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Abstract 

 

E-mail driven communication opens up new opportunities for social 

engineering attacks like the ‘doppelganger mail attack’. Our goal is to lessen 

the impact of such attacks by employing machine learning techniques. In 

order to do so we determine if incoming mail by unknown addresses can be 

matched to other known contacts and thereby verify if an impersonation 

attack is being carried out. At the same time doppelganger mail will not 

work on our setup, since they will be regarded as unknown e-mails. 

For that purpose, we develop an extension for the e-mail client Thunderbird 

and test several scenarios, showing that our approach can successfully 

counter most doppelganger mail based social engineering attacks. Although 

our approach is successful, there are still some attacks which cannot be 

detected. We highlight these attacks in our work and propose ways of 

detecting them in future implementations. 

 

 
Die Kommunikation über E-Mail eröffnet Angreifern neue Wege für  

Social Engineering Angriffe, wie zum Beispiel dem ‚Doppelgänger Mail 

Angriff‘. Ziel dieser Arbeit ist es, die Auswirkungen solcher Angriffe unter 

Einsatz  von maschinellen Lerntechniken abzuschwächen. Um dies zu 

erreichen, bestimmen wir, ob unbekannt eingehende E-Mails zu bekannten 

Kontakten passen und verifizieren darüber, ob ein Nachahmungsangriff auf 

uns durchgeführt wurde. Gleichzeitig wird der Doppelgänger Mail Angriff 

verhindert, da die Doppelgänger E-Mail-Adresse als unbekannt eingestuft 

wird.  Um dies umzusetzen haben wir eine Erweiterung für den E-Mail 

Client Thunderbird entwickelt und mehrere Testszenarien durchgeführt. 

Unser Ansatz kann die meisten Formen von Social Engineering Angriffe die 

auf Doppelgänger-Emails basieren erfolgreich abwehren. Es bestehen 

dennoch weitere Angriffsformen, die unser System noch nicht entdecken 

kann. Wir weisen in unserer Arbeit auf diese Lücken im System hin und 

zeigen Perspektiven auf, wie diese zukünftig ebenfalls geschlossen werden 

können. 
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1. Introduction 

 

Phishing attacks on the Internet via e-mail are an important issue, especially as of today. This work 
tries to identify and mitigate or even avoid certain phishing attacks with special emphasis on social 

engineering attacks. 

 

1.1. Motivation 
 

In modern times e-mail communication has reached great importance as a means of communication. It 

is not only used for private communication, but also for conversations within businesses. In 2012 the 

average daily global e-mail volume exceeds 100 billion messages and can reach numbers of 150 

billion. This number might seem very high at first, but it is important to note that spam messages 
account for 85% of the e-mail volume [Cis12]. Regarding this background, users request that e-mails 

can be trusted and reliably assigned to corresponding contacts. 

 

The main problem consists of attacks where the user cannot determine who the sender of the message 

is and therefore is not able to react accordingly. If, for example, two contacts have very similar e-mail 

addresses the recipient could happen to confuse them. If an attacker intentionally creates a very similar 

e-mail address, we speak of a ‘doppelganger mail address’. Employing such an e-mail address the 

assailant can then carry out a so called ‘doppelganger mail attack’. Doppelganger mail attacks are 

social engineering attacks: The assailant tries to imitate the e-mail address of a person known to the 

receiver in hopes of being met with unearned trust. This trust can then be misused to retrieve 

passwords and sensible information or infiltrate the system by sending malware. This poses a threat to 

companies, identical to the insider threat. Enterprises can be damaged considerably if insider 

knowledge is leaked. A gathering of insider threat damages can be found in the report by Marissa et al. 

[Mar05]. Other attacks include simple impersonation attacks, by name or by a statement in the mail 

body. An example of a doppelganger mail attack can be seen in Figure 1.1, where an assailant tries to 

imitate the e-mail address of Dieter Berg by substituting the ‘e’ in Berg for an ‘o’. Without highlighting 

the difference is very hard to detect, even if the e-mail address is displayed in the client. This happens 

because humans read words in parallel instead of sequentially. This means that we read words as a 

whole rather than by single characters [Mah11]. 

 

 

 

Figure 1.1 Example of a doppelganger mail attack 
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The main target of our research is to avoid doppelganger mail attacks. At the time of this writing no 

attempt of detecting doppelganger mail is known to us, while potential countermeasures against these 

attacks already exist, but are not widely used. They require that trusted third parties prove that the 

communication partner is indeed trustworthy. This is incorporated in the idea of digital signatures, the 

‘Pretty Good Privacy’ (PGP) software1 and ‘Web of Trust’ applications in general. PGP offers digital 

signatures and encryption on a Web of Trust basis, which means that the certification of digital 

signatures happens on a trust chain basis. A trust chain is a path of trusted contacts: from a user to his 

trusted contacts, through their trusted contacts, up to the new communication partner [Abd96]. 

 

As a part of this thesis we develop an extension for the popular e-mail client Thunderbird2, which is 

named DeTypo. The name DeTypo is derived from ‘Detect Typo squatting’. Its purpose is to raise the 

awareness of the user upon incoming mail from people, with whom he/she never interacted. The term 

‘typo squatting’ denotes a practice of slight modification of resource identifiers, such as URLs and E-

mail addresses, to confuse the victim into trusting the authenticity of the source. It is a more general 

term for ‘doppelganger mail addresses’. 

 

We do not intend to detect hacked accounts and therefore do not filter incoming messages for spam or 

check external content for integrity. We also do not try to avoid man-in-the-mailbox scenarios, but 

offer possible solutions for these at the end of this writing. Man-in-the-mailbox scenarios are such cases 

where the attacker controls the e-mail account of a trusted party and can send messages from that e-
mail address [Ada10]. Alternatively the attacker establishes contact with two victims employing 

doppelganger mail or other authentic appearing mail. He then forwards messages between both 

victims to fool them into believing that they indeed are communicating with each other. This allows 

the attacker to monitor all communication and to interfere at some point. This scenario, although 

possible, is not very likely to happen and even harder to detect, since it is a very specialized attack. 

 

Another motivation in this work derives from the assumption that there is no authentication of senders 

in mail communication. This does not always hold true, because sophisticated measures such as PGP 

and digital signatures do exist, but are not widely distributed. This is caused by high costs of digital 

signatures and the great complexity of measures such as PGP. In addition, social users often do not 

request heightened privacy. The only authentication we assume is the integrity of the domain and of 

the e-mail sender. Spoofing of the ‘from’ header of an e-mail is easily detectable by looking up the IP-

address of the domain and comparing it to the sender’s IP-address. We therefore propose combining 

our work with a sender policy framework, if the integrity of the ‘from’ header is in question. In modern 

E-mail clients this should pose no problem, since spoofed ‘from’ headers are an obvious criterion for 

classification of spam or phishing attacks. 

 

1.2. Related work 
 

While no work concerning doppelganger mail is known to us, there are approaches to authenticate 

message content as not harmful. 

 

The first means were developed as far back as 1998. Sahami et al. were the first to propose 

classification of messages based on the content of the message itself. They developed the Bayesian 

filter which classifies messages based on words contained. The likelihood of words being in spam 

messages is derived from manual classifications the user made before [Sah98]. They also suggested 

classification based on other features, such as interactions with the sender or at sending time. This 

attempt found wide reception in practical use and is utilized in a lot of modern anti-spam softwares 

and e-mail clients. Examples include “Spam Assassin” [Spa12] and “Mozilla Thunderbird” [Thu12].  

 

                                                
1
 http://www.pgpi.org/ 

2
 www.mozilla.org/de/thunderbird/ 
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Doppelganger mail attacks belong to the field of spear phishing attacks, because the assailant knows at 

least whom the victim would trust. Spear phishing attacks are characterized as targeted attacks where 

the attacker incorporates knowledge about the victim, like names, social connections and job position 

into his attack [Mah11]. They are harder to detect by Bayesian filtering, because the attacks are not 

generic and often address the receiver with targeted concerns rather than spam or advertisements. 

That is why more recent studies are more closely related to our field of spear phishing attacks, as 

assailants employ more sophisticated measures. 

 

In order to mitigate spear phishing attacks Mahmoud et al. proposed the “Anti-Spear phishing Content-

based Authorship Identification” framework (ASCAI) [Mah11]. ASCAI is used to authenticate the 

author of an E-mail based on his writing style. We will incorporate this idea in our own work for 

determining possible senders of e-mails from unknown contacts. ASCAI uses the Naïve Bayes algorithm 

to classify a message based on n-grams. N-grams are n characters long substrings of the message body. 

The success rate of the implementation Mahmoud et al. developed exceeds 80% for n-grams of length 

7 to 10, showing that this approach is very promising even when the data are noisy. 

 

The authors also proposed three different classification strategies. The first is the non-greedy approach 

where at most L n-grams are collected and, if the last position was tied so that the size would exceed L, 

all entries tying for last were excluded. The second is the greedy variant, where all the tying n-grams 

would also be included. The third is the strict variant, where exactly L n-grams are used and in case of 
a tie random decisions are met. They found that the strict classification performed very poorly while 

greedy and non-greedy classifications performed about the same with greedy being slightly better. The 

results are also highly dependent on a suitable choice for L, which is usually lower for the greedy 

variant. Since we will not use n-grams in our implementation, we decided to renounce an upper bound 

for learned features. 

 

Similar to ASCAI the Thunderbird extension MailClassifier [Ema12] employs the Naïve Bayes 

algorithm in a multi-level Bayesian filter. However, instead of classifying e-mails by senders this 

extension aims to classify messages to folders which have different topics. 

 

An older add-on for Thunderbird called “Sender Verification Anti-Phishing Extension” [Jos12] helps to 

detect spoofed ‘from’ headers in e-mails. The main idea is now introduced in most e-mail clients, so the 

add-on is not necessary anymore. The detection of spoofed headers is accomplished via the Sender 

Policy Framework (SPF) which, by using an entry in the DNS-zone, verifies whether a computer was 

allowed to send a message under a certain top level domain. These entries do not necessarily exist, but 

if they do, detecting unauthorized computers is fast and accurate. Additionally, the add-on provides 

reputation information on domains. 

