not warrant building a standalone trust
management system around them. The features of the hotel
dataset do not provide sufficient discriminatory power to
build accurate models from the skewed data and do not
yield reliable trust scores. However, the probability machines
still provide if not an accurate fit of the trustworthiness,
then at least an indication of how trustworthy a particular
hotel is. As such, they can still be of value within a
trustworthiness estimation ensemble. They can be used in a
supplementary role, for instance as input to the base rate or
initial expectation of an experience-based Bayesian model.

The meaningful combination of different trustworthiness
estimators and the logical inference over their output require
a framework for reasoning. Subjective Logic [8] is a popular
choice for reasoning under uncertainty that is inherent in the
estimation process. A more recent but similar framework is
CertainLogic [18], which is derived from and fully isomor-
phic to Subjective Logic.

We model the integration of trust estimating regression
machines with other estimators, e.g., reputation-based trust
models, using CertainLogic. This choice is governed pri-
marily by the fact that the opinion representation of Cer-
tainLogic corresponds more intuitively to the outputs and
error estimates of the regression machines. Choosing Cer-
tainLogic over Subjective Logic should not be understood
as a reflection on the capabilities of each; rather, we believe
that using the CertainLogic opinion representation will ease
understanding.



CertainLogic is derived from Subjective Logic and is
therefore rooted in belief theory [19]. As such, it allows
not only for the modelling, combination and inference over
probabilities, but over so-called opinions. Opinions allow
expressing any possible uncertainty regarding the probabili-
ties. Ries et al. [20] propose to represent opinions as ordered
triples w = (¢, ¢, f), where:

o t €[0;1] is a probability estimate that y = 1.

e ¢ € [0;1] is a certainty estimate that the probability

estimate ¢ is correct.

e f €[0;1] is a base rate, modelling an a-priori assump-

tion.
and t,c, f € [0;1].

In experience-based naive Bayesian trustworthiness pre-
diction, such as [9], [5], the probability estimate ¢ corre-
sponds to the proportion of good ratings (y = 1) to all ratings
a truster has with regard to a specific trustee. The certainty
estimate c is typically a function of the number of such
ratings. Establishing the certainty estimate in this manner
is made possible by leveraging model assumptions of the
naive Bayesian prediction, in particular the convergence of
the mean to the true expectation value.

When using regression machines, mapping the probability
estimate ¢t is trivially achieved by using the prediction value,
as in naive Bayesian models. Certainty estimation, however,
has to be done in a different manner, due to different
characteristics and purposes of the prediction paradigm.

We propose using a conservative goodness-of-fit mea-
sure, for instance the normalised root-mean-square error
(nrmse):

Definition 2: Let O = (01,02,...,0,) be a vector of
observed values and S = (%1,82,...,8,) a vector of
corresponding estimates. Let 0,4, be the largest, 0,,;, the
smallest element of O.

nrmse = " (5 —o1)? )/ (Omaz — Omin)

The mapping from estimator output to the CertainLogic
opinion space is thus given as:

e t=Py=1Jx)

e c=1— (min(nrmse, 1))

e f€[0;1], a (user defined) default base rate to be used

under complete uncertainty, e.g., 0.5.

The provided mapping enables the integration of re-
gression machines in trustworthiness assessment ensembles.
Using different fusion operators (cf., [21], [22]), different
estimation paradigms can be flexibly combined, thereby
enabling ensembles that can leverage the respective strengths
of the different estimation paradigms.

VI. RELATED WORK

As this paper concerns itself with the application of a sub-
class of supervised learning mechanisms to trustworthiness
assessment for reputation-based trust management, this sec-
tion will quite briefly present some related work in the field
of computational trust.

Research on computational trust is an active and maturing
field of research (cf., for instance, [8], [23]), a fact that is
well attested by the proliferation of related concepts in litera-
ture and application. Bayesian reputation-based trust models,
such as work by Jgsang [9] or Ries [5], have provided
statistically well-founded trust models. As reinforcement
learning approaches (that do not generalise), these models
in particular have to cope with bootstrapping and cold-start
issues, leading to an increased impact of the exploration-vs.-
exploitation dilemma.

Recent research on trust bootstrapping via stereotyping
by Burnett et al. [3], [24], Liu et al. [4] and Fang et al.
[25] is directed at providing a better generalisation ability
by creating stereotypical profiles for generalisation in agent
societies. Through their use of machine learning and data
mining, this research can be considered closely related to
the work presented in this paper. In particular, decision trees
are used for classification from feature vectors. However, the
focus of our work is on consistent, model-free prediction for
probability estimation.

In the field of recommendation systems, a rich landscape
of literature exists that deals with the application of machine
learning (for an introduction, see, e.g. [26]). Recommen-
dations in tourisms, for instance, for hotels, are a popular
application scenario (e.g., [27], [28]).

