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Abstract 

German authorities who confiscate optical media use an automatic copying machine to duplicate the 

data onto external hard drives. This allows for efficient analysis of the data. In the current mode of 

operation, the copied data is used as evidence during the course of internal investigations, lawsuits, 

government investigations, audits, and other formal matters. However, any party having access to the 

drive can modify data which resides on it. It is not possible to verify the integrity and authenticity of 

the copied data.  

This bachelor thesis describes a concept that enhances the functionality of the copying machine by 

utilizing secure logging with the intent of providing digital evidence. This concept incorporates state of 

the art secure logging approaches, and is resistant to the copying and verification attacks described in 

this document. In addition, a Java based prototype is implemented, as part of this bachelor thesis, 

which demonstrates the functionality described in the concept. 
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1 Introduction 

This document has been written within the scope of the FORBILD project which has been established 

by the Fraunhofer SIT in Darmstadt, the Technical University of Darmstadt, and LSK Data Systems 

GmbH. The purpose of this project is to “assist the federal and state police in visual inspection of seized 

image data that potentially shows illegal content, namely child pornography. Privacy-preserving 

mechanisms are included in the project in order to reflect the delicacy of the image content”.   

The inspection using the original data on the optical media is cumbersome and doesn’t allow multiple 

people to analyze the data. Therefore, the data is copied to external discs. By analyzing the copied data 

the door is open for manipulating its content. This in turn, makes it more difficult to use the results as 

digital evidence in front of a court.  

 

1.1 Motivation 

In Kahn Consulting (1) securing log files plays an important role in using them as digital evidence:  

“…. computer log files are also increasingly used as evidence during the course of internal investigations, 

lawsuits, government investigations, audits, and other formal matters. As such, rather than viewing log file 

information as merely “technical” or tactical information, many organizations today view certain computer 

security log files as a unique form of “evidence” that must be managed in a manner that reflects its intended 

or possible future use.” 

Kahn sees the fulfillment of the following challenges as a prerequisite in order to use digital 

information in a court of law: 

“... Any organization wishing to rely upon electronic information for legal and regulatory purposes, or 

wishing to submit it as legal evidence must address two separate - but related - challenges. First, the 

information must be admissible – that is, it must be acceptable to the court or to the regulator. …..The 

second challenge for electronic information is that it must be credible. In other words, electronic 

information must be authentic, complete, and trustworthy enough to deserve to influence the outcome of a 

legal proceeding. Even if such evidence is found to be generally admissible, its integrity can nonetheless still 

be attacked, and it can be excluded or its influence on the proceeding can be severely diminished.” 

Although today’s practices are accepted by the courts (digital copies of media for analyzing data 

confiscated by the authorities can be used), a detailed analysis of the processes reveals that – if desired 

– the copied data can be easily modified, deleted, or amended with additional information. If misused, 

it could lead to drawing false conclusions in a case.  
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1.2 Project Description 

One of the practical objectives of the FORBILD project is to propose a state of the art process that 

allows the integrity and authenticity of confiscated media to be upheld.  

Unless specified differently in the rest of this document, the word “project” is specified by the scope 

described below. 

Within the scope of this work, a state of the art software prototype supporting digital evidence for the 

LSK copying machine, called Omega Pro, has been developed. This machine helps the authorities 

become more productive when analyzing optical media, is widely used by the German authorities, and 

is admissible. However, it does not at all support authenticity and integrity. 

Therefore, if digital evidence has to be proven in front of a court, using today’s mode of operation, this 

only can be achieved by going back to the original optical media. The authentication and integrity 

functionality implemented in this project’s prototype will save a lot of time by allowing one to check the 

copied data residing on hard drives, and using it in a legal proceeding. 

In order to achieve the security requisites, a secure logging mechanism has to be integrated into the 

Omega Pro, documenting the copying process, and making tamper-attempts detectable. Note that, 

secure logging techniques do not prevent manipulation of the hard drive, but it certainly enables it to 

be detected.   

In this document, various secure logging methods are examined to achieve the objectives mentioned 

above. Possible attacks are analyzed and matched against the requirements. Based on a thorough state 

of the art analysis of today’s secure logging techniques, a concept covering against most of the attacks is 

implemented.  Performance tests conducted give an indication of the overhead generated by secure 

logging versus the current mode of operation. As mentioned above, the prototype cannot address all 

possible attacks. Limitations of and boundaries are described allowing to initiate organizational means 

to address the limitations.  

 

1.3 Document Outline 

This document is divided into the following sections: Chapter 2 gives a brief summary of terms used in 

this text and overviews security requirements of secure logging. Chapter 3 presents the state of the art 

in secure logging methods. In Chapter 4, the challenges of secure logging in context to using the 

Omega Pro system are examined and analyzed. Followed in Chapter 5 by, deriving a concept for the 

system based on the techniques evaluated in the state of the art. In Chapter 6, the prototype 

implementation of this concept on the basis of Java is described. Lastly, Chapter 7 compares the 

computational overhead of the new concept to the current system. In conclusion, Chapter 8 
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summarizes the document, showing that the requirements are fulfilled, and giving an outlook of further 

optimization. 
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2 Foundations and Security Requirements of Secure Logging 

This chapter gives an overview of the most important terms and definitions used in this document in 

reference to secure logging. Furthermore, the terms integrity, authenticity and confidentiality used in 

the state of the art papers are defined. Lastly, the cryptographic methods used in this document are 

described. The main objective is to clearly define the terminology used to further describe the state of 

the art secure logging protocols, and to serve as a basis for reference. 

 

2.1 Terms Summarized 

What is a log file and how is it used in this document? 

Log files record certain events, i.e. a system’s activities. This information can be audited to analyze a 

system’s behavior. In this document log files are denoted as �, containing log entries �� which are 

appended to the file once they are created. The information stored in the i.th log entry is called an 

event, a log message, or log data, and is denoted as ��. 

What is secure logging and why is it important? 

Simply put, secure logging is the process of creating a log file with properties which makes 

manipulation detectable. Its objective is to keep the integrity and authenticity of the log file. Without 

proof of these objectives, an auditor cannot rely on the authenticity/integrity of the file’s content.  

Log Machines 

A log machine � receives the log data, puts it into a log entry, and appends it to the log file. This 

process is referred to in the rest of this text as the “logging process”. 

Trusted Server 

A trusted server � serves as a repository for the log file and its associated metadata. The server is 

placed in a secure location. 

Verifier 

A verifier � is mainly a person whose intention is to audit the log. Before the audit is possible, a 

verification process is executed to ensure the log has not been tampered with.  

Logging Architecture 

The logging architecture is the environment for the process of secure logging. It usually consists of the 

logging machine and a trusted server. 
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Abbreviations 

The following table further describes the roles of  �, �		
�	� described above. They are used in this 

document and other papers referred to ( (2); (3); (4)). 

 

Abbreviation 
Security 

Status 
Description Picture 

� Untrusted 

Logging machine (usually a server).This machine is considered 

untrusted, meaning that the probability for a successful 

compromise is high. 
 


 Trusted 
A trusted server, serving as the repository. It is assumed that � is 

resistant against attacks. 

 

� Semi-trusted 

A verifier, who checks the logs integrity in order to audit the log. 

This role is only trusted to read log records but not in any other 

way. 
 

Table 2.1: Abbreviations for Secure Logging 

 

In general, it is assumed that connections between two arbitrary components (U,T	 or	 V) are secure, 

meaning that eavesdropping or other attacks do not have to be considered.  

 

2.2 Security Requirements  

The following defines the security requirements for secure logging. The terms below are used 

throughout this document and in the state of the art papers. The terms described below help in 

overcoming Kahn’s second challenge (see 1.1) credibility of information, and are a prerequisite for 

proving digital evidence. 

Integrity 

Data is protected in terms of integrity when unauthorized modification can be proven. In the context of 

secure logging protocols, a definition of log file integrity is given by Rafael Accorsi (5):  

A log file fulfills integrity when the following three requirements can be guaranteed: 

• Accuracy: the entries have not been modified or reordered. 

• Completeness: the log file, or some of its content, has not been deleted. 

• Compactness: no content has been added to the file, e.g. by inserting forged records.  
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In summary, log integrity is assured when its records or structure cannot be modified without 

detection.  

Authenticity  

According to (6) authenticity is defined as the originality and credibility of a subject or object.  

Authenticity can be proven through a unique characteristic of the subject or object, e.g. a private key in 

which the subject or object is the only possessor. The process of proving someone’s authenticity is 

called authentication.  

Confidentiality 

When important data, like a customer’s bank account information or personal information, has to be 

transmitted via a public network, it is necessary the data remains unobtainable to other parties in the 

network. Confidentiality is achieved when it is impossible for unauthorized parties to access or read 

information. With regard to secure logging, Accorsi defines entry confidentiality in (5) when log data is 

not stored in plain text.  

 

2.3 Cryptographic Methods 

Secure logging techniques (which are presented in chapter 3.4) focus on proving a log’s integrity. In 

order to do so, cryptographic methods are applied. This chapter is concentrates on cryptographic hash 

functions, hash chains, message authentication codes and digital signatures. More detail on these topics 

can be found in (7). 