 

A related work from the sender side is the recipient recommendation by Carvalho et al. [Car07]. Based 

on their work and with help from Balasubramanyan, they developed the Thunderbird extension “Cut 

Once” [Bal]. Cut Once tries to detect information leakage, for example by sending sensible information 

to a wrong recipient. At the same time Cut Once recommends recipients based on the e-mail content 
and who else is receiving the mail. In their work Carvalho et al. define several classification models 

and find that their “k-nearest neighbors model” is best suited to the task. The k-nearest neighbors 

model finds the k most similar e-mails, which the user sent before composing the new one and 

compares already chosen recipients with the recipients in old e-mails. This approach can still be 

improved with combined classification strategies. 
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1.3. Outline of the Thesis 
 

This paper starts out with the theoretical basics of the developed extension DeTypo. It explains the 

mechanics of receiving and sending e-mails when DeTypo is active. We will then present a description 

of the e-mail client Thunderbird followed by explanations of the Naïve Bayes classification algorithm 

and the Levenshtein word distance algorithm. 

 
After building a theoretical basis for the user, we elaborate on the implementation of the extension 

DeTypo in greater detail. In that section, we explain the structure of the underlying database, receiving 

and sending messages and information on how to raise user’s awareness of potential social engineering 

attacks. At the end, we address the GUI and usability concerns. 

 

In the next chapter, we evaluate DeTypo’s performance and show whether set goals and functionality 

are achieved. We therefore first describe a test environment and then document our findings. We also 

interpret these results to better understand if goals were met and find new implications for our work. 

These include improvements and new approaches for future work. Since the main focus of this work 

lies on the implementation of DeTypo, the evaluation is not aiming to be statistically significant. 

However, the evaluation will be a good indication to determine, whether or not DeTypo is in a state 

where it can be used for further research. We show a clear trend of DeTypo being successful in the way 

it should work and also work out its weaknesses. 

 

In the last chapter we review our findings and interpretations and draw a conclusion. Based on this 

conclusion, we suggest research areas for future work. These research areas can help improve the 

performance of DeTypo and further on show that DeTypo is a needed and a working concept. 
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2. Theoretical basics 

 

For our work we extend the e-mail client Thunderbird, which we describe in chapter 2.1, with an 

extension which we call DeTypo. Our approach at fighting doppelganger mail attacks consists of 

creating a database of known contacts and assigning trust values to each. Another functionality we 

want to provide with the database is a black and a white list. The list allows assigning a trust value 

directly to a domain, so that new incoming contacts are classified automatically corresponding to their 

domain’s trust value. A contact can either be trusted, untrusted or neutral. Figure 2.1 explains the 

foundation of DeTypo. When e-mails come in, we check whether or not the contact is already in our 

database and if not apply a trust test on him. The results will then be shown to the user in an 

information dialogue. If the contact is already in the database the incoming message is color coded 

according to the trust value. 

 

The test consists of three sub-processes. First the name is checked against possible entries in the 

database. If matching names are found, the corresponding contact is displayed in a ‘similar names’ box. 

Similarity of names is determined by the Levenshtein algorithm as described in chapter 2.3. 

Accordingly in the second test the e-mail address is compared to existing ones and on resemblance a 

warning is issued in another part of the information dialogue, because we most likely detected a 
doppelganger mail. The last part compares the writing style of the message to that of known contacts 

and similar writers are suggested as senders of the message. For writing style comparison the Naïve 

Bayes algorithm as explained in chapter 2.2 is used. 

 

 

 

Figure 2.1 Theoretical basis of DeTypo - Receiving 

 

 

So far we only looked at the receiving side of e-mails. Another part of the problem lies with the 

sending side. Figure 2.2 illustrates how DeTypo intercepts sending e-mails. First we check that all 

addressed contacts are known to us. If someone is unknown we offer the user to save the contact as a 

trusted contact for the future. Next we check whether the user sends e-mails to untrusted contacts. In 

If he does, we want to warn the user of potential information loss, for example, because he chose the 

wrong e-mail address when suggested an e-mail and its counterpart doppelganger mail. In that case 

the user can still proceed in sending the e-mail by confirming a corresponding dialogue option. 
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Figure 2.2 Theoretical basis of DeTypo - Sending 

 

To achieve a broader understanding of how our extension works one must first look into the 

theoretical basics behind the used algorithms and how to implement them. In the following we discuss 

the e-mail client Thunderbird and how to extend it, the Naïve Bayes classifier and the Levenshtein 

algorithm which was used and adopted as explained in chapter 3.2 to make string comparison 

possible. 

 

2.1. Thunderbird 
 

Thunderbird is a free, open-source desktop e-mail client. It is available for many platforms including 

Microsoft Windows, UNIX, Linux distributions and Mac OSX. It was developed by the Mozilla 

Foundation and can be downloaded at http://www.mozilla.org/de/thunderbird. It is licensed under 
Mozilla’s own software license the MPL3 combined with other licenses such as GPL4 and LGPL5 

[Moz12]. 

 

Thunderbird’s standard functionality includes checking e-mails, sorting them into folders, spam 

detection and grouping of related messages such as ongoing conversations. Apart from e-mails, there is 

also support for RSS and other feeds. Other features include searching through one’s e-mails and feeds, 

saving messages locally, encryption and an address book. For more capabilities the user can download 

add-ons which either manipulate the appearance or enhance the functionality. The first are called 

themes while the latter are called extensions. Also available are plug-ins which are add-ons written in 

platform specific code, which interact with Thunderbird only through its external interfaces. Some 

representatives of such plug-ins are video codecs, Flash and Java. 

 

Thunderbird is closely related to Firefox, which is a web browser also developed by the Mozilla 

Foundation. They share a lot of technologies and are extensible in a similar fashion. In the following, 

we describe how to extend Thunderbird. Interested readers will find additional information in the 

Mozilla Developer Network6. 

 

Thunderbird runs on the base of a XUL-runner engine. This means that all user interfaces are defined 

in the XML User Interface Language7 (XUL). XUL is similar to dynamic HTML and even incorporates 

many of its capabilities. Wrapped around that is the C++ code which provides even more interfaces. 

Extensions can interact with both the XUL-runner interfaces and the Thunderbird specific code via 

JavaScript. 
 

                                                
3
 http://www.mozilla.org/MPL/2.0/ 

4
 http://www.gnu.de/documents/gpl.de.html 

5
 http://www.gnu.de/documents/lgpl-3.0.de.html 

6
 https://developer.mozilla.org/en/Extensions/Thunderbird 

7
 https://developer.mozilla.org/En/XUL 
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To create an extension one must have a specific folder structure. On the top level the files install.rdf 

and chrome.manifest have to be available. Install.rdf tells Thunderbird the name of the add-on, which 

type of add-on it is dealing with and other add-on specific data. The chrome.manifest specifies where 

the custom content can be found and which native files should be overlayed. The rest of the folder can 

contain other folders which point to content such as code, custom XUL-Files, localization files or style 

sheets. The XUL-runner engine allows you to overlay the XUL files used for the display of Thunderbird. 

This means that the XUL elements in the overlay file either overwrite existing elements or add 

elements of their own at a specified entry point. One can bind scripts to these overlays to enhance 

functionality or modify the appearance of the interface. It is also possible to implement style sheets8 

and have common and Mozilla specific style definitions. 

 

In order to access Thunderbird objects within the JavaScript code, one can utilize the features of the 

global Components class. It allows access to Thunderbird interfaces, classes and utility functions. The 

Components class allows casting objects which is useful if native Thunderbird functions return objects 

of a certain kind. It is also possible to overwrite Thunderbird function definitions, as we do to intercept 

outgoing messages before they are sent. Lastly JavaScript DOM functions also work on XUL elements 

and allow for programmatical changes of the user interface and procession of user input. 

 

For persistent storage Thunderbird offers two possibilities. One is preference strings, which should only 

be used for settings or very small datasets. The other one is build-in SQLite9 support. The SQLite 
Database is a file that is put into the user’s profile directory. The database can be addressed with 

standard SQL queries, which are given to Thunderbird routines. 

In addition to Thunderbird standard functions we import functions from the Thunderbird stdlib 

project, which aims to simplify the native Thunderbird API [std]. For testing, the build-in error console 

was used along with a command console where custom messages can be output. 

 

2.2. Naïve Bayes Classifier 
 

Classification is an important part of modern day machine learning. A program has to determine if an 
item belongs to a certain class and can then react appropriate according to a rule set. It is also useful to 

filter text messages for spam and other applications. 

 

In the following section bold capital letters will denote vectors, indexed small letters stand for 

elements in a vector and P(*) denotes the probability of *. * can be a placeholder for either a variable 

or a variable given a condition which follows after a pipe (|). We assume that there is a function g(X) 

which tells us the exact class of a feature vector X=(          ). This function g can be deterministic, 

but does not have to be. Since it does not have to be deterministic the same feature vector can lead to 

different classes. For example the same e-mail could have been written from more than one e-mail 

address. The classifier tries to imitate this function g by guessing a function h(X). The function h(X) 

however, is deterministic, making it impossible to approximate a non-deterministic function g. 

 

The Naïve Bayes classifier tries to match a class to a feature vector X=(          ). The possible 

classes come from a set domain C=(          ). It uses the Bayes Theorem (Formula 2.1) to guess 

the probabilities of all classes in the domain and pick the most likely one. 

 

 
          

             

    
 

(2.1) 

 

The observant reader may notice here that the denominator does not depend on the class C and can 

therefore be omitted in practical implementations of the Naïve Bayes classifier. The probabilities for a 

                                                
8
 http://www.ietf.org/rfc/rfc2318.txt 

9
 http://www.sqlite.org/ 
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certain class can still be calculated by normalizing the results. Determining the probability of a class 

P(  ) is straight forward by counting the total amount of times a class    is observed in past 

classifications and then divided by the total amount of past classifications. This is why the Naïve Bayes 

classifier first needs to learn, before it can be used. The second problem the Naïve Bayes classifier 

needs to calculate is an approximation to        . 
 

Naïve Bayes works under the ‘naïve’ assumption that all features in X are independent of each other in 

a given class   . From that follows that the probability to get a specific feature Vector X given class    is 
equal to the product over all probabilities to get a feature    given class    (Formula 2.2). 

 
 

                   

 

   

 
(2.2) 

 

This is not applicable if the probabilities for features given class    are not provided. One must first 
carry out a learning process, which provides the occurrences of features in the classes. These are then 

normalized per class to determine            If a feature    is not present in a class, then its probability 

          would be zero. This is problematic, since in formula 2.2 all probabilities for a feature given 

class    are multiplied, thereby setting the whole probability for X containing    to zero. This is not 

desirable, so the probability of           is set to a very small value. One can then use this knowledge 

to calculate         , because the probabilities           are now estimated. Obviously, larger training 

data will yield better results, but Naïve Bayes can sometimes already provide good results for small 

sets of data. 