VII. CONCLUDING REMARKS

In the previous sections we have outlined the requirements
for the application of supervised machine learning methods,
so-called regression machines, to trustworthiness assess-
ment. We have shown the impact, on a real-world dataset,
of exploitative selection on the data generation process and
how this affects predictive performance. Finally, we have
provided a mapping from estimator output to a belief logic
representation that enables the use even of weak predictive
results within the framework of trust assessment ensembles.

Using reputation systems in service selection, particularly
when non-negligible resources are at stake, reinforces a
trend towards exploitation. This has effects on the data
that is generated and available for future trust assessment.
The resulting complex adaptive system of trust assessment,
selection and data generation merits closer attention in the
future. For this, a data-centric, rather than a model-centric,
approach to investigating the dynamics of trust and reputa-
tion systems is necessary. Developing flexible, component-
based trust management approaches, standardised evaluation
methodologies and a systematic collection and analysis of
trust related datasets, in the form of a publicly available
reference library for testing, are, in our opinion, important
next steps.
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APPENDIX

Classification performance of different estimators for dichotomised lass labels of the hotel data set. For each hotel, a
new dichotomous response variable y € 0;1 was computed by using a binomial random number generator with the hotels
recommendation score as the corresponding probability.

A. Regression to Reputation Score, Undersampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Additionally, during the training process, the majority class y = 1 was undersampled, so that |y = 1| == |y = 0. Results
were generated from cross validated bootstrap samples.

avg AUC | MIN | MAX + SD
regRF (consistent) 0.575 0.543 | 0.599 | + 0.017
regRF (default) 0.578 0.549 0.6 + 0.015
M5 0.571 0.544 | 0.588 | £ 0.017
CART 0.56 0.538 | 0.577 | £0.014
logit 0.574 0.546 | 0.599 | £ 0.016
Table VII

AVERAGE CLASSIFICATION PERFORMANCE FOR UNDERSAMPLED DATA AND RECOMMENDATION SCORE AS REGRESSAND
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Figure 3. Regression Random Forest, ntree = 10% of number of samples (hotels), consistent
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Figure 4. Regression Random Forest, ntree = 5, package default
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Figure 5. M5 Model Decision Tree
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Figure 6. Classification and Regression Tree (CART)
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Figure 7. Logistic Regression



B. Regression to Class Label, Undersampling

Classification performance of estimators trained on hotel label, i.e., regressor is dichotomous variable in {0;1}.
Additionally, during the training process, the majority class y = 1 was undersampled, so that |y = 1| == |y = 0].
Results were generated from cross validated bootstrap samples.

avg AUC | MIN | MAX + SD
regRF (consistent) 0.552 0.509 | 0.583 | + 0.026
regRF (default) 0.542 0.507 | 0.564 | + 0.021
classRF (consistent) 0.556 0.521 0.59 + 0.023
classRF (default) 0.541 0.502 | 0.563 | + 0.022
M5 0.546 0.507 | 0.574 + 0.02
CART 0.621 0.503 | 0.809 | + 0.108
logit 0.546 0.503 | 0.573 | £ 0.024
Table VIII

AVERAGE CLASSIFICATION PERFORMANCE FOR UNDERSAMPLED DATA AND CLASS LABEL AS REGRESSAND
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Figure 8. Regression Random Forest, ntree = 10% of number of samples (hotels), consistent
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Figure 9. Regression Random Forest, ntree = 5, package default
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Figure 12.

M35 Model Decision Tree
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Figure 13.

Classification and Regression Tree (CART)
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Figure 14. Logistic Regression



Predictive performance of regression and probability machines. Performance measured based on the error function between
predicted value Y and reputation score Y.

C. Regression to Reputation Score, Undersampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Additionally, during the training process, the majority class y = 1 was under sampled, so that |y = 1| == |y = 0. Results
were generated from cross validated bootstrap samples.

ME MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD | NSE | mNSE d md
regRF (consistent) | -0.02 0.1 0.02 0.13 93.3 -2.7 0.93 | 0.31 0.13 0.07 0.45 | 0.31
regRF (default) -0.02 0.1 0.02 0.13 92.6 -3.3 093 | 045 | 0.14 0.08 0.55 | 0.39
M5 -0.02 0.1 0.02 0.13 96.3 -2.5 0.96 | 0.51 0.07 0.07 0.52 | 0.38
CART -0.02 0.1 0.02 0.13 95.9 -2.6 0.96 | 045 | 0.08 0.05 0.49 | 0.35
logit 0.2 0.28 0.14 0.38 275.2 26.8 275 | 2.53 | -6.57 -1.66 0.42 0.3

Table IX

AVERAGE GOODNESS OF FIT FOR UNBALANCED DATA AND RECOMMENDATION SCORE AS REGRESSAND
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Figure 15. Predictive Performance and Error for Regression Random Forest (regRF, consistent, ntree=10%)
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Figure 16. Predictive Performance and Error for Regression Random Forest (regRF, default, ntree=5)
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Figure 17. Predictive Performance and Error for M5 Model Decision Tree
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Figure 18. Predictive Performance and Error for Classification and Regression Tree (CART)
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Figure 19. Predictive Performance and Error for Logistic Regression (logit)



D. Regression to Class Label, Undersampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Additionally, during the training process, the majority class y = 1 was undersampled, so that |y = 1| == |y = 0|. Results
were generated from cross validated bootstrap samples.