 

2.3.1 Cryptographic Hash Functions 

The simplification purposes the following notation is used throughout this document.  

For   �, � ∈ 	 �0,1�∗ the function == is defined to be   

� �� �:� �� !"	, #$	� � 	�
$	%&", #$	� ' �   

A cryptographic hash function denoted as: (:	�0,1�∗ →	 �0,1�*		has the ability to compress a string of 

arbitrary length into a string of length n-bits. 

It has the following characteristics: the image � � (+�, can be computed very efficiently, while it is 

“practically” impossible to compute the origin � of a given image � (called the hash). Practically means, 

that there is no efficient algorithm to compute the origin in a reasonable time. An example of such a 

function is the discrete logarithm explained in (7).  

Cryptographic hash functions are not injective:  ∃�, � ∈ �0,1�∗: � ' �	˄	(+�, � (+�,. Elements mapped 

to the same image are called collision elements.  
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Based on the definitions above, cryptographic hash functions are categorized as weak, or strong 

collision-resistant. The following definitions are based on the definitions in (7): 

• ( is weak collision resistant if it is practically impossible to find a collision +�, �/, based on a 

given �. 

• ( is strong collision resistant if it is practically impossible to find a collision at all.  

In this document, it is assumed that cryptographic hash functions used in secure logging are strong 

collision resistant. 

Hash functions are mainly used to check a message’s integrity. When a message 0 is sent, its 

corresponding hash 1 is attached to it. The receiver of the message recalculates the hash and checks if 

both hashes match. In the following, this kind of verification denoted by: 

2" #$�(	&1+0, 1,: � +1 �� (+0,, 
Widely used hashing algorithms are SHA-1 defined in (8), and MD5 defined in (9). According to Wang 

(10), the MD5 algorithm is not collision resistant anymore. 

 

2.3.2 Hash Chains in Secure Logging 

A log file is a file that is dynamic in the sense that on a continuous basis data is appended to it. This 

leads to the definition of dynamic data: 

Let 0� +# � 1, 2, …
, 
 ∈ 5) be data blocks (=generalization of a log entries). The concatenation 

6*: � 070809 …0* 

of these data blocks is called dynamic data (of length n). The characteristic of dynamic data is that it 

changes its content throughout its lifetime by appending a new block of data. 

Hash chains are defined as follows: let ( be a strong collision-resistant hash function and 6*		+
 ∈ 5,  
dynamic data and C an arbitrary string. A hash chain :*	+n ∈ 5, is a recursive defined function hashing 

0* and the previously generated hash :*<7 : 

:* ∶� � >, #$	
 � 0	
(+:*<7	|0*,,			#$	
 @ 0. 

The string > is called the initial seed of the chain.  

In secure logging, hash chains are used for two purposes: 

• Key generation 

• Efficiently calculation hashes for dynamic data (using accumulative hash chains). 

In order to distinguish between the two different hash chain purposes, accumulative hash chains will be 

denoted by A* instead of :*. 
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Key Generating Hash Chains 

Hash chains can be used in secure logging processes requiring different encryption keys per log entry. 

Multiple keys are generated, which are all derived from one initial key.  

By setting C � KD as the initial key and setting  6* � 	∅	 for all 
 in the definition above a hash chain is 

defined recursively:  

:* � (+:*<7,+
 ∈ 5, 
Compared to symmetric encryption (Section 2.3.3) the advantage is: if party A wants to send data, 

encrypted by :*+
 @ 0, to party B there is no need to exchange this key with B. Sender A and receiver 

B must the initial key :D and the index 
. This gives both parties the ability to compute :* and 

therefore to encrypt or decrypt.  

If hash chains are used for key generation, they have the ability to “forget” the previously used keys due 

to the property of a hash function (the origin cannot be computed). The pre-requisites for this are:  the 

keys are deleted from the system immediately after they have been used, and the initial seed :F is held 

in a secure location. 

 

Accumulative Hash Chains 

The integrity of data can be verified by a normal hash function ( as defined in chapter 2.3.1. If the 

data is dynamic, it is computationally more efficient to concatenate the current hash with the new 

block and then hash it, compared to hashing the entire message every time a new block of data is 

appended.  

Let 6*	+
 ∈ 5,	be dynamic data and 0� the i.th data block of 6*. 

Due to the nature of hash functions  

A* � � >, if	n � 0
(+A*<7|0*,, if		n @ 0 

guarantees the integrity of 6* .  

If the receiver of +6* , A*, wants to check the integrity of 6* she computes a the hash chain value A*I  

and compares it with A�. In case of A*I �� A*, 6* has been successfully verified. In the remainder of 

this document this is denoted by the Boolean function 

2" #$�(>+6*, A*, ∶� 	 +A*I �� A*, 
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2.3.3 Symmetric Cryptography  

Symmetric cryptography (also called secret key cryptography) can be used for many purposes such as 

transmitting data over an insecure channel, storing data on insecure media, or to perform an integrity 

check on data. In context of secure logging, the latter is the most important area which is the reason for 

a closer look up in the next subchapter.  

Symmetric key algorithms, like the AES (11), use a secret key :J negotiated by the communication 

partners for encryption as well as decryption. The benefit of such algorithms is that they are 

computationally inexpensive. On the other hand, there is a high key management effort if a 

communicating party needs to share a different secret key with each of its partners. 

If encryption is used and data 0 needs to be en-/decrypted with the secret key :J , &ymmetric en-

/decryption is denoted as KLM+0, and �LM+0,, respectively. 

 

Message Authentication Code 

Let : be an arbitrary set, ( be the set of hash functions, then the family of hash functions MAC is 

defined to be: 

6A> ≔ O1LM 	 ∈ (	|	:J 	 ∈ :P 	⊂ (. 

The message authentication code (MAC), also called Message Integrity Code (MIC), serves to retain the 

integrity and authenticity of a message among two or more communicating parties.  

In the following the notation 6A>LM ≔ 1LM 	, +:J 	 ∈ :, is used. 

The key :J is shared between a sender, and receiver. As long as :J	is kept secret, the receiver of a 

message with an appended MAC	can be certain of the authenticity and integrity of the message. Note 

that MACs are not used to undisputedly identify the originator of a message in the way digital 

signatures do (chapter 2.3.4). This is due to the fact that a symmetric keys needs to be shared among 

the communicating parties, making it impossible to identify the source of a message as either party can 

be the originator. 

If R denotes the MAC created by the sender using :J, the receiver of a message verifies R by applying 

the following verifying function: 

2" #$�6A>+0, R, :J, ∶� +R �� 6A>LM+0,,	. 

The MAC algorithm used in this work is the HMAC, introduced by Bellare et al in (12). 
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2.3.4 Asymmetric Cryptography 

Asymmetric cryptography (also called public key cryptography) can be used for the same purposes as 

symmetric cryptography can. However, it provides stronger statements about a message’s integrity and 

authenticity through the use of digital signatures. Digital Signatures, analogously to MACs, are 

important for secure logging techniques and are defined in the next subchapter.  

Compared to symmetric key algorithms, asymmetric algorithms use two keys +ST, S!U,, denoted as 

private key and public key. Each of the communicating parties A and B own such a pair. The public key 

is registered at a trusted authority called Public Key Infrastructure (=PKI, see in (6)) and can be 

queried in form of X.509 certificates
1
 by anyone to encrypt a message. If A wants to send a message to 

B she queries the public key of B from the PKI, encrypts the message and sends it to B.  The receiver of 

the encrypted message uses his own private key to decrypt it. Analogously to symmetric algorithms, the 

en-/decrypted message is denoted as KVW+0, and �VXY+0,, respectively. Examples are the RSA or the 

ElGamal algorithm. Further information on this can be found in (7).  

 

Digital Signatures 

Compared to message authentication codes, digital signatures can be used to undisputedly authenticate 

the originator and content of a message.  

Digital signatures make use of asymmetric algorithms and a PKI. If A wants to send a message to B with 

the intention of making sure that the message comes from her, A encrypts the message with her private 

key, attaches the encrypted message to the original one and sends both to B. The receiver B queries A’s 

public key from the PKI, decrypts the attached signature and compares the result of the decryption with 

the message. In case of a match B knows that A must have sent this.  

The following notations are used in this document to the signing and verification: 

Let 0 be the message,	+ST, S!U, the key pair of A. Then  

& ≔ 	&#Z
+0, ST, ≔ KVW+0, 

defines the signature of the message using A’s private key ST.   

Based on the above the function 

2" #$�+0, &, S!U, ∶� +	0 �� �VXY+&,, 

returns true if and only if using A’s public key the decrypted signature & is identical to 0. 

Commonly used algorithms for the purposes described above are the RSA or the DSA. Further details 

with regard to these algorithms can be found in (7).  