 

We have learned about the two restrictions Naïve Bayes is limited by. The first is based on a 
deterministic algorithm and the second is ignorance of dependencies among features. The result is 

possible classification errors. In the case where one regards only two classes or regards one class as the 

observed one and aggregates the rest as ‘other classes’ one can speak of false positives and false 

negatives. False positive means that the algorithm classified an item to the observed class, but in 

reality that item does not belong to it. On the contrary, a false negative is a rejection of the observed 

class, which in reality belongs to the item. 

 

The assumption of independent features does not hold true in most cases. However the Naïve Bayes 

classifier produces good results in many fields such as image recognition and text classification. Rish 

analyzed the optimality of Naïve Bayes classifiers under certain circumstances and found that Naïve 

Bayes performed best when g was deterministic or functional dependencies between the features    
existed [Ris01]. Optimality was proven for a two class concept where only one feature led to class 0 

while the others all resulted in classification to class 1. Optimality was also shown for classifications 

where equal class priors P(    were given and for each feature   , i=2, ..., n, a functional dependency 

          existed [Ris01]. 

 

To calculate the optimality of the classifications Rish defined the risk of a classification error as P(h(X) 

≠ g(X)). In deterministic concepts optimality was achieved with a zero classification error. In 

nondeterministic scenarios however optimality was defined as the classification error being as low as 

the general Bayes error. The general Bayes error is the error induced by the noise in the data. It can be 

calculated as P(h*(X) ≠ g(X)), where h* is a classifier which does consider dependencies among 

features, id est works with the covariance matrix. In consideration of this approach we will also 
evaluate our work by identifying the percentage of misclassifications, but will not try to determine the 

general Bayes error. 
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2.3. Levenshtein Word Distance 
 

The classic Levenshtein algorithm makes it possible to determine how many insertions and deletions it 

takes to transform one string into another. However we also want to consider substitutions of 

characters, which can be done with the generalized Levenshtein. We will outline the general way in 

which the generalized Levenshtein algorithm works, but will not go into detail about the related 

longest common subsequence problem, from which Levenshtein evolved. A good explanation on 
further details of the algorithm can be found in Dan Hirschbergs “Serial computations of Levenshtein 

distances”[Dan97]. 

 

First we define three transformations on characters, namely insertion, deletion and substitution, and 

their respective costs                          . Note that   is a placeholder for the empty word, 

while   denotes a random symbol. In our implementation the cost for each operation was equal and 

therefore one. We are then given two strings            and            . 

We can now calculate the generalized Levenshtein distance as follows: 

 

 

       

 
 
 
 
 

 
 
 
 

                

                                

                                

                    

     

                   

                  

                    

            

  

 

(2.3) 

 

We will work with a distance matrix D, which has the dimensions (n+1)x(m+1). The first row and 

column are only dependent on the insertion and deletion costs, respectively. We initialize D by setting 

the first entry (0, 0) to 0. The first row is then formed by adding the cost of one insertion to the 

preceding entry. The first column is calculated likewise, but instead of insertion costs the cost of 

deletion is added. Now that D is initialized, we loop through our strings x and y and compare them 

char-wise. If we encounter the same character, we do not add to the distance since no transformation 

is needed. If we encounter different characters, we will try to minimize distances by choosing an 

operation which yields the smallest distance. Possible transformations are adding a character and 

thereby adding the cost of an insertion operation to the entry right above the new one, deleting a 

character for the cost of a deletion added to the left entry and lastly editing a character and thus 

adding the cost of a substitution to the upper left entry. When we are done, the generalized 
Levenshtein distance will be in field (n, m). 
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3. Implementation 

 

This chapter deals with the development environment and the structure of our extension which can be 

summarized as follows: 

There are two different times at which the extension is triggered. The first one is upon receiving e-

mails and the second one before sending them. Besides these there are GUI elements and a menu 

which can be accessed at all times. In order to achieve a deeper understanding of what is happening in 

the background we first have to look at the adaption of the Levenshtein algorithm. Then we also need 

to inspect the underlying database which from this point on will be referred to as ‘trustbase’. The latter 

part of the chapter will then deal with the mechanics of the implementation. 

 

3.1. Development Environment 
 

For the development process we set up a new folder and put the required files in it. We choose not to 

employ the localization features of Thunderbird and hardcode all strings in English. This is not an 

issue, because apart from the user information screen and dialogues there are only a few text elements 

and we only work on a proof-of-concept extension. We then set up a Thunderbird client in version 

11.0.1 and disable automatic updates. Next, we define a new developer profile in the client and set 

custom development configuration options. These include disabling caching of windows, enabling 

dumping into the console, and enabling most error reporting preferences for the error console. We put 

a pointer file into the extension directory of our developer profile, which points to our extension folder 

and start Thunderbird from a shortcut. We utilize the –p switch for the profile, the –no-remote switch 

for avoidance of interference with other instances of Thunderbird on the developing machine and the 

–console switch for an additional console, where our debug symbols are displayed. 

 

We set up our development folder with four subdirectories, namely content, defaults, modules and 
skin. The content folder holds all our XUL files and their related JavaScript files. The defaults folder is 

used to define the standard preferences upon the first launch of the extension. The modules folder 

holds importable JavaScript modules, which can also be used as a shared resource. This folder also 

holds the stdlib project. Lastly, the skin folder holds cascading style sheets to define the look of our 

elements and overwrite the look of some existing ones. 

 

 

3.2. Adoption of the Levenshtein Algorithm 
 

For our work, we use the JavaScript variant from Wikibooks [Wik]. However, the generalized 

Levenshtein algorithm is not enough to determine similarity of names, since the length of the strings is 

not taken into consideration. We therefore implement an ‘isSimilar’ function which utilizes the 

Levenshtein algorithm and the length of the shorter string. We also want to allow names to only be 

partially similar, so that people with similar first or last names would match the conditions. This 

proves beneficial if a contact has a nickname which he only uses on his private e-mail address and an 

official name, which he uses on other E-mail addresses. The case when the first and last names are 

switched around is also matched. 

 

The code below assumes that two strings are not dissimilar, unless proven otherwise. In a first step the 

names are seperated into single words and put in an array. These arrays are then iterated through and 

each name is checked against the others. Then the core comparison is carried out. We determine the 

length of the smaller word and divide the Levenshtein distance by that length. The result is checked 

against a threshold value. 
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isSimilar = function(str1, str2, threshold){ 

 if(str1 == "" || str2 == "") 

  return false; 

   let similar = false; 

   names1 = str1.split(" "); 

   names2 = str2.split(" "); 

   //try to combine all parts of the names with each other 

   for(var i in names1){ 

      if(names1[i] == "") 

         continue; 

      for(var j in names2){ 

         if(names2[j] == "") 

            continue; 

           let _length = Math.min(names1[i].length, names2[j].length); 

           //threshold will allow for more (higher) or less (smaller) names to be accepted 

           if(Learner.levensthein(names1[i], names2[j]) / _length  <= threshold) 

              similar = true; 

       } 

    } 

 return similar; 
} 

 

 

For names a threshold value of 0.4 is used, which is equivalent to 2 alterations for every 5 characters. 

We use this value because many names may be shortened by some characters. We also use this 

algorithm to check for doppelganger mail and find a threshold value of 0.2 is better suited for this 

application, since e-mails often share domain names and we only want to detect intentional 

doppelganger mail. The same domain name means that a large proportion of an address is already 

similar and therefore an upper bound of 0.4 would be too high. Given that a long domain name is the 

same for 2 addresses then only the part in front of the ‘@’ symbol would matter for detecting 

differences. Assuming the name is as long as the domain name then 4 in 5 characters could be 

different in the names and the mail would on average still be accepted as lower than the 0.4 threshold 

value. Obviously this is not intended, so a smaller threshold value was utilized. This is not a problem, 

since doppelganger mail try to imitate the original e-mail address as closely as possible. According to 

one’s needs the threshold can be adjusted to allow for more or less transformation operations by 

setting it higher or lower. 

 

3.3. Trustbase 
 

For structural purposes, from this point on, we make a distinction between known and unknown 

contacts, while most logic interaction happens with unknown contacts. Naturally we will have to 

analyze unknown contacts more closely than known ones, because these are the ones who will possibly 

try to win our trust and use social engineering attacks on us. 

 

In chapter 2 we already mentioned that our extension would build up a database. That 

aforementioned database is implemented as the trustbase. The trustbase keeps track of contacts, their 

e-mail addresses, interactions, names and trust values. Additionally, white list functionality is provided 

by saving domains and their trust values. 

 

The trustbase is made up of three tables in a SQLite Database and is stored, for performance reasons, 
in a shared resource called ‘Trustcenter’ at the start of each session. The Trustcenter is a Thunderbird 

module, which holds an object in which associative arrays can be stored. The details of these arrays 

will be explained along with their counterpart tables in the trustbase. All modifications on the 
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Trustcenter are write-through to the persistent trustbase. The rest of this section covers each table in 

more detail. 

 

The first table in the trustbase is named ‘whitelist’. It keeps track of trusted and untrusted domains by 

saving the domain’s name and a Boolean which indicates whether or not to trust someone sending 

from that domain. It is also capable of allowing sub-domains. It is worth mentioning that entries in this 

table are only made by the user and are not checked for their validity. The system however makes sure 

that for ‘domains only’ the entries are prefixed with a ‘@’ character, while for domain and sub domain 

allowance two entries are created, where the first one is preceded by ‘@’ and the second one by a dot 

(‘.’).  

In the Trustcenter we have a corresponding array, which is also called ‘whitelist’. Its key is the domain 

name and its value is the trust indicating Boolean. 

 

The second table named ‘mails’ keeps track of the most important data for our extension, namely the 

contact information. Its columns represent the mail address of a sender, whether to trust him or not 

and how often we interacted with this particular person. The extension regards every received or send 

message from or to this address as one interaction. 

The Trustcenter arrays ‘interactionHashMap’ and ‘trustHashMap’ also associate these values to the e-

mail addresses. 

 
Lastly, the third table stores information about known names. It is updated whenever a new name for 

an e-mail address becomes known. Its counterpart is the ‘nameHashMap’ which also matches an array 

of names to an address. 

 

3.4. Sending e-mails 
 

The process of sending an e-mail is implemented straightforward. When the user clicks the send 

button, the sending gets intercepted and our code checks whether the recipients’ addresses are known. 

In case of one or more unknown contacts, the user gets offered the option of adding them to his 
trustbase as trusted contacts as shown in Figure 3.1. 