ME MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD NSE mNSE d md
regRF (consistent) -0.23 | 0.24 0.07 0.26 190.4 -31 1.9 047 | -2.63 -1.23 0.44 | 0.29
regRF (default) -0.23 | 0.25 0.08 0.28 202.8 -31.6 203 | 0.84 | -3.11 -1.3 043 | 0.28
classRF (consistent) | -0.22 | 0.25 0.09 0.3 2153 -30.7 2.15 | 1.36 | -3.63 -1.32 | 044 | 0.29
classRF (default) -0.23 | 0.24 0.08 0.27 199.2 -31.1 199 | 0.8 -2.97 -1.26 | 043 | 0.28
M5 -0.23 | 0.24 0.08 0.28 200.6 -30.9 201 | 083 | -3.02 -1.26 | 042 | 0.28
CART -0.23 | 0.25 0.08 0.28 200.3 -31.6 2 035 | -3.01 -1.3 0.38 | 0.27
logit -0.71 0.76 0.94 0.97 704.3 -96.8 7.04 | 492 | -48.61 -6.14 | 0.18 | 0.13

Table X

AVERAGE GOODNESS OF FIT FOR UNDERSAMPLED DATA AND CLASS LABEL AS REGRESSAND
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Figure 20. Predictive Performance and Error for Regression Random Forest (regRF, consistent, ntree=10%)
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Figure 21. Predictive Performance and Error for Regression Random Forest (regRF, default, ntree=5)
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Figure 22. Predictive Performance and Error for Classification Random Forest (classRF, consistent, ntree=10%)
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Figure 23. Predictive Performance and Error for Classification Random Forest (classRF, default, ntree=1)
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Figure 24. Predictive Performance and Error for M5 Model Decision Tree
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Predictive Performance and Error for Classification and Regression Tree (CART)
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Classification performance of different estimators for dichotomised lass labels of the hotel data set. For each hotel, a
new dichotomous response variable y € 0;1 was computed by using a binomial random number generator with the hotels
recommendation score as the corresponding probability.

E. Regression to Reputation Score, no Sampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Results were generated from cross validated bootstrap samples.

avg AUC | MIN | MAX + SD
regRF (consistent) 0.590 0.563 | 0.604 | 4+ 0.012
regRF (default) 0.585 0.565 | 0.599 | £ 0.014
M5 0.582 0.565 0.6 + 0.012
CART 0.56 0.543 | 0.575 + 0.01
logit 0.582 0.563 | 0.603 | £ 0.014
Table XI

AVERAGE CLASSIFICATION PERFORMANCE FOR UNBALANCED DATA AND RECOMMENDATION SCORE AS REGRESSAND
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Figure 27. Regression Random Forest, ntree = 10% of number of samples (hotels)
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Figure 28.

Regression Random Forest, ntree = 5, package default
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Figure 30. Classification and Regression Tree (CART)
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Figure 31.

k-Nearest Neighbour (kKNN)
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FE. Regression to Class Label, no Sampling

Classification performance of estimators trained on hotel label, i.e., regressor is dichotomous variable in {0;1}. Results
were generated from cross validated bootstrap samples.

avg AUC | MIN | MAX + SD
regRF (consistent) 0.568 0.552 | 0.585 + 0.013
regRF (default) 0.547 0.523 | 0.579 | £ 0.019
classRF (consistent) 0.529 0.503 | 0.545 + 0.012
classRF (default) 0.55 0.527 | 0.579 + 0.02
M5 0.554 0.523 | 0.584 | £ 0.019
CART 0.529 0.505 | 0.544 | £ 0.012
kNN 0.548 0.529 | 0.564 | £ 0.014
bNN 0.541 0.505 | 0.564 | + 0.024
logit 0.557 0.535 | 0.583 | £ 0.016
Table XII

AVERAGE CLASSIFICATION PERFORMANCE FOR UNBALANCED DATA AND CLASS LABEL AS REGRESSAND
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Figure 33.