                                                
1
 http://tools.ietf.org/html/rfc5280 
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3 State of the Art in Secure Logging Protocols 

The main focus of this chapter is on introducing state of the art secure logging approaches. Within this 

document the terms “schemes” and “techniques” are used as synonyms for the secure logging 

approaches. In order to examine the techniques, the architecture of a logging system and possible log 

attacks are defined. In the approaches presented, a security analysis maps the defined attacks into each 

approach with the intention of finding strengths and vulnerabilities. A summary of the findings 

concludes this chapter. 

 

3.1 Architectural Considerations  

It is important to determine in which environment the logging process is working. Log files are 

generated by various systems such as web servers, firewall devices, or network equipment. If the 

logging machine itself is considered to be trusted, meaning that intrusion is practically impossible, then 

no other resources have to be added. Creating a trusted machine can be realized by blocking it off from 

the rest of the world.  

However, in the more likely scenario, the logging machine is considered as untrusted. Therefore, a 

trusted server is introduced serving as a repository for the log files. This remote logging technique is 

used to overcome the susceptibility of the untrusted servers.  

 

Figure 3.1: Remote Logging Principle 

 

As shown in figure 3.1, the trusted server should be highly available in order to communicate, at any 

given time, with the logging machine. 

A buffering mechanism is needed to cope with attacks (DoS attacks) against the trusted server which 

puts it into a state of being unable to continue to receive log entries. In that case, the logging machine 

temporarily stores the vulnerable log data in the buffer. An attacker who has control of the unsecure 

machine could possibly manipulate the log files via direct access or by copying manipulated log files to 

the untrusted server. 

That being said, using an untrusted logging machine � and a trusted server �, the process of log 

generation and verification can be described as shown in Figure 3.2: 
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Figure 3.2: Asynchronous Remote Logging Principle 

 

The untrusted server is the originator and retainer of the log file, updates to the log are sent 

asynchronously to the trusted repository.  

When a verifier � has to audit the log, it retrieves it from the untrusted machine. In order to ensure the 

log file has not been changed spuriously, the verifier executes a verification process with the repository, 

checking for the log’s integrity and authenticity. 

Current secure logging approaches use this scenario as a basis and deliver mechanisms to cope with the 

possible attacks on log files. 

 

3.2 Possible Log Attacks 

This chapter presents possible attacks on logging systems which are analyzed within this document. 

These attacks have been created in reference to this project only, and are not defined in any other 

work.  

Using the dynamic data definition for the log � � �7�8�9 …�*	the adversary’s possibilities with regard to 

attacks on  � are explained. Regardless of the intruder’s objective, the attacks listed below could be 

executed from within or outside of the logging machine, during the logging process, or after it has 

terminated:  

Modifying Attack  

The intruder creates a false block of log entries ��/ …�[/ 	+1 \ # \ ] \ 
,  and replaces the original log 

entries by the false entries. The resulting log would be: �/ � �7 …��<7��/ …�[/�[^7 …�*.  

 

 



 

3. State of the Art in Secure Logging Protocols 13 

Insertion Attack 

The intruder inserts false entries. In example, a block of false log entries �7/ …�7^_/ +0 ∈ 5, is inserted 

after the i.th entry of the correct log. The resulting log would be: �/ � �7 …�[�7/ …�7^_/ ��^7 …�*. 

Reordering Attack 

The intruder switches the position of the entries, which in turn changes the row of events. This can be 

considered as a sequence of modify and insertion attacks. Therefore reordering attacks are not 

analyzed. 

Deletion Attack  

The intruder deletes current log entries. In example, a series of log entries �� …�[ 	+1 \ # \ ] ` 
, is 
deleted from the beginning or the middle of the log. The resulting log would be: �/ � �7 …��<7�[^7 …�*. 

Truncation Attack 

A block of log entries ��^7 …	�* 	+1 \ # ` 
, is truncated from the end of �. The resulting log would be: 

�′ � �7 …�� .  
For further analysis, it needs to be distinguished if the attacker decides to continue or stop the logging 

process after this attack. Truncation attacks can be detected if the logging machine continues to log. In 

this case, the truncation is treated equivalent to a deletion attack. Therefore, further analysis assumes 

that the logging process stops. 

Total Deletion Attack 

The intruder removes the entire file from the system. 

Appending Attack  

A block of false log entries �7/ …�7^_/ +0 ∈ 5,is appended to the existing log. The resulting log would 

be: �′ � �7�8�9 …�*�7/ …�7^_/ 	. 
Verification Attack 

Some secure logging approaches use symmetric cryptography to protect a log’s integrity. Thus, the 

same key is needed for the logging and verification process. If the verifier is an attacker, she is able to 

forge a log, remaining undetected, unless the log is compared to the original file at some point. 

Delayed Detection Attack 

The Delayed Detection Attack was defined by Di Ma and Gene Tsudik (3) and is described in chapter 

3.3.6. 
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3.3 Secure Logging Approaches 

This section examines the secure logging state of the art approaches. Figure 3.3 gives an overview of 

the main focus areas of secure logging. The hierarchical structure shown in this figure is used to filter 

out areas that are not relevant to the logging concept that has been implemented in this work. 

 

 

Figure 3.3: Secure Logging Focus Areas 

 

The state of the art approaches deal with two main areas of secure logging: integrity and 

confidentiality. 

Confidentiality of Log Data plays an important for logs containing sensitive date. These logs have to 

be protected from unauthorized access. Therefore, encryption is used to hide the data contained in 

these logs. Whenever these logs have to be searched by authorized people performance impacts have to 

be considered.  

Searchability of Log Data is achieved by implementing keywords, indexes and mechanisms allowing 

to quickly identify information that the searcher is allowed to see. 

Integrity of Log Data deals with secure logging on the logging machine (untrusted of trusted) 

generating the log.  

Securing Log Data in Transit deals with securing the messages during the transmission phase between 

two servers. 

The main scope of this document is limited to the focus area integrity of log data. This is based on the 

following: 

• The log files generated during the copying process of the Omega Pro do not contain sensitive 

information and do not need to be encrypted. 

Secure Logging

Integrity of 

Log Data

Securing Log 

Data in Transit

Confidentiality 

of  Log Data

Searchability 

of Log Data
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• The log files generated are small and there is no need to search. 

However, in order to be thorough, these topics will briefly be touched upon in section 3.3.5. 

Figure 3.4 gives an overview of secure logging protocols dealing with integrity of log data. These 

approaches are presented in the remainder of this chapter.  

 

 

Figure 3.4: Integrity of Log Data Protocols 

 

The Bellare and Yee approach defined in (4), forms the basis of all other approaches by introducing 

new ways of signing logs, resulting in the integrity of the log data being guaranteed up to the point of 

intrusion. 

The Schneier & Kelsey approach defined in (2) refines the Bellare and Yee approach in the sense that 

detailed protocols describe the communication between �, �		
�	�, and the logging process. 

The Ma & Tsudik approach defined in (3) is driven by the desire to eliminate the truncation attack 

weaknesses of the Schneier & Kelsey approach detected by both authors. Their approach is based on 

the Bellare and Yee principles as well and is truncation attack resistant. 

The Holt approach defined in (13) introduces asymmetric cryptography to allow public verification of 

log file data. 

Further approaches used in secure logging enhance the approaches described above. Due to the 

requirements mentioned in chapter 4 they were considered out of scope. 

 

3.3.1 Bellare & Yee’s Forward Integrity MAC-Scheme 

In (4) Bellare and Yee defined a scheme that helps detect alteration in log files up to an intrusion point. 

This scheme is the basis for further secure logging schemes described in this document. 

The following defines forward integrity and describes Bellare and Yee’s FI-MAC Scheme. 
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Forward Integrity 

Forward integrity (FI), also called forward security assures that created MAC/digital signatures 

generated prior to an attack remain valid and unforgeable, even in the case of a key-compromise.  

This is realized by frequently changing the signing key and erasing the previously used one, giving an 

adversary no possibility to gain access to keys used in the past. FI implies integrity as defined in chapter 

2.2. 

 

The FI-MAC Scheme 

In Bellare and Yee’s FI-MAC Scheme, Forward Integrity is achieved by using a hash chain for key 

generation. Time is split into epochs K� ≔ ��: �� \ � ` ��^7� which define the life cycle or “durability” of 

an authentication key:�. Once the epoch is over, a new corresponding key :�^7 � (+:�, is computed. In 

order to assure that no attacker is able to regenerate any of these keys, the initial key of this chain has 

to be kept in a secure location (in this document �) and old keys are erased immediately after the new 

key has been generated.  

Let � � �7�8�9 …��<7 be the current log on �. Figure 3.5 shows how these keys are used to build MACs 

(denoted as R�) for the #.th and # c 1.th incoming log records. The life cycle of an authentication key 

expires every time a log entry has been signed.  

 

Figure 3.5: FI-MAC Scheme 
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Let  ��/ ≔ +�� , R�,, +1	 \ #	 \ 
	 ∈ 	5,  be the i.th concatenated log entry. The resulting log is defined as 

�′ � �7/ �8/ �9/ …�*/ . Note that through hashing the authentication key, all keys differ from each other. This 

way, every log entry is assigned by one indisputable key. In addition, :D is not used to sign any entries, 

this is chosen due to the fact that a log starts at index 1 and thus it makes the denotations better 

readable.  