 

 

Figure 3.1 Sending interception dialogue for unknown contacts 

 

 

Figure 3.2 Sending interception dialogue for not trusted contacts 
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If he refuses the interaction will not be counted in the future and the contact will not be added to the 

trustbase. If however an e-mail is send to a known contact, the extension will register a new 

interaction for each known recipient. If one or more of the recipients are untrusted, the user is issued 

an alert stating the dangers of sending e-mail to untrusted contacts. This dialogue can be seen in 

Figure 3.2. He can however dismiss the dialog and still send the message. 

 

3.5. Receiving e-mails 
 

On the receiving site the underlying logic is more complex. There is a special case when the incoming 

e-mail address matches one of our white listed domain names. In that case, a predefined trust is 

transferred to the new e-mail address. An e-mail address is regarded as matching if it ends with a 

known domain name. The predefined trust value comes from the entry the user made for the specific 

domain. Not white listed domains are handled as follows. 

 

 

Figure 3.3 A possible information dialogue 
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For known users the interaction counter is raised and the user is made aware of whether or not to trust 

the e-mail by GUI elements which will be discussed further ahead. Also if the sender added an 

unknown name in the header, the name is associated with this e-mail address. 

 

For unknown senders the user will be presented with a rich collection of information on whether to 

trust this person or not. Since we focus on avoiding social engineering and especially impersonation 

attacks like the doppelganger mail, the information concentrates on related fields. A possible 

information dialogue can be seen in Figure 3.3. 

 

First off, the user is made aware that he is interacting with a new contact. He is given header 

information such as the sender’s name and e-mail address, the subject of the mail and the possibility to 

read through the body of the e-mail, which is stripped of HTML and possible scripts. 

 

If the sender specified his name, the user can find a listbox below the message body. It features 

contacts from the trustbase with similar names, which are determined by our adopted Levenshtein 

algorithm as described in chapter 3.2. If the user knows that the person has two e-mail accounts, he 

can then proceed to directly link their addresses and thereby copy the trust and interactions the first 

known address had. Unfortunately, there is no deep binding of the addresses to an identity, but it is 

generally possible and could be adopted to improve results of the Bayes classification. 

Next, the user may be informed about impersonation of e-mail addresses. This is the core element in 
the fight against doppelganger mail addresses since all close e-mail addresses, as again determined by 

our adopted Levenshtein, are listed and confusion between those is mitigated. 

 

At last, the user gets presented with information about the likelihood that the received message is 

similar to messages written by contacts that sent him e-mails in the past. That likelihood is calculated 

via the Naïve Bayes algorithm as specified in chapter 2.2. In order to archive the classification the 

Naïve Bayes is trained with all messages in the inbox and then fed the body of the new e-mail. In our 

scenario e-mail addresses suffice as classes and words found in the body of e-mails are the given 

features. In the learning process the Naïve Bayes classifier collects and counts all the words written 

from an e-mail address (class). The message bodies are cleaned of common words and symbols 

beforehand, so the result is not distorted. The possible candidates are then ordered by their respective 

likelihood and if possible information about their trusted state is also displayed. The trusted state 

cannot always be determined, because unlike as with the former approaches this time we utilize all 

possible contacts which send messages to our inbox. 

 

Both, the similar names and similar e-mail address information, will be omitted if no similar entities 

are found. Likewise the Bayes classification can inform the user that it is unlikely that the received 

message is similar to any known message collection. 

 

After consuming all of the above information, the user can then decide whether or not to trust the 

person or disregard classification by canceling or choosing the corresponding option. 

 

3.6. User interface 
 

The extension has two main interface enhancements apart from its dialogues. These are the 

modifications of the e-mail listing and the settings menu. 

The first adds a new column to the list of received e-mails, which is called ‘Trusted’. Here the user is 

presented with  ‘Y’, ‘N’ and ‘U’ entries, which respectively mean that the user is trusted, untrusted or 

unknown. Additionally, the rows are colored green, red or blue to represent the same information even 

if the column is hidden. The choice of colors is oriented on typical psychological symbolism they carry 
in central Europe such as ‘danger’ for red, ‘good’ for green and ‘neutral’ for blue. Figure 3.4 depicts 

what a typical inbox could look like. 

 



 

Implementation  15 

 

Figure 3.4 Color-coded inbox 

 

The second GUI element is a window with two tabs. The first tab as shown in Figure 3.5 is used to add, 

edit or delete known contacts. The modifications allow changing e-mail address, interactions and trust. 

The second tab selected in Figure 3.6 is similar, but is dedicated to the modification of domains to the 

whitelist. Here the user can choose between trusting or not trusting a domain and possibly its sub-

domains. 

 

Considering user interaction overhead we tried to implement only dialogues considered absolutely 

necessary. For an average user, who does not have many new contacts writing to him every day, the 

additional time required for clicking through the information dialogue is very low. It is only necessary 
to make a decision based on the presented information and click accept. When sending e-mail, there is 

no overhead unless he sends to an unknown or untrusted contact, in which case he is informed of that 

action and can dismiss the dialogue with one click per unknown or untrusted contact. We feel that the 

performance of DeTypo outperforms the necessary time consummation and is therefore appropriate. 
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Figure 3.5 Options window used for editing the trustbase 

 

 

Figure 3.6 Option window used for editing the whitelist 
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4. Testing and Evaluation 

 

In this section we describe the way the extension is tested. We have a look at the testing environment 

as well as the evaluation process. Afterwards we discuss how the results match our expectations. 

 

The evaluation process does not claim to be statistically significant. We only try to show the tendencies 

towards which the proof of concept strives. As such, the tests will sufficiently demonstrate whether 

DeTypo is successful in providing the user with relevant information. Especially the Naïve Bayes 

classification needs adequate testing. 

 

4.1. Testing Environment 
 

The testing environment consists of an e-mail server and a Thunderbird client in version 11. The e-mail 

storage of the e-mail server can be easily accessed and modified by copying or deleting e-mails into it. 

The Thunderbird client has a registered account on the server and is notified upon receiving e-mails. 

 

4.1.1. Server 
 

The server, which was generously provided by the CASED Faculty/Chair of Security in information 

technology from TU Darmstadt, uses Courier Mail10 Server and Postfix11 software. This allows for IMAP 

services as well as SMTP. They both allow copying of e-mails into a dedicated folder to emulate newly 

arrived e-mails.  

 

The server can be accessed remotely via a secure shell (ssh) tunnel. This made it possible to modify 

server data, such as e-mails, without physical access to the server. Ssh is a network protocol, which 

allows for encrypted communication with devices and access to command shells on those. We used the 

PuTTY12 client to access the server, but any ssh client would have been sufficient. 

 

4.1.2. Enron e-mail Dataset 
 

The e-mail data was taken from the Enron corpus, which had to be made public during legal 

investigations concerning the Enron Company. The corpus contains 619,446 messages from 158 users, 

but many of these are duplicates [Kli04]. The interested reader can find the whole corpus at William 

Cohen’s website at the Carnegie Mellon University [Enr12]. 

  

The data are sorted by users and their folders. In our research we use only a few users and copy their 

inboxes or parts of them into our own inbox. We also modify header data such as the name and 

address fields. 

 

4.2. Evaluation process 
 

We try to cover as many scenarios as possible, but emphasize phishing and social engineering attacks. 

The standard tests covers receiving of e-mails from white listed domains and sub domains as well as 

contacts in the trustbase. These tests also cover attacks with simple doppelganger mail addresses. The 

whole list of tests carried out can be seen in Table 4.1. 

 

The more important tests cover interactions with unknown e-mail addresses. They are more important 
because interaction with trusted and untrusted contacts leaves only limited room for errors. We want 

to see how good the classification of contacts works. We therefore build a base on which to classify on 

                                                
10

 http://www.courier-mta.org/ 
11

 http://www.postfix.org/ 
12

 http://www.putty.org/ 
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by copying messages from multiple contacts into our current e-mail directory. We usually copy about 

100 messages per contact and about 5 or more contacts. This small number in relation to the total 

amount of e-mails in the Dataset is owed to the fact that no automation is used in creating the test 

inbox. Also the performance is expected to significantly drop with too many e-mails in the inbox. We 

however test the performance with a great number of e-mails in the Inbox in the following section. We 

then choose one of these contacts and copy more of its messages into our new e-mail directory. Note 

that at this point none of these contacts are in the trustbase, but are subject to classification. To ensure 

that we always see the classification screen we then proceed by not adding the contact to the trustbase. 

 

We also inspect entirely new e-mails and analyze whether or not we get false positives for known 

contacts. A false positive is regarded as a misclassification to another contact, who did not write the 

message. 

 

4.3. Expectations and Results 
 

The tests of standard functionality all passed as expected, except for a test where Thunderbird is closed 

on start-up, right after it receives new messages, but before learning new messages. In that case no 

‘new message’ events are triggered on a second start-up, so our new e-mail listener is not fired and no 

classification occurs. This only affects unknown contacts and those stacked behind them in the event 

queue. 

 

In another test we expected a serious slow down of Thunderbird upon start-up with 4000 messages in 

the inbox. That expectation is based on the fact that our implementation teaches all the messages to 

our Bayes classifier each time Thunderbird is opened. At the time this test was carried out we learned 

the message as a whole, as opposed to a later attempt when we only learned the first 100 words. At 

first this test failed, in that it hindered Thunderbird from even starting for the whole duration of the 

learning process. But slight changes in the implementation to run the classification on a background 

thread improved the results significantly. This test result shows that Thunderbird is able to easily 

asynchronously calculate the classes in a reasonable amount of time, which is just close below 3 
minutes for 4000 messages. In that time no new messages are classified, but they are put on a stack 

and are traversed after the learning process finishes. Note that this outcome of the test is based on 

implementation decisions and could be improved by persistent storage of learned data. In hindsight of 

the outcome of the second to last test of this series, where we closed Thunderbird right at start-up, 

after receiving new e-mails, this however suggests possible information loss to us. 

 

A detailed list of tests, expectations and results can be found in Table 4.1 below. The results suggest 

that DeTypo works as intended upon development and no major issues are encountered. This forms a 

solid basis for our further tests of performance in a second set of tests, because we do not have to fear 

to encounter inconsistencies from the implementation side. 
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Test Expectation Result 

Receive e-mail from white listed 
domain 

No learning dialogue, but 
instead entry in trustbase 

according to trust of the e-mail 

Implementation successful. 

Receive e-mail from white listed 

sub domain 

No learning dialogue, but 

instead entry in trustbase 

according to trust of the e-mail 

Implementation successful. 

Receive e-mails from trusted 

parties 

Incrementation of the 

interaction counter. Green 

coloring of the header entry in 

the list of received messages 

Implementation successful. 