Regression Random Forest, ntree = 10% of number of samples (hotels)
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Figure 34. Regression Random Forest, ntree = 5, package default
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Figure 35. Classification Random Forest, ntree = 10% of number of samples (hotels)
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Figure 36. Classification Random Forest, ntree = 1, package default
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Figure 37.

M35 Model Decision Tree
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Figure 38.

Classification and Regression Tree (CART)
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Figure 39. k-Nearest Neighbour (kNN)
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Figure 40.

Bagged 1-Nearest Neighbour (bNN)
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Predictive performance of regression and probability machines. Performance measured based on the error function between
predicted value Y and reputation score Y.
G. Regression to Reputation Score, no Sampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Results were generated from cross validated bootstrap samples.

ME | MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD | NSE | mNSE d md
regRF (consistent) 0 0.1 0.02 0.13 91.8 0 092 | 0.29 | 0.16 0.11 043 | 0.32
regRF (default) 0 0.09 0.02 0.12 89.6 -0.6 0.9 0.44 0.2 0.14 0.56 | 041
M5 0 0.09 0.02 0.13 91.8 0 092 | 044 | 0.16 0.11 0.53 | 0.38
CART 0 0.1 0.02 0.13 94 0 094 | 039 | 0.12 0.08 047 | 0.35
kNN 0 0.11 0.02 0.14 103.4 -0.3 1.03 | 0.52 | -0.07 -0.02 045 | 0.34
logit 0.29 | 0.33 0.17 0.42 301.2 39.3 3.01 | 237 | -8.07 -2.12 0.39 | 0.26
Table XIII

AVERAGE GOODNESS OF FIT FOR UNBALANCED DATA AND RECOMMENDATION SCORE AS REGRESSAND
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Predictive Performance and Error for Regression Random Forest (regRF, consistent, ntree=10%)
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Figure 43. Predictive Performance and Error for Regression Random Forest (regRF, default, ntree=5)
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Figure 44. Predictive Performance and Error for M5 Model Decision Tree
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Figure 45. Predictive Performance and Error for Classification and Regression Tree (CART)
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Figure 46. Predictive Performance and Error for k-Nearest Neighbour (kNN)
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Figure 47. Predictive Performance and Error for Logistic Regression (logit)



H. Regression to Class Label, no Sampling

Classification performance of estimators trained on hotel reputation score, i.e., regressor is a continuous variable in [0; 1].
Results were generated from cross validated bootstrap samples.

ME | MAE | MSE | RMSE | NRMSE % | PBIAS % | RSR | rSD NSE mNSE d md
regRF (consistent) 0 0.1 0.02 0.13 94.2 -0.1 094 | 0.36 0.11 0.08 0.45 | 0.33
regRF (default) -0.02 | 0.12 0.02 0.15 110.6 -2.9 1.11 | 0.75 | -0.22 -0.11 0.52 | 0.38
classRF (consistent) | 0.26 0.26 0.09 0.29 212.8 35.6 2.13 | 0.13 | -3.53 -1.43 0.39 | 0.29
classRF (default) -0.01 | 0.11 0.02 0.15 107.6 -1.7 1.08 0.7 -0.16 -0.07 | 0.52 | 0.38
M5 0 0.1 0.02 0.14 102.2 -0.1 1.02 | 0.59 | -0.04 0.03 0.49 | 0.37
CART -0.46 | 0.46 0.23 0.48 347.6 -62.8 348 | 0.17 | -11.08 -3.3 03 | 0.19
kNN -0.01 0.1 0.02 0.13 96.8 -1.2 0.97 | 0.28 0.06 0.04 0.36 | 0.27
bNN -0.01 0.1 0.02 0.13 96.8 -1.1 0.97 0.3 0.06 0.04 0.37 | 0.28
logit 0.3 0.41 0.35 0.59 427.8 41.5 4.28 3.8 -17.3 -2.84 | 027 | 0.23

Table XIV

AVERAGE GOODNESS OF FIT FOR UNBALANCED DATA AND CLASS LABEL AS REGRESSAND
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Figure 48. Predictive Performance and Error for Regression Random Forest (regRF, consistent, ntree=10%)
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Figure 49. Predictive Performance and Error for Regression Random Forest (regRF, default, ntree=5)
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Figure 50. Predictive Performance and Error for Classification Random Forest (classRF, consistent, ntree=10%)
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Figure 51. Predictive Performance
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and Error for Classification Random Forest (classRF, default, ntree=1)
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Figure 52. Predictive Performance and Error for M5 Model Decision Tree
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Figure 53. Predictive Performance and Error for Classification and Regression Tree (CART)
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Figure 54. Predictive Performance and Error for k-Nearest Neighbour (kNN)
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Predictive Performance and Error for bagged 1-Nearest Neighbour (bNN)
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Figure 56. Predictive Performance and Error for Logistic Regression (logit)