An attacker who breaks into the system at time �I 	 ∈ K�, might be able to  gain possession of the current 

key :�, but she will not find any signing key from the past, since they have already been removed.  

 

Verification 

With the knowledge of the hash function ( and its corresponding initial key :D, the FI-MAC verification 

is achieved by checking each MAC: 

�′	2	%#� ↔ ∀] ∈ �1, … , 
�: 2" #$�6A>f�[ , R[ , :[g � � !"	 

 

Security Analysis 

At the moment of intrusion, let  �′ � �′7�′8�′9 …�′* be the log with its corresponding MACs, :D the seed 

of the hash chain used for key generation and :*^7 the current authentication key.  

It is assumed that the attacker takes over the entire system, gains control of the hash chain function (, 

as well as the current signing key :*^7. Note that the intruder has no access to the seed :D since it is 

safely stored on �.  

The attacker cannot apply any of the following attacks on pre-compromised log data: 

(1) Insertion or Modifying Attack: the intruder cannot insert or modify a forged log entry �� ′ 
because she is not in possession of :D and therefore is not able to compute :� to build a valid 

MAC of this entry. 

(2) Deletion Attack: Each authentication key is assigned to an explicit log entry. Therefore, the 

verification procedure would fail as soon as log entries (and MACs) are missing. For example, it 

is assumed that the adversary deletes the second entry and MAC from �′. The resulting log 

would be �" � �′7�′9 …�′*. Due to this action during verification the second key :8 would be 

assigned on log record �9. Therefore verification would fail: R9 ' 6A>Li+�9,. 

(3) Total Deletion Attack: since T  knows about the seed :D, the trusted server acts as a witness 

for the existence of the log. For this reason, deleting the entire file destroys evidence but this 

deletion would be detected. 

Besides the fact that this scheme provides forward integrity, it is also effective in exposing which entries 

have been tampered with and which entries remained valid due to the verification process. Though, 
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this is valid as long the attacker has not inserted or deleted any entries, which would destroy the 

assignment between authentication keys and log entries (see deletion attack above). 

The scheme, as it is presented in this document, does not prevent the log from:  

(4) Truncation Attacks: If the server does not continue to log, an attacker can mount a truncation 

attack without the verifier being able to detect it. This is because the verifier does not know 

how many log records have been created by the logging machine.  

(5) Verification Attacks: Every verifier must have access to the initial authentication key :D.  Thus 

a malicious verifier gains the ability to forge the entire log and therefore, the log’s authenticity 

cannot be guaranteed.  

(6) Appending Attacks: At the point of intrusion, the attacker gains possession of the current 

signing key :*^7. This enables her to append an arbitrary amount of entries without detection. 

 

 Conclusions drawn from Bellare & Yee’s approach 

Logging approaches, explained in the next chapters are derived from the FI-MAC scheme. Thus, the 

following assumptions and definitions hold for the remainder of this document: 

• Forward Integrity Protection: Each approach implementing forward integrity is protected 

against the attacks as mentioned in this chapter.  

• Initial Key Commitment: any initial authentication key :D, used for the FI purpose is 

transmitted from the logging machine � to the trusted server T at the beginning of the 

protocol. As soon as the key is committed, it is evolved and erased from the system; it is not 

used to sign a log entry. 

• It is assumed that U  is not compromised before the initial key has been transmitted to T.   

• Forward Integrity Technique: After a key has been used to create a MAC (or signature), it is 

assumed that this key is immediately evolved and erased securely from the system.  

• Authenticity can only be guaranteed when it is impossible to mount a verification attack. 

• A MAC signing a log entry is called an FI-MAC. 

 

3.3.2 Schneier & Kelsey Approach 

In (2) Schneier and Kelsey introduced a protocol targeting forward integrity, authenticity, and entry 

confidentiality.  
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Schneier and Kelsey’s protocol provides a detailed description of the logging system’s architecture, how 

interactions between the system’s components take place, and how each log entry is built. The protocol 

is divided into five subprocesses: 

• Log File Initialization – a key exchange protocol describing the commitment of the initial key 

:D.  

• Log File Close Down – the file is closed with a special entry, implying that appending log 

entries is impossible afterwards. 

• Log File Validation – the log is validated by � for its integrity and authenticity after it has been 

closed. 

• Log Entry Creation – log entries are appended to the file, following the forward integrity 

technique. 

• Log File Verification – a semi-trusted verifier � queries the file and executes a verification 

process together with �. 

All processes mentioned above are briefly described in the following sections. The explanations in this 

document represent the principles of the Schneier and Kelsey approach. Detailed descriptions are either 

omitted or only partly mentioned. More phase detail can be found in (2). 

 

Communication Processes 

The first three subprocesses concentrate on the communication between the logging machine and the 

trusted server. Figure 3.6 describes the general interaction between the logging machine � and the 

trusted server �.  

 

 

Figure 3.6: Schneier & Kelsey: Asynchronous Updates of Log File 

 

The log file resides on both servers. U houses the original log file, and is responsible for processing log 

data by creating an entry and adding it to the file. Whenever a connection is available, U updates T by 

transferring the most recent log records. 
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Log file initialization 

During the log file initialization the communication between U and T results in the agreement of the 

initial hash chain key :D between the unsecure Server U and the trusted server T. In their paper, 

Schneier and Kelsey detail this communication process using asymmetric cryptographic methods to 

authenticate, and a challenge response procedure to commit :D. 

Log file close down 

Let �* be the last log entry to be logged. U still has to complete three final steps:  

1. Writing a final log record �*^7, declaring that the file finishes at this point. 

2. Securely erasing :*^7. 

3. Closing the file. 

With the next available connection, the closed file is then transmitted to �.  

Log file validation 

� knows :D and the closed log � � �7�8�9 … �*^7. Therefore, � is able to verify the content of the log 

file. 

 

Logging Technique 

Unlike other approaches, Schneier and Kelsey define certain components a log entry should contain. In 

total, four components build one log entry ��. The first two are used to achieve confidentiality, while 

the other two are used to prove integrity. The following will briefly introduce these components: 

• jk: A permission mask. Every verifier � (or a group of verifiers) authorized to read the entry �� 

is mentioned in this field.  If a verifier is not mentioned in this component, access will be 

denied. 

• lmk+nk,: In order to make log data �� unreadable to unauthorized parties, a symmetric 

cryptography algorithm K is used to encrypt the data with a symmetric key o�. This key is 

derived from the authentication key :� and therefore differs with every entry.  

• pk: An accumulative hash chain for the dynamic log file.  

• qk: Analogously to the FI-MAC scheme, this is the MAC of the i.th log entry. 

The components mentioned above supporting confidentiality are not explained any further in this 

document. This is due to the requirements mentioned in chapter 4. Therefore, r� and Kst+��, are 

summarized as ��.  
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Once the initial key :D has successfully been exchanged with the trusted server, � is allowed to start 

adding entries. For this, let � � �7�8�9 … ��<7 be the current log, :� the current authentication key and 

�� the summarized data to be logged. � creates the i.th entry �� as follows:  

Step 1: Recall the definition of an accumulative hash chain (chapter 2.3.2). In Schneier and Kelsey the 

hash chain is defined as follows: 

A� � � > � 	0	, if	i � 0
(+A�<7|	�u,, if	i @ 0 

Each accumulative hash chain value is a representative hash value for the newly generated dynamic v-

values. This way, a representative hash value for v� � �7�8 …�� is given by A� and added to the log 

entry (see Figure 3.7).  

xiLi:=

H

Ai

Ai-1

 

Figure 3.7: Schneier & Kelsey: Generating Log Entries with Hash Chains 

 

The initial seed for this chain is defined as AD � 0 and will be initiated after the initial key commitment 

has been taken place.   

Step 2: Figure 3.8 illustrates the employment of the Bellare and Yee approach by building the MAC 

over the accumulative hash chain value using the evolving key :�: R�: � 6A>Lt+A�, 

 

 

Figure 3.8: Schneier & Kelsey: Signing Each Hash Chain Value with a MAC 
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Verification 

Let � � �7�8�9 … �� be the current log on � while each entry is created as described in the previous 

chapter.  

Based on the way the log entries are constructed, the following theorem implies a successful 

verification of the log: 

2" #$�6A>+A� , R� , :�, � � !" → 	 ∀] ` #:	2" #$�6A>fA[ , R[, :[g � � !" 

For this reason, it is only necessary to validate the last log entry ��.  
A verifier � is allowed to audit a log file at any time, the log does not necessarily have to be closed. In 

order to verify the log it is not required that � has been updated to � yet. When V queries the log file 

from �, it is not in possession of any authentication key. Therefore she is not able to read log entries or 

verify the MACs for their correctness and has to consult the trusted server to aid in this process. 