Receive e-mails from not trusted 

parties 

Incrementation of the 

interaction counter. Red 

coloring of the header entry in 

the list of received messages 

Implementation successful. 

Receive e-mails from 

doppelganger mail addresses 

Detection of a new e-mail. 

Possible warning of similar 

names. Identification of a 

doppelganger mail and warning. 

Suggestion of known contacts 

who might have carried out the 

attack. 

Learning dialogue is triggered 

and if possible similar named 

contacts are listed. 

Doppelganger mail always 

detected. Suggestion of possible 

attackers limited by knowledge 

and capabilities of the Naïve 

Bayes algorithm. 

Receive e-mail from known 

contact with a new name 

Interaction counter counts up. 

Correct coloring occurs. New 

name is saved in the system. 

Implementation successful. 

Receive e-mail from unknown 

contact 

Same as receiving E-mails from 

doppelganger mail. Guess 

whether this mail could come 

from an already known contact. 

Implementation successful. 

Success of contact suggestion 

dependant on, whether contact 

is already known. Further 

research in the second stage of 

the evaluation. 

Closing Thunderbird right after 

or on start-up 

Classification on next start. Loss of new message event, 

therefore no classification. 

Start Thunderbird with 4000 

messages in inbox 

Serious slow down on start-up. Learn process taking 3 minutes. 

First implementation froze 

Thunderbird completely during 

that time. Adjustments led to 

not locking Thunderbird or 
slowing it down. DeTypo could 

however not make any 

suggestions during classification 

time. 

Table 4.1 Evaluation of standard functionality 

 

In the second part of the evaluation we analyze the expressiveness of the e-mail writer suggestions. 

The first test run provided questionable results, so that we redeveloped our testing process. We found 

that quotes in messages have a great impact on the classifyability and that long messages, which 

contain a lot of quotes could not be classified. Of the 18 failed classifications 17 were caused by very 

long messages and one by a very short message. The 14 correctly classified messages all have lengths 

in the range of 20 to 100 words. 
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Another implication from not cleaning up quotes in the messages is possible misclassification, since 

related users share a lot of common features. We decided to adopt our classification strategy in future 

tests by only classifying based on the first 100 written words. This however can mean a loss of 

signatures and similar features which help in classification. A better solution is detection and deletion 

of quotes within messages, but the Enron corpus made that an impossible task without fitting tools, 

which to our knowledge do not exist, because the way messages are quoted varies significantly from 

person to person. 

 

Messages 

in inbox 

Contacts 

in inbox 

Messages 

by test 

contact 

Messages 

to test 

Successful 

classifications 

Failed 

classifications 

Wrong 

classifications 

% of success 

417 7 66 32 14 18 0 43.75 

Table 4.2 First evaluation of classification based on whole messages 

 

Table 4.2 shows the result of the first classification and Table 4.3 contains the results of our 

redeveloped tests. The statistical power of the latter is lowered for two reasons. Firstly we do not 

include data about the average length of the classified messages and secondly we only use the first 100 

words in longer E-mails, because we are not able to delete quotes from the messages. Some e-mails 

containing many quotes have lengths of above 500 words. These long messages took a significant 

longer time to learn and classify, before the adjustments were made. 

 

Numbers in brackets in Table 4.3 are interpreted as follows. If the number is listed under successful 

classifications then the e-mail address of the contact which had to be learned was among the 

suggestions, but not at the top. If the number is listed in the ‘wrong classifications’ column the correct 

contact was suggested, but wrong ones were also in the list, and the correct contact had less than 80% 

probability. 

 

Test run Messages 

in inbox 

Contacts 

in inbox 

Messages 

by test 

contact 

Messages 

to test 

Successful 

classifications 

Failed 

classifications 

Wrong 

classifications 

% of 

success 

1 484 6 99 49 26 23 0 53.06 

2 484 6 91 50 35(+3) 10 5(+2) 70 

3 583 7 99 45 22 22 1 48.89 

Table 4.3 Evaluation of classifications on 100 word classification 

 

Lastly Table 4.4 shows the evaluation of classifications on entirely new contacts. The expected 

outcome in this test is a ‘failed classification’. Any suggestion for a known contact is regarded as a 

‘wrong classification’, although we cannot rule out the possibility that the writer and the suggested 

person are related, since the relationship between e-mail writers in the Enron corpus is unknown to us. 

 

Messages 

in inbox 

Contacts 

in inbox 

Messages 

to test 

Successful 

(no) 

classifications 

Wrong 

classifications 

% of success 

840+ 10+ 30 18 12 60% 

Table 4.4 Evaluation of contacts which had no interaction so far 
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4.4. Interpretation 
 

The test data suggests that our main goal, the detection of doppelganger mail, is always successful. We 

cannot find any scenario in which a doppelganger mail cannot be detected as such. However one other 

impersonification attack’s impact was boosted by DeTypo. This attack employs the way DeTypo learns 

from message content to confuse DeTypo into believing the sender is a certain person whose writing 
style is known to the attacker.  

 

In conclusion of the first test we determine that the basic functionality aimed for is successfully 

implemented. We therefore regard DeTypo as fully capable of raising the awareness of users in all 

environments. 

 

In case the attacker does not know anything about the writing style of a third party it is very unlikely 

that he can successfully impersonate it. In that case our Naïve Bayes classifier shows promise. 

Misclassifications are unlikely to happen, however no classification is a common occurence, but does 

not confuse the user as much as a misclassification.  

 

The cooperation of different aspects helps a lot to raise the expressiveness of DeTypo. The warning of 

doppelganger mail together with a failed classification as the pretend-to-be contact and copying of the 

name highly suggest a doppelganger mail attack. On the other hand DeTypo makes it easier to detect 

whether a contact uses another e-mail address, by highlighting the similar names and a fitting 

classification. 

 

The last test shows that attackers are not easily classified as a specific known contact. With a 60% 

chance in our case the attacker is not classified. If a classification can successfully be made, our 

extension suggests only one person in most cases. If it is unlikely that this person would have written 

under another name, or the suggestion does not fit the sender, the attack could easily be detected. 

 
Overall the Naïve Bayes classifier does not perform very well. Although serious failures, where 

misclassifications occur, are rare, correct classifications are neither seen often. The success rate of the 

classification is only slightly higher than 50%, suggesting that there is a lot of improvement needed 

before its expressiveness is high enough. We find this not to be critical, since the classification only 

serves as a detector of the source of an attack at first. However, since the classification approach shows 

promise and is gaining popularity with measures such as ASCAI we still tried to improve it by limiting 

the classification to the first 100 words, which slightly improved the results. We are positive that if a 

good quote deletion algorithm existed the outcome of the classification could be further improved. 
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5. Conclusion and Future Work 

 

This analysis clearly shows the great potential of the extension DeTypo to the E-Mail client 

Thunderbird for future work. Not only is it possible to fully implement the planned features, it is also 

possible to do it in a reasonable amount of time. However, the documentation of some specific 

Thunderbird functionalities is very poor and it is not likely that specific parts of the extension are easily 

portable to other e-mail clients such as Microsoft Outlook or Gmail, but similar extensions are 

conceivable. 

 

The extension helps to raise awareness of new contacts and possible frauds. Especially the 

doppelganger mail attack looses impact when DeTypo is employed. Other impersonification attacks 

can successfully be detected and possible sources can be stated. 

 

Further research of DeTypo is needed to confirm its practicability. New fields of research are usability 

tests in real live scenarios and further performance confirmation which yields statistical significant 

data. Especially tests which rate how often a user can be tricked into believing the authenticity of e-

mails when he employs DeTypo against cases where he does not employ DeTypo seem promising. 

 
The Enron dataset is limited in that it only contains English messages from people employed in similar 

fields. Other datasets can provide information on how DeTypo performs with different languages and 

contexts. Since a large quantity of spam is written in English, it is easier to detect it if the user usually 

communicates in another language. However, spear phishing attacks are likely to be in an expected 

language and context, so that DeTypo should perform similar to the Enron dataset evaluation. 

 

One major impact on the capacity of DeTypo is imposed by using e-mail services as an instant 

messenger. Short messages with many common words could confuse the Naïve Bayes classification. 

That is why a research employing a dataset with only very short messages is assumed to show 

interesting results. Our expectation is that DeTypos classification ability will be slightly dulled, but will 

still work if the attacker sends a regular message, since all messages of one contact as a whole are 

taken into consideration. If the attacker sends a short message the outcome cannot be predicted by our 

evaluation, however, we still believe it to be very hard to impersonate a specific contact without 

knowledge of his writing style. 

 

There are still a lot of possibilities to improve the presented information. For a start Levenshtein and 

Naïve Bayes with words are not the smartest algorithms in today’s time. There are other algorithms 

which can compute word distances in different ways, but we decided to go with a well-known one. It 

seems most likely that there is a superior algorithm to find better results for the similarity of names. 

More important however is the fact that the way we use Naïve Bayes is very straightforward which can 

be advanced in many ways. One can for example work with n-grams instead of whole words or use 

more sophisticated approaches and learning algorithms altogether. Frank and Bouckaert suggest that 
Naïve Bayes performs poorly if given unbalanced classes [Fra06]. They propose ways to improve the 

performance of the algorithm with various methods such as data transformation and setting attribute 

priors. These insights can be incorporated into our classifier, since it is highly probable that the classes, 

which in our case are the e-mail addresses of all messages in the inbox, are very unbalanced. 

 

A minor field of work is a better visualization of information. Possible approaches are preventing 

untrusted e-mails from being read without confirmation or collecting information on known phishing 

attacks and combining them with knowledge already gathered. In general a combination of our 

information with already known phishing detections to suggest a certain type of phishing attack being 

carried out is an interesting field of work. 

 

Another problem we encounter is the detection of copy content attacks, like the man-in-the-mailbox 

scenario. So far it is not possible to tell whether an attacker just copies and pastes content he receives 
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from the contact he tries to imitate or if the genuine contact is sending us e-mails. An interesting 

approach in this area is to combine DeTypo with ASCAI. That means classifying every incoming 

message, whether known or unknown and, if the result shows a poor likelihood of the message being 

genuine, the user can be warned. Also a dummy class for phishing attacks can be employed. 

 

Another possibility we do not consider in our research is the scenario where an unintentional 

doppelganger mail exists. Consider two people with similar names, who work for the same company, 

but in different areas and levels in the business hierarchy. These people will probably have a similar e-

mail address, which might be formed from their last name and their company’s name. On the first 

encounter a mutual customer is warned by DeTypo, but upon trusting both parties he will not be 

warned any further. The customer can then accidentally confuse these parties and send information to 

the wrong place. This often does little damage, but there is potential for critical data leaks. To help 

avoid this, the user could be prompted to reconfirm outgoing messages, when he trusts doppelganger 

mail like addresses. 
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7. Appendix 

 

7.1. Program code 
 
The program code is distributed among many files. The most important code to understand the plug-in 

will be listed here. 

 

Levenshtein as suggested by: 

http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#JavaScript 

 

Naïve Bayes as suggested by: http://www.dusbabek.org/~garyd/bayes/bayes.js 

 

7.1.1. Overlay on the main window of Thunderbird 
(content/overlay.js) 

Cu.import("resource://gre/modules/Services.jsm");   

Cu.import("resource://gre/modules/FileUtils.jsm");  

Cu.import("resource://doppelgangermail/stdlib/msgHdrUtils.js"); 

Cu.import("resource://doppelgangermail/stdlib/compose.js"); 

Cu.import("resource://doppelgangermail/stdlib/send.js"); 

Cu.import("resource://doppelgangermail/stdlib/misc.js"); 

Cu.import("resource://doppelgangermail/dbHelper.js"); 

Cu.import("resource://doppelgangermail/trustCenter.js"); 

Cu.import("resource://doppelgangermail/machinalLearner.js"); 

 

 

var DoppelgangerMail = {}; 

 

 

/* 

 *  Test function linked to Button in the Toolbar 

 **/ 

doSomething = function(){ 
    //DBManager.resetDB(); 

    //DBManager.initTrustCenter(); 

}  

      

//initialisation function (to be triggered upon load) 

function init() { 

    var notificationService = Cc["@mozilla.org/messenger/msgnotificationservice;1"].  

    getService(Ci.nsIMsgFolderNotificationService);   

    notificationService.addListener(newMailListener, notificationService.msgAdded); 

 

    let prefService = Cc["@mozilla.org/preferences-service;1"].getService(Ci.nsIPrefBranch); 

    if(prefService.getBoolPref("extensions.doppelgangermail.initial.load")){ 

        window.setTimeout(buildInitialTrustBase, 1000); 

        prefService.setBoolPref("extensions.doppelgangermail.initial.load", false); 

         

    } 

 

    DBManager.openCon(); 

    DBManager.initTrustCenter(); 

    DBManager.closeCon(); 
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    TrustCenter.TBWindow = window; 

    TrustCenter.Learner = Learner; 

 

    var ObserverService = Cc["@mozilla.org/observer-service;1"].getService(Ci.nsIObserverService); 

    ObserverService.addObserver(ViewObserver, "MsgCreateDBView", false); 

 

    Learner.getLearnContent(); 

 

}   

       

//binds the init() function to the "load" Event, which is triggered upon opening TB 

addEventListener("load", init, true); 

 

 

/* 

 *  Listener for new mail 

 *  Function msgAdded is called when a new e-mail arrives 

 */ 

var newMailListener = {   

    msgAdded: function(aMsgHdr) { 
        if( !aMsgHdr.isRead && msgHdrIsInbox(aMsgHdr) ) 

            //new unread message, check Contact 

            window.setTimeout(processIncomingMail, 1000, aMsgHdr); 

    }   

} 

 

function processIncomingMail(aMsgHdr){ 

    DBManager.openCon(); 

    DBManager.checkContact(aMsgHdr); 

    DBManager.closeCon(); 

} 

 

var ViewObserver = { 

    observe: function(aMsgFolder, aTopic, aData){   

        initGUI(); 

    } 

} 

 

/* 

 *  Prepares coloring in the message list and appends the column handler to said list 

 **/ 

function initGUI(){ 
 

  var columnHandler = { 

    getCellText:         function(row, col) { 

        var hdr = gDBView.getMsgHdrAt(row); 

        var mail = parseMimeLine(hdr.author)[0].email; 

        //find out if mail is trusted 

        if(typeof(TrustCenter.trustHashMap[mail]) !== 'undefined'){ 

            if(TrustCenter.trustHashMap[mail] == 'true') 

                return 'Y'; 

            else 

                return 'N'; 
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        }else 

            return 'U'; 

    }, 

    getSortStringForRow: function(hdr) {}, 

    isString:            function() {return true;}, 

    getCellProperties:   function(row,col,props){}, 

    getRowProperties:    function(row, props){ 

        var hdr = gDBView.getMsgHdrAt(row); 

        var mail = parseMimeLine(hdr.author)[0].email; 

        if(typeof(TrustCenter.trustHashMap[mail]) !== 'undefined'){ 

            if(TrustCenter.trustHashMap[mail] == 'true'){ 

                var aserv=Cc["@mozilla.org/atom-service;1"].getService(Ci.nsIAtomService); 

                props.AppendElement(aserv.getAtom("greenBG")); 

            }else{ 

                var aserv=Cc["@mozilla.org/atom-service;1"].getService(Ci.nsIAtomService); 

                props.AppendElement(aserv.getAtom("redBG")); 

            } 

        }else{ 

            var aserv=Cc["@mozilla.org/atom-service;1"].getService(Ci.nsIAtomService); 

            props.AppendElement(aserv.getAtom("blueBG")); 
        } 

    }, 

    getImageSrc:         function(row, col) {return null;}, 

    getSortLongForRow:   function(hdr) {} 

  } 

  gDBView.addColumnHandler("colTrust", columnHandler); 

} 

 

 

/* 

 *  Executes once after a fresh install of the Plugin 

 *  Prompts the User whether he wants to trust all his contacts so far or not 

 *  if not they will stay uncategorized 

 **/ 

function buildInitialTrustBase(){ 

    let prompts =  Cc["@mozilla.org/embedcomp/prompt-service;1"].getService(Ci.nsIPromptService);   

    if (prompts.confirm(TrustCenter.TBWindow, "Trust all?", "Hello,\nthis is the first time you installed 

the doppelganger Plugin.\nWould you like to trust the authors of\nall the mail you recieved so far?")) 

{   

        //accept 

        //initialisator is a helper object ot count the emails 

        var Initialisator = { 
            interactions : new Object(), 

            names : new Object(), 

            hdrs : new Object(), 

        }; 

 

        //loop through all folders 

        //not a perfect approach since only top level folders are considered 

        var acctMgr = Cc["@mozilla.org/messenger/account-

manager;1"].getService(Ci.nsIMsgAccountManager);   

        var accounts = acctMgr.accounts;   

        for (var i = 0; i < accounts.Count(); i++) {   
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            var account = accounts.QueryElementAt(i, Ci.nsIMsgAccount);   

            var rootFolder = account.incomingServer.rootFolder; // nsIMsgFolder   

            if (rootFolder.hasSubFolders) {   

                var subFolders = rootFolder.subFolders; // nsIMsgFolder   

                while(subFolders.hasMoreElements()) {   

                    var theFolder = subFolders.getNext().QueryInterface(Ci.nsIMsgFolder);   

                    var msgArray = theFolder.messages;      

                    while( msgArray.hasMoreElements() ) {   

                        let msgHdr = msgArray.getNext().QueryInterface(Ci.nsIMsgDBHdr);     

                        Initialisator.hdrs[msgHdr.messageKey] = msgHdr; 

                    }   

                }   

            }   

        }  

 

        for(var hdrKey in Initialisator.hdrs){ 

            let hdr = Initialisator.hdrs[hdrKey]; 

            let mail = parseMimeLine(hdr.author)[0].email; 

            let name = parseMimeLine(hdr.author)[0].name; 

            if(typeof(Initialisator.interactions[mail]) == 'undefined'){ 
                Initialisator.interactions[mail] = 1; 

                Initialisator.names[mail] = new Object(); 

                //Using arrays is also possible, but this is easier 

                Initialisator.names[mail][name] = true; 

            }else{ 

                Initialisator.interactions[mail]++; 

                Initialisator.names[mail][name] = true; 

            } 

        } 

 

        DBManager.openCon(); 

        DBManager.resetDB(); 

        for(var mail in Initialisator.interactions){ 

            let interactions = Initialisator.interactions[mail]; 

            //let name = Initialisator.names[mail]; 

            DBManager.addTrustMail(mail, "", 'true', interactions); 

            //add the collected names 

            for(var _name in Initialisator.names[mail]) 

                DBManager.addNametoMail(mail, _name); 

        } 

        DBManager.closeCon(); 

    } 
 } 

 

7.1.2. Database interaction 
(modules/dbHelper.js) 

var EXPORTED_SYMBOLS = ["DBManager", "file", "mDBConn", "Learner"];  

const {classes: Cc, interfaces: Ci, utils: Cu} = Components; 

 
Cu.import("resource://gre/modules/Services.jsm");   

Cu.import("resource://gre/modules/FileUtils.jsm");  

Cu.import("resource://doppelgangermail/stdlib/msgHdrUtils.js"); 

Cu.import("resource://doppelgangermail/stdlib/misc.js"); 
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Cu.import("resource://doppelgangermail/trustCenter.js"); 

 

var DBManager = {}; 

var file; 

var mDBConn; 

 

 

 

/* 

 * Initializes Connections to Database 

 */ 

DBManager.openCon = function(){ 

 file = FileUtils.getFile("ProfD", ["contactIDs.sqlite"]);   

 mDBConn = Services.storage.openDatabase(file); 

} 

 

/* 

 *  Closes DB Connection 

 */ 

DBManager.closeCon = function(){ 
 try{ 

  mDBConn.asyncClose(); 

 }catch(e){ 

  //Error can occur when a statement is evaluated and triggers another Database query 

 } 

} 

 

/* 

 *  Resets the Database (important for Developing and maybe for the user, possible to 

 *  link it to a GUI Element) 

 */ 

DBManager.resetDB = function(){ 

 TrustCenter.nameHashMap = new Object(); 

 TrustCenter.interactionsHashMap = new Object(); 

 TrustCenter.trustHashMap = new Object(); 

 TrustCenter.Whitelist = new Object(); 

 DBManager.openCon(); 

 try{ 

 mDBConn.executeSimpleSQL("DROP TABLE contacts"); 

 mDBConn.executeSimpleSQL("DROP TABLE mail"); 

 mDBConn.executeSimpleSQL("DROP TABLE whitelist"); 

 } catch(e){ 
 

 }   

 mDBConn.executeSimpleSQL("CREATE  TABLE 'contacts' ('mail' VARCHAR NOT NULL, 'name' 

VARCHAR NOT NULL)");   

 mDBConn.executeSimpleSQL("CREATE TABLE 'mails' ('id' INTEGER PRIMARY KEY 

AUTOINCREMENT, 'mail' VARCHAR NOT NULL, 'trusted' BOOL NOT NULL , 'interactions' INTEGER 