Though, the verifier can check if 2" #$�(>+�, A�, returns true or not. Only a valid hash chain value A� 

guarantees that the corresponding MAC can be verified. If the check fails, the verifier does not need to 

consult �. Under the assumptions that 2" #$�(>+�, A�, � � !", � transfers the following information to 

�: #, A� , R�.  
With the received data from �, the trusted server can prove the validity of the log by applying the verify 

function: 2" #$�6A>+A�, R� , :�,. According to the theorem above, if this function returns true, it proves 

that all other entries +] ` #, must be valid as well. 

 

Security Analysis 

By applying the FI-MAC scheme Schneier and Kelsey’s approach automatically guards against all attacks 

the FI-MAC scheme covers. Additionally, the scheme detects the following attack: 

(1) Verification Attacks: Due to the fact that � is considered as trusted and that :D stays on � 

during every phase of the protocol, it is impossible that :D falls into an adversary’s hands. 

Therefore, authenticity can be guaranteed.  

Under certain circumstances, the scheme detects the truncation and appending attack. For this reason 

the attacks are considered as partly detectable: 

(2) Truncation Attacks: Uploading the newest log entries to the trusted server guarantees that 

there is a second instance witnessing that these entries actually exist. If an intruder truncates 

entries which have already been uploaded to � it will be detected by means of verification.  

This statement is not true for log entries that have not been transmitted to � yet. The 

explanation is consistent with the one from Bellare and Yee: � does not know the true index of 

the current log. 
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(3) Appending Attack: An attacker cannot execute this attack if the log file has been closed. 

Unless the log file has been closed, an intruder can gain possession of the current FI-MAC keys 

and therefore append new entries to the log. For this reason, the authors request that a system 

be able to detect such intrusions and immediately log them. This way, an intrusion would be 

indicated and point to the log entries from where they are invalid. 

Di Ma et al. (3) analyzed the protocol assuming that the current log has not been updated to � yet. In 

this case, they discovered that this approach is vulnerable against the delayed detection attack: 

(4) Delayed Detection Attacks. For this, let � � �7�8 … �� … �* be the current log, while ��^7 … �* 

has not been uploaded yet. The intruder gains access of the current signing key :*^7. 

An attacker modifies non-uploaded log records, but leaves the R[-values +] @ #, unmodified. 

She then corrects the hash chain A[ for every entry from where modification took place (note 

that this is possible because the attacker knows the hashfunction). With the gained current 

signing key :*^7, she adds at least one forged entry with a generated A*^7 and R*^7.  

A verifier receiving this log will approve the integrity check and forward +
 c 1, A*^7, R*^7, to 

�. Due to the fact that R*^7 � 6A>Lwxy+A*^7, is valid and that � has not been updated yet, the 

forge will not be detected immediately. � can only detect the fraud in a delayed state as soon 

as it receives an update from the compromised �.  

 

3.3.3 Ma & Tsudik’s FssAgg Approaches 

By analyzing the Schneier and Kelsey protocol, Di Ma and Gene Tsudik discovered the vulnerability of 

the approach (=scheme) to truncation and delayed detection attacks (3). To overcome these flaws they 

introduced the Forward Secure Sequential Aggregate (FssAgg) schemes in (14) and (3)). 

These schemes have been developed on the basis of symmetric (FI-MAC) and asymmetric signing 

procedures. Being that, both schemes are based on the same principles and asymmetric cryptography is 

computationally more expensive, this document does not cover the asymmetric scheme. For more detail 

on the omitted approach please see (3). 

 

Logging Technique 

Recall the definition of an accumulative hash chain (chapter 2.3.2):  

A� � � >, if	i � 0
(+A�<7	|	0�,, if	i @ 0 

Where mu denotes the i.th data block of the dynamic data 6*.	
In (3) accumulative hash chains are employed together with the FI-MAC scheme. Each 0� is replaced 
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by a FI-MAC  R� ≔ 6A>Lt+��, in the definition above. The authors define Forward Secure Sequential 

Aggregate (FssAgg) tag to be: 

A� � � ∅, if	i � 0
H+A�<7|	R�,, if	i @ 0	

This implies the this definition is the definition of hash chains applied to the dynamic data 	
|*: � R7R8R9 …R*. Therefore a tag is nothing more than a hash chain element. 

Compared to the schemes which have been presented so far, this construct accumulates all signatures 

into one tag. Thus, it is not necessary anymore to attach them to their corresponding log record.  

Ma et al. define two FssAgg tags. One tag is assigned for the verifier (denoted as A},�) while the other 

one is assigned for the trusted server (denoted as A~,�). Both values differ from each other because of 

the use of different key generating hash chains, initiated under unequal seeds :},D and :~,D. Following 

the principle applied for the FI-MAC scheme, these keys are committed to � at the beginning of the 

protocol.  

When a new log entry �� appears to be signed, both tags are updated with the corresponding MACs 

from the logging machine respectively.  

 

Log close down 

As in the Schneier and Kelsey approach, � closes the file with a final “close” entry �*^7. It then removes 

the last signing keys and sends � � �7�8�9 …�*^7 and A~,*^7 to �. � then validates the log as described 

in the verification process (see next Section) with its own initial key :~,D.  

 

Verification 

Figure 3.9 shows � verifying the message with � and �. First, it retrieves the current log with the 

FssAgg tag, which was generated for �, from the logging machine (together denoted as +�, A},*,). In 

order to verify the log, it needs the corresponding authentication key :},D, which is sent by �.  
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Figure 3.9: Ma & Tsudik: Verification Process 

 

The verifier runs the following verification steps: 

• With :},D, she builds the MACs analogously as described in Bellare and Yee’s approach (see 

chapter 3.3.1). Each R� is part of the dynamic data |*: � R7R8R9 … R*  

• If all MACs are created � can verify the FssAgg tag A},* with the following theorem: 

�	2	%#�	 ↔ 2" #$�(>f|* , A*,}g � � !" 
 

Security Analysis 

Ma and Tsudik found the Schneier and Kelsey approach suffering from delayed detection and 

truncation attacks. Both of these attacks are caused due to the fact that the trusted server has not been 

updated synchronously. A FssAgg tag is used to summarize and build an representative value of the 

current log status which is updated right away. Thus, these attacks are not an issue anymore:  

Let � � �7�8�9 …�� be the current log status, A},�  respective A~,� the current FssAgg tags  on � and 

:},�^7, :�^7,~ the current signing keys, respectively. An attacker cannot execute the following attack: 

(1) Truncation Attack: An adversary aiming to truncate a block of entries �[^7 …	�� 	+0 ` ] ` #, 
also has to forge the two FssAgg tags  	A},� , A~,�, otherwise verification will fail. Because the 

attacker owns neither :},[^7 nor :~,[^7, she cannot execute this attack. Therefore, the 

truncation of a log is not possible without detection.  

The following attacks are partly detectable: 

(2) Verification Attack: By handing :},D out to the (malicious) verifier, it gives her the 

opportunity to forge entries and the tag. Afterwards, she could publish this log to the other 

verifiers, claiming it as the original. However, if the verifiers decide to consult the trusted 
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server to validate the forged log, the attack can be detected.  �	has its own secret key. 

Therefore, it can authenticate the log.  

(3) Appending Attack: Due to the same reasons explained in the Schneier and Kelsey approach 

appending entries is not possible anymore after the file has been closed.  

If the process is still running, both current authentication keys are stored on the logging 

machine, which gives an intruder total power over the log. The current authentication keys can 

be used to fake the log. Appended entries cannot be distinguished from real ones.  

 

3.3.4 Holt’s Logcrypt 

Jason E. Holt introduced his approach under the name “Logcrypt” (13). Its main focus is the 

achievement of forward integrity using public key cryptography. 

Holt extended the idea of Bellare and Yee by replacing each MAC with a digital signature:  

“The primary disadvantage of the symmetric system just described is that verification of a MAC requires the 

same key that was used to create it. This means that anyone with the ability to verify a particular log would 

also appear correct. 

Public key cryptography provides the ability to separate signing from verification and encryption from 

decryption.” 

This idea overcomes the problem of building a MAC and having it verified by � via the same symmetric 

key. Schneier and Kelsey tried to solve this problem by using � as the only holder of this key. 

Consequently, verification could only take place on �, costing computational resources and requiring a 

two server infrastructure. In Logcrypt on the other hand, every verifier � is able to check the log, 

relieving � from its workload. It is no longer significant, whether � can be trusted or not, since entry 

forgery is not possible through the use of public keys. As a result, this scheme is useful in logging 

environments where the logging mechanism has to be publicly verifiable.  

Holt presents a symmetric approach using the FI-MAC scheme from Bellare and Yee as well. Due to the 

fact that both approaches barely differ from each other, a description of Holt’s symmetric approach is 

omitted in this document. More detail can be found in (13).  

The following concentrates on the description of the publicly verifiable approach. 

 

Logging Technique 

Comparable to secure logging approaches based on symmetric cryptography, � generates an initial, 

asymmetric key pair +STD, S!UD, at the beginning. The private key	STD is used to sign the first log entry 

while the public one serves to authenticate the log during verification. For this reason, S!UD needs to be 
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stored in a secure location, accessible to verifiers. In his work, Holt does not declare a specific location 

for this key. Therefore, � is used in this explanation.  

Besides the standard incoming log entries, Holt introduces an additional type of log entry holding 

public keys to verify entries which were signed during the signing process. In this document, this list of 

keys is denoted as �:� (public key list). The following shows how this entry is employed into the 

logging process:  

Step 1: � generates 
 c 1	+
 ∈ 5, key pairs ++ST7, S!U7,, +ST8, S!U8,, … , +ST*^7, S!U*^7,, 
Step 2: The first n public keys are extracted into a list �:�D � +S!U7, S!U8, … , S!U*^7, which builds the 

first log entry �D: � �:�D.  
Step 3: In order to guarantee authenticity and integrity for this list, the initial private key STD is used to 

sign this entry (see Figure 3.10). The signature is denoted as &D. 

 
Figure 3.10: Holt’s Logcrypt: Public Key Generation 

 

Step 4: The logging machine now has 
 c 1 private keys to sign future entries. Figure 3.11 shows how 

the first 
 private keys are used to sign incoming log records �7 …�*.  
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Figure 3.11: Holt’s Logcrypt: Signing Log Entries 

 

Note that the order of key-assignments is important. Each key is assigned sequentially as it is listed in 

�:�D. If the order is unknown, corresponding public keys cannot be associated to the log entries 

anymore.  

Step 5: Once all 
	keys are exhausted, the 
 c 1.th private key is needed to repeat the entire procedure 

with a new list of 
 c 1 generated key pairs, beginning analogously from step 1.  

Steps 1 to 5 build the asymmetric method of creating a log. Note that this scheme is presented from the 

beginning of the protocol to show the importance of the initial key pair. In general, the scheme can be 

repeated as long as desired.  

 

Verification 

Let 
 be defined as in the previous section. In order to verify the log file, � queries S!UD from the 

trusted server. The verification process shown in Figure 3.12 shows how a successful verification of the 

first entry allows a verification of the next 
	entries,  
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Figure 3.12: Holt’s Logcrypt: Verification Process 

 

Let � � �7�8 … �* be a log file, 0 ` # ` 
 c 1, &�:=	&#Z
+�� , ST�,, ��/ ≔ +�� , &�,, �/ ≔ �7/ �8/ …�*/   and 

&D:=	&#Z
+�:�D, STD,. Because � is trusted, the verifier can be sure about the correctness of S!UD.  
If  

2" #$�+�:�D, &D, S!UD, � � !" 
�:�D is authentic, which implies that the next 
 c 1 public keys are authentic. This means, that the 

next 
	signatures can only be valid if and only if  
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∀] ∈ �1 … 
�:	2" #$�f�[ , &[ , S!U[g � � !"	 

is proven. Consequently, if one of the signatures is invalid, the verification process will fail.  

 

Security analysis 

Because Holt’s Logcrypt provides forward integrity with public key cryptography, all attacks listed in 

chapter 3.3.1 are covered by this approach as well. 

Logcrypt does not guard against truncation or appending attacks:  

(1) Truncation Attack: Unless the number of log entries and corresponding signatures is known 

by a second trusted instance, this approach is vulnerable to this attack.  

(2) Appending Attack: Due to the fact that the attacker gains possession of the current signing 

keys in this scheme, she can append an arbitrary amount of log entries to their corresponding 

signatures.  
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3.3.5 Approaches not Evaluated in Detail 

All approaches mentioned in this chapter have been filtered out being that they are not integral to the 

requirements in chapter 4.  

Syslog Protocols 

Syslog protocols are protocols which aim to secure log data in transit. 

The original Syslog (15) is a protocol design which transports log messages from a logging machine to 

a server, usually called a “collector” or “syslog server”. In its original implementation, several security 

issues arose which was the reason for the many extensions of the protocol.  

Some of its main flaws are the usage of the unreliable UDP network protocol, a missing authentication 

process between the logging machine and server, the transmission of messages in plain text, and the 

missing data integrity.  

Standard protocols which cope with these flaws can be found in (16) and (17). According to Accorsi in 

(5), both of these protocols provide origin authentication, integrity and reliable delivery. In addition, 

the reliable syslog defined in (16)implements confidentiality as well.  

Confidential and Searchable Log data: 

Within this class of logging approach enhancements the authors of (18) and (19) defined solutions to 

create a searchable encrypted audit log, allowing to search with specific key words contained in the 

encrypted log. These enhancements can be combined with all secure logging approaches as they only 

deal with confidentiality and searchability.  

 

3.3.6 Summary 

All approaches described in this document have their advantages and disadvantages. A brief overview is 

given in this section.  

The following two tables summarize the analyzed logging approaches with regards to security. The 

symbols used in table 3.1 denote: + = covered, - = not covered, (+) = partly covered, N/A = Not 

Applicable. 
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Attack 
Bellare 

& Yee 

Schneier 

& Kelsey 
Holt 

Ma & 

Tsudik 

Insertion + + + + 

Deletion + + + + 

Total Deletion + + + + 

Modifying + + + + 

Verification - + + (+) 

Appending - (+) - (+) 

Truncation - (+) (+) + 

Delayed Detection N/A - N/A N/A 

Table 3.1: Attack Resistance of Approaches Analyzed. 

 

Special Properties 
Bellare 

& Yee 

Schneier 

& Kelsey 
Holt 

Ma & 

Tsudik 

Trusted Server 
necessary 

yes yes yes yes 

Detectable which 
entry has been 
tampered with? 

yes yes yes - 

Authenticity - yes yes - 

Confidentiality - yes - - 

 

 

All approaches are based on the FI-MAC scheme from Bellare and Yee. Therefore, they automatically 

guarantee forward integrity (see first four attacks).  

Notably, all logging approaches have problems with missing mechanisms in order to detect appending 

attacks. Detection can only be realized if the file has been closed, and therefore no keys are available to 

build new signatures.  

Another major vulnerability is represented by the truncation attack. Each approach tries to deal with 

this problem in its own way. The only approach presented in this document which successfully detects 

truncation is provided by Ma and Tsudik. This is achieved by holding the current amount of existing 

entries in a FssAgg tag. However, the disadvantage is that their scheme does not reveal modified 

entries. The verification process given can only state whether the log has been tampered with or not. 

This is a huge drawback if this facet is desired for the logging protocol. 

In secure logging approaches based on symmetric cryptography, the attacker gains control over the key. 

Therefore, these approaches no longer guarantee authenticity.  

Holt’s Logcrypt provides a public verifiable scheme which separates log creation from verification 

through the use of asymmetric cryptography.  

Table 3.2: Special Properties of Presented Schemes. 
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4 Requirements Analysis 

This chapter details the security requirements that must be met in order to enhance the Omega Pro 

copying process, so that the data may be used as digital evidence.  In addition, hardware and process 

related functional requirements for a future mode of operation are described. Following this, the 

current mode of operation of the Omega Pro, which does not support digital evidence, forms the basis 

of analysis of potential attacks and describes the natural boundaries of the secure logging process – 

specifying what can be expected by programmatic support and what has to be covered by 

organizational means.  

 

4.1 Requirements 

The major objective of this work is to design a secure logging protocol for the Omega Pro, which allows 

data that is copied to the hard drive to be used as digital evidence. The logging process employed on 

the copying machine documents the data which is written to a log file residing on the drive. It is 

required that a verification tool permits an auditor to check if manipulation took place, or if the log file 

data is consistent with the files which exist on the optical discs. This check must be possible on every 

PC with the external drive attached to it.  

The above implies that the following security requirements must be fulfilled: 

Security Requirements 

(R1) Data Integrity:  

a. Data on the external disc cannot be modified without detection by the verifier.  

b. Subsets of data which have been modified are detected, evidence should be provided 

for the subsets that are valid.  

(R2) Log Integrity: 

a. The log file cannot be modified without detection by the verifier.  

b. Subsets of log entries which have been modified are detected, evidence should be 

provided for the subsets that are valid.  

(R3) Authenticity: 

a. Valid proof that the data remaining on the hard drive has been copied by the Omega 

Pro by an identifiable user.  
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The following requirements must also be met: 

Additional Requirements 

(R4) Hardware and Software 

a. The developed software must be integrated into the current copying machines. This 

implies that the software must run on the current Operating Systems Linux and 

Windows XP. 

b. The Omega Pro is the only trusted machine available. All other machines are 

considered to be untrusted. 

(R5) Resource Efficiency:  

a. The overhead generated by the secure logging processes implemented in the system 

should be within acceptable boundaries with regard to the time used for copying the 

optical media. Due to the optical disc reading process being very time consuming, the 

media should only be read once.  

(R6) Copy Modes: 

a. Allowing copying in file copy mode:  All files on the optical disc are copied one after 

the other. 

b. Allowing copying in raw copy mode: The disc is copied as a raw disc image. 

 

4.2 The Current Copying Process 

When CDs or DVDs have been confiscated by the authorities, the analysis of all the media becomes 

cumbersome and time-consuming if it is not first copied to a hard drive. One would literally have to go 

through each disc one at a time at a speed dictated by the optical disc drive. The benefits of copying 

this media to a hard drive are that the media is easier to share with multiple people, it’s much faster, 

and as a result more time efficient.  