NOT NULL)");   

 mDBConn.executeSimpleSQL("CREATE TABLE 'whitelist' ('domain' VARCHAR NOT NULL, 

'trusted' BOOL NOT NULL)");   

 DBManager.closeCon(); 

} 
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/* 

 *  Checks the TrustCenter for a Contact (by mail) 

 *  @param header of a incomming Mail 

 */ 

DBManager.checkContact = function(aMsgHdr){ 

 var mail = parseMimeLine(aMsgHdr.author)[0].email; 

 var name = parseMimeLine(aMsgHdr.author)[0].name; 

 

 if(typeof(TrustCenter.trustHashMap[mail]) !== 'undefined'){ 

  //known Contact, increment Interactions entry 

  DBManager.incrementInteractions(mail); 

  //check if we have to learn a new name 

  if(typeof(TrustCenter.nameHashMap[mail][name]) == 'undefined'){ 

   DBManager.addNametoMail(mail, name); 

  } 

  TrustCenter.Learner.teachAs(aMsgHdr); 

        //if(TrustCenter.trustHashMap[mail] == 'true'){ 

         //trusted Contact 
    }else{ 

     //new Contact 

     //when on whitelist add it directly 

     let listed = false; 

     for(var white in TrustCenter.Whitelist){ 

      if(mail.indexOf(white, mail.length - white.length) !== -1){ 

       listed = true; 

       DBManager.addTrustMail(mail, name, TrustCenter.Whitelist[white], 1); 

      } 

     } 

     if(!listed) 

         TrustCenter.Learner.tryToLearn(aMsgHdr); 

    } 

} 

     

 

/* 

 *  Initialises the shared trustCenter objects for a effective way of looking  

 *  up if a mail is trusted 

 *  @after: trustCenter contains knowledge of trusted and untrusted recipients 

 *          and number of interactions 

 **/ 
DBManager.initTrustCenter = function(){ 

 var statement = mDBConn.createStatement("SELECT * FROM 'mails'");   

 statement.executeAsync({   

        handleResult: function(aResultSet){ 

         for (let row = aResultSet.getNextRow(); row; row = aResultSet.getNextRow()) {   

    let mail = row.getResultByName("mail"); 

    let trust = row.getResultByName("trusted"); 

    let interactions = row.getResultByName("interactions"); 

    TrustCenter.trustHashMap[mail] = trust; 

    TrustCenter.interactionsHashMap[mail] = interactions; 

    TrustCenter.nameHashMap[mail] = new Object(); 
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   } 

        },   

       handleError: function(aError) {   

      alert("Error: " + aError.message);   

       },   

       handleCompletion: function(aReason) { 

         if (aReason != Ci.mozIStorageStatementCallback.REASON_FINISHED)   

          alert("Initialisation failed!");   

       }   

    }); 

 

    var stmt = mDBConn.createStatement("SELECT * FROM 'contacts'");   

 stmt.executeAsync({   

        handleResult: function(aResultSet){ 

         for (let row = aResultSet.getNextRow(); row; row = aResultSet.getNextRow()) {   

    let mail = row.getResultByName("mail"); 

    let name = row.getResultByName("name"); 

    if(typeof(TrustCenter.nameHashMap[mail]) != "undefined") 

     TrustCenter.nameHashMap[mail][name] = true; 

   } 
        },   

       handleError: function(aError) {   

      alert("Error: " + aError.message);   

       },   

       handleCompletion: function(aReason) { 

         if (aReason != Ci.mozIStorageStatementCallback.REASON_FINISHED)   

          alert("Initialisation failed!");   

       }   

    }); 

    var whitestmt = mDBConn.createStatement("SELECT * FROM 'whitelist'");   

 whitestmt.executeAsync({   

        handleResult: function(aResultSet){ 

         for (let row = aResultSet.getNextRow(); row; row = aResultSet.getNextRow()) {   

    let domain = row.getResultByName("domain"); 

    let trusted = row.getResultByName("trusted"); 

    TrustCenter.Whitelist[domain] = trusted; 

   } 

        },   

       handleError: function(aError) {   

      alert("Error: " + aError.message);   

       },   

       handleCompletion: function(aReason) { 
         if (aReason != Ci.mozIStorageStatementCallback.REASON_FINISHED)   

          alert("Initialisation failed!");   

       }   

    }); 

} 

 

 

/* 

 *  Adds a contact to the trustCenter and to the Database 

 *  @param: mail and name is a incoming mail header content, trust is whether to trust the person or 

not 
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 **/ 

DBManager.addTrustMail = function(mail, name, trust, interactions){ 

 TrustCenter.trustHashMap[mail] = trust; 

 TrustCenter.interactionsHashMap[mail] = interactions; 

 

    let query = "INSERT INTO 'mails' (mail,trusted,interactions) VALUES ('"+mail+"','"+trust+"','"+ 

interactions+"')";  

 try{ 

  mDBConn.executeSimpleSQL(query); 

 }catch(e){dump(e+"\n");} 

 TrustCenter.nameHashMap[mail] = new Object(); 

 DBManager.addNametoMail(mail, name); 

} 

 

/* 

 *  Adds a domain to the trustCenter and to the Database 

 *  @param: domain is the domain and trust is whether to trust it 

 **/ 

DBManager.addTrustDomain = function(domain, trust){ 

 TrustCenter.Whitelist[domain] = trust; 
 

    let query = "INSERT INTO 'whitelist' (domain,trusted) VALUES ('"+domain+"','"+trust+"')"; 

    mDBConn.executeSimpleSQL(query); 

} 

 

/* 

 *  Adds a name to a contact based on id 

 **/ 

DBManager.addNametoMail = function(mail, name){ 

 if(name == "") return; 

 let query = "INSERT INTO 'contacts' (mail,name) VALUES ('"+mail+"','"+name+"')"; 

 TrustCenter.nameHashMap[mail][name] = true; 

    mDBConn.executeSimpleSQL(query); 

} 

 

/* 

 *  Manages intercepted outgoing e-mails 

 *  and checks whether all contacts are trusted or not 

 **/ 

DBManager.registerOutgoing = function(msgCompFields, cmpWindow){ 

 

 var recipient; 
 var recipients = parseMimeLine(msgCompFields.to + "," + msgCompFields.cc + "," + 

msgCompFields.bcc); 

 var untrusted = false; 

 

 // email absenden stoppen mit: return true; 

 for(var i=0; i < recipients.length; i++){ 

  recipient = recipients[i]; 

  let mail = recipient.email; 

 

  if(typeof(TrustCenter.trustHashMap[mail]) == 'undefined'){ 

   //mail send to a new contact 
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   //if domain in whitelist add it 

   let listed = false; 

      for(var white in TrustCenter.Whitelist){ 

       if(mail.indexOf(white, mail.length - white.length) !== -1){ 

        listed = true; 

        DBManager.addTrustMail(mail, recipient.name, 

TrustCenter.Whitelist[white], 1); 

       } 

      } 

      if(!listed){ 

    let prompts =  Cc["@mozilla.org/embedcomp/prompt-

service;1"].getService(Ci.nsIPromptService);   

      if (prompts.confirm(cmpWindow, "Trust Contact?", "You are sending a 

mail to an unknown contact:\n" + recipient.name + " <" + recipient.email +">\nWould you like to 

trust that Contact in the future?\n")) {   

       //add the contact to the list of trusted contacts 

       DBManager.addTrustMail(mail, recipient.name, 'true', 1); 

    } else {   

       //do nothing since the user doesnt want to have the contact 

added  
    } 

   } 

  }else{ 

   if(TrustCenter.trustHashMap[mail] == 'true'){ 

    //mail send to a trusted contact, increment Interactions 

    DBManager.incrementInteractions(mail); 

   }else{ 

    //mail send to a untrusted contact 

    //increment Interactions anyway 

    DBManager.incrementInteractions(mail); 

    untrusted = true; 

    var untrustedContact = recipient.name + " <" + recipient.email + ">"; 

   } 

  } 

 } 

 if(untrusted){ 

  let prompts =  Cc["@mozilla.org/embedcomp/prompt-

service;1"].getService(Ci.nsIPromptService);   

    if (prompts.confirm(cmpWindow, "Untrusted Contact!", "You are trying to send a mail 

to at least one untrusted contact:\n" + untrustedContact +"\nCheck if you disclosed any personal or 

secret information.\nConfirm if you want to send the e-mail anyway"))  

     untrusted = false; 
 } 

 return untrusted; 

} 

 

  

/* 

 *  Increments the interactions counter based on the mail 

 **/ 

DBManager.incrementInteractions = function(mail){ 

 TrustCenter.interactionsHashMap[mail]++; 

 let query = "UPDATE 'mails' SET interactions = interactions + 1 WHERE mail = '" + mail + "'"; 
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 mDBConn.executeSimpleSQL(query); 

} 

 

/* 

 *  Deletes the old entry for a mail and changes it to the new desired one 

 *  Copys all names for the contact to new entrys in the contact database 

 **/ 

DBManager.editContact = function(oldmail, mail, interactions, trust){ 

 DBManager.delContact(oldmail); 

 DBManager.addTrustMail(mail, "", trust, interactions); 

 //Copy the names 

 let query = "UPDATE 'contacts' SET mail = '"+mail+"' WHERE mail = '" + oldmail + "'";  

 mDBConn.executeSimpleSQL(query); 

} 

 

/* 

 *  edits a entry for a domain 

 **/ 

DBManager.editWhitelist = function(olddomain, domain, trust){ 

 DBManager.delTrustDomain(olddomain); 
 DBManager.addTrustDomain(domain, trust); 

} 

 

/* 

 *  Deletes a contact, but not its corresponding names  

 **/ 

DBManager.delContact = function(mail){ 

 TrustCenter.trustHashMap[mail] = undefined; 

 delete TrustCenter.trustHashMap[mail]; 

 TrustCenter.interactionsHashMap[mail] = undefined; 

 delete TrustCenter.interactionsHashMap[mail]; 

 let query = "DELETE FROM 'mails' WHERE mail = '"+mail+"'"; 

 mDBConn.executeSimpleSQL(query); 

} 

 

/* 

 *  Deletes an entry from the whitelist Database 

 **/ 

DBManager.delTrustDomain = function(domain){ 

 TrustCenter.Whitelist[domain] = undefined; 

 delete TrustCenter.Whitelist[domain];  

 let query = "DELETE FROM 'whitelist' WHERE domain = '"+domain+"'"; 
 mDBConn.executeSimpleSQL(query); 

} 

 