In order to make this copying process more productive, German authorities use the Omega Pro (as 

shown below).  



 

4. Requirements Analysis 35 

 

Figure 4.1: Omega Pro 

 

The system is a computer with one or many optical disc-drive(s). The user must put the stack of discs 

into a loader from which each disc is picked up by a robotic arm and fed into an empty drive. The user 

then sets the device to start duplicating all the data, either file by file or as raw disc images. The data of 

each disc is then written onto an external hard drive. This external device is then used for forensic 

purposes. Once the copying process is complete, the disc is ejected, picked up by the robotic arm, and 

separately piled. 

 

4.3 Process Phases 

The figure below presents the high level phases of the copying process. As shown in Figure 4.2 the 

process can be divided into three phases which are defined in the following: 

 

Figure 4.2: Process Phases 

 

 

 

 

Initialization Copying Analysis

LOADER 

COPIED DISCS  
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Initialization Phase 

In the initialization phase, the user sets up the device by putting in the stack of discs and entering 

information required by the copying process (example: file or raw copy mode, target directories on the 

external drive). 

Copying Phase 

The entire process of duplicating disc data, and documenting it via a log file, is called the copying 

phase. Each disc is read in entirety and duplicated onto the hard drive.  

Analysis Phase 

As soon as the copy phase is complete, the drive can be removed and evaluated in the analysis phase by 

multiple users. This phase includes the verification process which allows for determining the data’s 

integrity.  

 

4.4 Attacks and Boundaries 

The following provides an analysis and evaluation of possible attacks which could be executed during 

each of the phases mentioned in the previous chapter. This approach helps determine which attacks the 

future mode of operation could guard against. It also covers the organizational means which have to be 

implemented in order to use the copied data as digital evidence.  

Initialization Attacks: These kinds of attacks are user-driven and are distinguished by the user’s 

intention. Two scenarios are possible:  

• Removing Discs: It is the operator’s intention to support the accused criminal by removing 

confiscated discs from the stack.  

• Inserting or Exchanging Discs: It is the operator’s intention to incriminate the accused criminal. 

Therefore, discs with incriminating content are inserted into the stack. The copying device then 

writes the information onto the hard drive for further analysis. 

None of the scenarios described above can be handled by any system copying a stack of discs. The 

logging system has no control over a user’s behavior which is the reason why it cannot determine if the 

entered discs are forged or not.  

Copying Attacks: Attacks are executed by malware which is located on the copying machine. The 

malware can manipulate the data while it is running through the memory of the copying device. Such 

an attack requires knowledge about the system developed in this project. Without the knowledge of this 

active software, forged data remains undetected. Therefore, this work requires the Omega Pro to be a 

trusted machine. 



 

4. Requirements Analysis 37 

Analysis Attacks: A user analyzing the data on the hard drive, can try to tamper with the information 

by either adding new files to support the accused or change/remove an arbitrary amount of existing 

files. In order to do so, the attacker must also manipulate evidence in the attached log file, for which, 

she can apply the log attacks as described in chapter 3.2. Sheltering against these attacks can be done 

by using verification tools as described in the following chapters. As long as the verification tool is used 

in a public environment, replacing the verification tool cannot be detected. This threat has to be 

addressed by organizational means.  

The following two analysis attacks need special attention:  

Verification Tool Attacks: An attacker manipulates the verification tool so that it accepts forged logs 

as valid.  

Certificate Attacks: When using digital signatures in context to secure logging without a PKI or a 

similar trusted functionality, an attacker can use her own public key and a log signed with her own 

private key. A verifier using the corresponding public key will not detect this kind of attack. 

Physical Failures: All these scenarios assume that confiscated discs, as well as the hard drive, are free 

of physical failures.  

Hard drive failures happening after the copying process, will result in the file, making use of the 

damaged block, getting a different hash and marking it as changed. This can be dealt with by using 

Raid protected hard drives (see in (20)), which logically repair the hard drive. 

Optical media failures result in the sectors not being readable anymore. They are not copied to the hard 

drive. 

Organizational/Technical Means: In order to guard against possible attacks, the following must be 

handled from an organizational point of view (example 4 eyes principle):  

(A1) The operator of the copying unit has to be reliable regarding initialization attacks. It is assumed 

that the confiscated media is complete and accurate before copying.  

(A2) With regards to the secure logging architecture (as explained in chapter 3.1), the copying unit 

is considered as the logging machine. It must be made sure that the copying machine is trusted. 

(A3) By introducing organizational means (example 4 eyes principle), the verification system has to 

be checked with regard to being the original. The concept described in this work guarantees 

that the verifier can use the correct verification tool. However, the concept cannot guard 

against the operator using a manipulated tool. 
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5 Concept 

In this chapter, a concept is described addressing the needs of the Omega Pro copying process which 

supports digital evidence of the copied data. First, a high level design of a future “system” is presented, 

concentrating on the two main processes, copying and verification. This is then the basis for a 

description of the required architecture supporting this design. Afterwards, the secure logging 

principles guarding against all the attacks mentioned in the previous chapter are described, and how 

the chapter 4 requirements meet the design is explained. 

 

5.1 Processes and Architecture 

The following two sections give a high level overview of the two main processes needed to implement 

secure logging in conjunction with the Omega Pro copying process. The first process deals with copying 

data from an optical disc to a hard drive, and the second covers the verification of the copied data in 

relation to the log produced during the copying process.    

In his work, Holt presented an approach (see chapter 3.3.4), which made a log file publicly verifiable 

through the use of public key cryptography. Due to this advantage, the processes described in the 

following are based on the usage of public and private keys. 

The high level functional design which is developed in the following aims at guarding against all the 

attacks mentioned in chapter 4.4. In the following, the implementation of this design is called “system”. 

For differentiation purposes, the implementation described in this work is called “prototype”.  

To be able to test and evaluate performance impacts of using different ways of signing logs, the 

prototype allows for evaluating the impact of symmetric cryptography as well. 

Due to design decisions made in the beginning of this work, not all required functions (able of guarding 

against all chapter 4.4 attacks) could be implemented in the prototype. This is further explored at the 

end of this chapter. 
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5.1.1 Copying Process 

The following diagram provides a high level overview of the proposed copying process: 

 

Figure 5.1: New Omega Pro Copying Process 

 

Set Copy 
Parameters

•Loads all configuration data needed to run the copying tool.

Get Secret Key

•Get the private key needed for secure logging

Read Directory

•Read all files in the source directory specified in the 

configuration

•In case of generating raw disc images file stand for the optical 

disc 

Read/Hash File

•Read a file from the optical disc and hash it on the fly

•Write the data to the hard drive

•In contect of generating raw disc images file stands for 

optical disc

Write Log

•Write the secure log used for verification purposes of the 

data which has been copied to the hard drive

Encrypt 
Verification Tool

•Encrypt the verification tool with the private key and write 

the result to the hard drive
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5.1.2 Verification Process 

The view of the high level verification process can be seen in the following diagram: 

 

Figure 5.2: New Omega Pro Verification Process 

Get 
Verification 
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•Get the public key from the trusted server

Set Verification 
Parameters
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Decrypt 
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•Decrypt the encrypted verification tool residing on the hard drive.
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Integrity

•Verify the log's integrity

Read Directory

•Read all files in the source directory specified in the configuration

Read/Hash File

•Read file and associated metadata from the hard drive
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5.1.3 System/Prototype Architecture 

The system architecture needed to support the processes in the previous chapter is shown in the 

following diagram: 

 

Figure 5.3: System Architecture of the New Concept 

 

The trusted Omega Pro � steps into the role of the logging machine. The same server hosts a key 

management tool allowing the maintenance of public and private keys. In the prototype, a key database 

supports the maintenance of these keys in a password protected environment. In order to support 

authentication (R3), the system makes use of private keys stored in the key database, which allows 

identifying the users on an alias (name)/ password level. 

The verifier � accesses the untrusted verification PC �, which is linked to the same hard drive as �. � 

supplies the public key needed to allow � to verify the data on the hard drive.  

The prototype architecture corresponds to the above with the exception that the dotted line between  � 

and � does not exist. The prototype was developed on one machine only. To simulate the functionality 

shown above, a public key certificate is generated using the key management tool.  

It should be noted that due to this design, the functionality provided by the prototype does not protect 

against verification tool attacks and certificate attacks as described in chapter 4.4. 
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5.2 Secure Logging Principles 

A log file is generated according to the following principles to cover the system requirements described 

in chapter 4: 

1. Files logged are assigned a sequential number which allows the detection of missing log entries 

(R2). 

2. A hash is created and logged for every file read from the optical media which:   

a. Allows the identification of manipulations to the file and  

b. Is the means to achieve data integrity for the information stored on the hard drive 

(R1). 

3. Every log entry contains the date last modified of the file. This allows detection of changes 

made to this metadata. 

4. Every log entry is signed which allows the detection of changes made to the log entries (R2). 

5. The log, consisting of all log entries and signatures, is signed to guard against deletion, 

truncation or insertion attacks (R2). 