DBManager.copyNames = function(from, to){ 

 for(var name in TrustCenter.nameHashMap[from]){ 

  DBManager.addNametoMail(to, name); 

 } 

} 

 

7.1.3. Trustcenter 
(modules/trustCenter.js) 
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var EXPORTED_SYMBOLS = ["TrustCenter"];  

const {classes: Cc, interfaces: Ci, utils: Cu} = Components; 

  

Cu.import("resource://doppelgangermail/stdlib/msgHdrUtils.js"); 

Cu.import("resource://doppelgangermail/stdlib/misc.js"); 

 

 

/* 

 *  Shared ressource contains 2 arrays with data on what email to trust 

 *  and how many interactions have happened with a contact 

 *  also some other shared ressources, because of mutual inclusion problems 

 **/ 

var TrustCenter = { 

 trustHashMap : new Object(), 

 interactionsHashMap : new Object(), 

 nameHashMap : new Object(), 

 TBWindow : new Object(), 

 Learner : new Object(), 

 Whitelist : new Object(), 

} 
 

7.1.4. Processing new e-mail Addresses 
 

var EXPORTED_SYMBOLS = ["Learner"];  

const {classes: Cc, interfaces: Ci, utils: Cu} = Components; 

  

Cu.import("resource://doppelgangermail/stdlib/msgHdrUtils.js"); 
Cu.import("resource://doppelgangermail/stdlib/misc.js"); 

Cu.import("resource://doppelgangermail/trustCenter.js"); 

Cu.import("resource://doppelgangermail/dbHelper.js"); 

Cu.import("resource://app/modules/gloda/public.js");  

 

/* 

 *  Learner provides routines for machinal learning of email bodys and 

 *  matching them to other contacts 

 **/ 

var Learner = {}; 

var ready = false; 

var headerStack = new Array(); 

 

Learner.tryToLearn = function(hdr){ 

  if(!ready){ 

    //save message for procession at a later time 

    headerStack.push(hdr); 

    return; 

  } 

  var params = {inn:{ 

    contact : new Object(), 

    namesSet: false, 
    mailsSet: false, 

    names : new Object(), 

    mails : new Object, 

    bayes : "", 
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    } 

  }; 

 

  Learner.findSimilarNames(parseMimeLine(hdr.author)[0].name, params); 

  Learner.findSimilarMails(parseMimeLine(hdr.author)[0].email, params); 

  params.inn.bayes = Learner.guessContact(hdr); 

  params.inn.contact.mail = parseMimeLine(hdr.author)[0].email; 

  params.inn.contact.name = parseMimeLine(hdr.author)[0].name; 

  params.inn.contact.hdr = hdr;     

  TrustCenter.TBWindow.openDialog("chrome://doppelgangermail/content/learner.xul", "", 

    "chrome, dialog, modal, centerscreen, resizable=no", params).focus(); 

} 

 

/* 

 *  Teaches all message contents to our bayes classifier on startup 

 **/ 

Learner.getLearnContent = function(){ 

 //teach all the messages 

 

  //get all the accounts, then the first subfolders and then all messages of these 
  //then teach the messages as class "mailaddress" 

  var acctMgr = Cc["@mozilla.org/messenger/account-

manager;1"].getService(Ci.nsIMsgAccountManager);   

  var accounts = acctMgr.accounts;   

  for (var i = 0; i < accounts.Count(); i++) { 

    var account = accounts.QueryElementAt(i, Ci.nsIMsgAccount);   

    var rootFolder = account.incomingServer.rootFolder; // nsIMsgFolder   

    if (rootFolder.hasSubFolders) {   

      var subFolders = rootFolder.subFolders; // nsIMsgFolder   

      while(subFolders.hasMoreElements()) {  

        var theFolder = subFolders.getNext().QueryInterface(Ci.nsIMsgFolder);   

        var msgArray = theFolder.messages;     

        while( msgArray.hasMoreElements() ) {  

          let msgHdr = msgArray.getNext().QueryInterface(Ci.nsIMsgDBHdr); 

          Learner.teachAs(msgHdr); 

        }   

      }   

    }   

  }  

  ready = true; 

  while(headerStack.length > 0) 

    Learner.tryToLearn(headerStack.pop()); 
} 

 

//Teaches a message body as belonging to a class (e-mail) 

Learner.teachAs = function(msgHdr){ 

  //teach a certain message 

  var doc = msgHdrToMessageBody(msgHdr, true, -1); 

  var tokens = scrub(doc); 

  for (var i in tokens) 

    bayes.teach(tokens[i], parseMimeLine(msgHdr.author)[0].email); 

} 
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/* 

 *  Finds names which are close to the authors name using levensthein 

 *  @param the name of the autor which name should be found 

 *  @result object containing mail addresses and close names 

 *    @like: new object[mail][names] 

 **/ 

Learner.findSimilarNames = function(name, params){ 

  if(name == "") 

    return false; 

 

  for(var mail in TrustCenter.trustHashMap){ 

    for(var compareName in TrustCenter.nameHashMap[mail]){ 

      if(Learner.isSimilar(compareName, name, 0.4)){ 

        params.inn.namesSet = true; 

        let i=1; 

        while(params.inn.names[compareName]){ 

          i++; 

          if(i==2) 

            compareName = compareName + i; 

          else{ 
            //naive annahme von maximal 9 gleichen namen... 

            compareName = compareName.substring(0, compareName.length - 2); 

            compareName = compareName + i; 

          } 

        } 

 

        params.inn.names[compareName] = new Object(); 

        params.inn.names[compareName].trust = TrustCenter.trustHashMap[mail]; 

        params.inn.names[compareName].interactions = TrustCenter.interactionsHashMap[mail]; 

        params.inn.names[compareName].mail = mail; 

      } 

    } 

  } 

} 

 

/* 

 *  Checks whether there are similar E-mail Adresses in our Trustbase 

 **/ 

Learner.findSimilarMails = function(mail, params){ 

  for(var compareMail in TrustCenter.trustHashMap){ 

    if(Learner.isSimilar(compareMail, mail, 0.2)){ 

        params.inn.mailsSet = true; 
        params.inn.mails[compareMail] = new Object(); 

        params.inn.mails[compareMail].trust = TrustCenter.trustHashMap[mail]; 

        params.inn.mails[compareMail].interactions = TrustCenter.interactionsHashMap[mail]; 

        //only set Name if an entry exists 

        if(TrustCenter.nameHashMap[compareMail]) 

          for (var name in TrustCenter.nameHashMap[compareMail]) 

            params.inn.mails[compareMail].name = name; 

    } 

  } 

} 
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/*   

 *  Guesses contact based on naive bayes classifiers 

 **/ 

Learner.guessContact = function(hdr){ 

  var doc = msgHdrToMessageBody(hdr, true, -1); 

  var tokens = scrub(doc); 

  var probs = new Array(); 

  var probSum = 0; 

  for (var cls in bayes.classes) { 

    if (cls == "__length") continue; 

    var prob = bayes.probabilityOfClassGivenDocument(cls, tokens); 

    probSum += prob; 

    probs[probs.length] = { 

      classification : cls, 

      probability : prob, 

      pc : bayes.probabilityOfClass(cls) 

    }; 

  } 

  // normalize 

  // the log normalization conversion took me quite a bit of googling to figure out.  I'm still not sure 
how 

  // accurate the math is.  Probabilities are adding up to 1 though, so I must be nearly right. 

  var matchesPc = true; 

  for (var i = 0; i < probs.length; i++) { 

    if (USE_LOGS) 

      probs[i].probability = 1 / (1 + Math.pow(Math.E, probSum-(2*probs[i].probability))); 

    else if (probSum > 0) 

      probs[i].probability = probs[i].probability / probSum; 

 

    // in really bad cases, we may be given a text containing tokens that have never been seen before 

for any 

    // classification.  In that cases, bayes craps out (because of the unseen seed value producing a very 

unlikely 

    // probability) and returns a probability distribution that matches almost exactly the probability 

distribution of 

    // p(C).  Recognize this bad case and shunt all probabilities to zero where they belong. 

    var ratio = probs[i].probability / probs[i].pc; 

    if (ratio < 0.95 || ratio > 1.05) 

      matchesPc = false; 

  } 

  if (matchesPc || probSum == 0) { 

    return "It was not possible to determine a fitting already known Contact to this message."; 
  } 

  //teach this message for next time 

  for (var i in tokens) 

    bayes.teach(tokens[i], parseMimeLine(hdr.author)[0].email); 

 

  // sort them highest first. 

  probs.sort(function(a, b) { 

    return b.probability - a.probability; 

  }); 

  // convert to a pretty string. 

  var str = ""; 
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  for (var i = 0; i < probs.length && i<5 && probs[i].probability.toFixed(4) != 0; i++){ 

    let trust = "?"; 

    if(typeof(TrustCenter.trustHashMap[probs[i].classification]) != 'undefined') 

      trust = (TrustCenter.trustHashMap[probs[i].classification] == "true") ? "Trusted" : "Untrusted"; 

 

    str += trust + " - " + probs[i].classification + "(" + probs[i].probability.toFixed(4) + "), \n"; 

  } 

  return str; 

} 

 

/* 

 *  Determines whether two strings are similar 

 **/ 

Learner.isSimilar = function(str1, str2, threshold){ 

 if(str1 == "" || str2 == "") 

  return false; 

  let similar = false; 

  names1 = str1.split(" "); 

  names2 = str2.split(" "); 

  //try to combine all parts of the names with each other 
  for(var i in names1){ 

    if(names1[i] == "") 

      continue; 

    for(var j in names2){ 

      if(names2[j] == "") 

        continue; 

        let _length = Math.min(names1[i].length, names2[j].length); 

        //adjust the value here to allow for more (higher) or less (smaller) names to be accepted 

        if(Learner.levensthein(names1[i], names2[j]) / _length  <= threshold) 

          similar = true; 

    } 

  } 

 return similar; 

} 

 

//lastly a modification added to the Naïve bayes implementation (note the max depth of 100 words): 

 

function strip_common_words(tokens) { 

    var newTokens = new Array(); 

    var ntPos = 0; 

    var depth; 

    if(tokens.length > 100) 
      depth = 100; 

    else 

      depth = tokens.length; 

    for (var i = 0; i < depth; i++) {  // original: tokens.length; i++) { 

      var common = false; 

      for (var cw = 0; cw < COMMON_WORDS.length; cw++) { 

        if (COMMON_WORDS[cw] == tokens[i]) { 

          common = true; 

          break; 

        } 

      } 
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      if (!common) 

        newTokens[ntPos++] = tokens[i]; 

    } 

    return newTokens; 

  } 

 