 

5.3 Signing Methods 

From a requirement’s perspective, using digital signatures is the best option because the disadvantage 

of a symmetric scheme is that the private key (linked to one person) is used in an untrusted 

environment. This problem is avoided by using public key cryptography. 

Analog to the state of the art schemes, the log’s integrity is assured by marking each entry with either a 

digital signature or a MAC (prototype only). This follows the ideas presented in the Bellare and Yee 

symmetric and Holt’s Logcrypt asymmetric approaches. 

Due to the fact that the generated log is finite (limited by the number of files on one disc), forward 

integrity aspects do not play an important role for the design of a future system. Nevertheless, this 

alternative was implemented in the prototype for analysis purposes.  

 

5.4 Summary 

The following summarizes how the security requirements are met by the concept described in the 

previous chapters. 

Security Requirements 

By signing the log entry and the log (as described above) it is possible to cover:  
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(R1) Data integrity is assured by hashing the file and making the hash part of the log entry. 

(R2) Log Integrity is assured by signing every log entry and the log as a total. 

(R3) Authenticity is assured by user authentication when accessing the key database, and by the 

(public key) user authentication when verifying the log. 

Other Requirements 

Details on how to fulfill other requirements will be covered in the following chapter implementation. 

Listed below is a summary. 

(R4) Hardware and Software: 

a. Choosing Java as the basis for all development work guarantees that the developed 

software runs on the operating systems Linux and Windows XP. 

b. The Omega Pro is used as the only trusted server. 

(R5) Resource Efficiency:  

a. This is guaranteed by using hash on the fly technologies. The test results shown in 

chapter 7 prove that the overhead for secure logging are within acceptable boundaries. 

(R6) Copy Modes: 

a. Implemented in the prototype. 

b. Implemented in the prototype. 

Furthermore the process implemented guards against the following attacks: 

Modifying, insertion, reordering, deletion, truncation, total deletion and appending attacks are detected 

during the verification by checking the log signature. The logging principles described in chapter 5.2 

identify which information has been forged. 

Delayed detection attacks are not applicable in context to the copying process of the Omega Pro. The 

log is generated in one go, then closed, and written to the hard disc. 

Verification attacks require the use of symmetric cryptography. This concept foresees the use of 

asymmetric cryptography. Therefore, verification attacks are not possible. 

Certificate Attacks cannot be carried out as the verifier receives the public key from the trusted Omega 

Pro. It is clear, that the transmission between trusted and untrusted server must be secured. 

The concept described in this chapter guards against verification tool attacks in the following way: after 

the copying process, carried out in the trusted environment, the verification tool is copied to the hard 

drive in an encrypted form. When starting the verification, it is decrypted using the public key supplied 

by the trusted server. This makes it impossible for an attacker to manipulate the verification tool 

without knowing the private key.  
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Summarizing the above:  

• The prototype developed in this work meets almost all requirements. It is vulnerable to 

certification and verification tool attacks. 

• The concept for the system described in this document fulfills all requirements. 

Therefore,  

• The functionality of the prototype’s copying and verification can be used for digital evidence.  

• By using the prototype the productivity of the investigating authorities is increased.  
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6 Implementation 

This chapter gives an overview of how the prototype titled “CopyDVD” has been developed and 

implemented. This includes:  

• The development environment including the libraries used.  

• An overview of the main components of the prototype. 

• The implementation principles applied to meet the required functionality most effectively. 

• An overview of the package structures and the classes within the packages. 

• An overview of all cryptographic methods used to develop the required functionality. 

• A description of the log structure used in this prototype. 

• A description of the logic used to implement the verification processes.  

• An overview of the graphical user interface and a description of the prototype setup. 

 

6.1 Development Environment 

Due to the requirement (R4a) - usability on Windows and Linux operating systems - it was decided to 

implement the prototype using Java
2
. 

The CopyDVD prototype was developed using the free software development kit Eclipse
3
 and the 

Visual Editor
4
 plugin on the basis of Java. All plugins and libraries are open source based and freely 

available. 

Tests have been conducted using the JUnit
5
 framework.  

The class diagrams shown in this section have been generated using the Eclipse plugin green
6
. Green is 

an UML class diagram editor, supporting both software engineering and reverse engineering of existing 

code. 

The prototype makes use of the following Java libraries: 

• General events, timer information, debugging information or warnings are logged and 

outputted with the Apache Software Foundation framework log4j
7
, a framework that has been 

developed without creating high performance costs.  

                                                
2
 Version 1.6: http://java.sun.com/ 

3
 Version 3.6.0: http://www.eclipse.org/ 

4
 Version 1.5.0.R20101202-1328: http://www.eclipse.org/vep/ 

5
 Version 4: http://www.junit.org/ 

6
 Version 3.5.0: http://marketplace.eclipse.org/content/green-uml 

7
 Version 1.2.16: http://logging.apache.org/ 
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log4j allows log messages to be written in customized formats. These messages can be written 

onto the console, as well as to files, using different appenders.   

• Configuration information for the prototype is stored in the Windows .ini format. The 

prototype makes use of the open source library ini4j
8
, a Java API for handling configuration 

files in Windows .ini format. This library provides handy methods to quickly read out these files 

and embed the content into the program. 

 

6.2 System Modules 

The main modules of the CopyDVD system are shown in figure 6.1. In context of the figure “module” is 

denoting a class or set of classes that perform main functions. “Components” in this context are 

functions within a module. 

 

Figure 6.1 System Components 

 

                                                
8
 Version 0.5.2: http://ini4j.sourceforge.net/index.html 
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The start module is the main module for running the system. Via the .ini file component of the start 

module, it loads the parameters that are stored in an external .ini configuration file into the parameter 

module, the repository of all system parameters. Depending on the number of CLI parameters passed 

to the start module, the GUI module is called or the CLI component of the start module continues to 

process the commands passed over. 

The GUI module is the graphical interface to the user and allows for modifying the cryptographic and 

system parameters that have been set when loading the .ini file. 

A major portion of the program logic is controlled by the handler module. Depending on the verifying 

or copying tool described in the following chapter this module handles the communication with the key 

database, all calls to the cryptographic module, and the logging module. 

The cryptographic module is implemented using a factory design pattern delivering the MAC and 

digital signatures needed to sign the logs.  

The logging module takes care of writing the logs (in the case of copying), and reading the logs in the 

case of verifying. 

 

6.3 Implementation Principles 

Following the design described in chapter 5, the following tools are needed: 

A copying tool that operates in the trusted environment on the Omega Pro, and a verification tool that 

can be used in an untrusted environment. The main functions of these tools are: 

1. Copying- optical media content to the external hard drive 

2. Verifying the Log Integrity - checking whether the log has been manipulated  

3. Verifying the Data Integrity - checking whether the data on the external drive has been 

manipulated and precisely matches the content of the log supplied  

The copying tool is implemented in a way that all functions can be executed. The verification tool 

allows executing the functions 2 and 3 only. 

In order to minimize programming effort, the following principle was applied: the verification functions 

are implemented completely in an abstract class. In this class, all methods required for copying are 

abstract. The verification classes extend the abstract classes with empty bodies. The copying tool classes 

extend the abstract classes with copying logic added.  An example of how this has been implemented is 

shown in the handler module in the following figure: 
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Figure 6.2 Sample Copy/Verify Design Principle 

 

In order to run tests with different signing methods using the same code, a factory design was 

implemented. Using this design easily allows switching between signing with digital signatures or 

MACs (with or without forward integrity). The following figure shows this in form of a class diagram. 
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Figure 6.3: Log Signer Factory 

 

6.4 Packages 

The package structure chosen supports building the copy and verification tools. It is shown in the figure 

below. 

Copy

Verify

Core

Crypto

Log

CopyDVD

 

Figure 6.4 Package Structure 
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The core package, including its sub packages, hosts all classes required by both tools. By adding the 

copy or verify package to the core packages, the copying or verification tools can be built. 

 

6.5 Class Descriptions 

The following describes the classes developed. Note that all classes starting with “abstract” already 

implement verification logic, and leave out any copying logic.  

Package copyDVD.core: 

• AbstractGui.java: This abstract class provides the main functionality of the GUI module. It is 

responsible for interacting with the user and communicating with the parameter and handler 

module.  

• AbstractHandler.java: This class implements methods to verify the integrity and authenticity 

of a log and copied files.  

• AbstractParameter.java: A data structure used to maintain all tool specific parameters.  

• AbstractStart.java: AbstractStart initializes the program at start.   

• AliasDialog.java: Dialog class used to enter the user’s alias.  

• FileFinder.java: A file crawler to filter all files which match a regular expression in a given 

directory. In addition, it can be used to delete an entire directory.  

• GenericFileFilter.java:  A file filter class used in conjunction with JFileChooser to select, for 

example, .log or .ini files. 

• CopyDVDException: This exception is used to detect errors when entering incorrect 

information in GUI text fields allowing reentering the information without aborting the 

program. All other exceptions thrown by the GUI will abort the program.  

• PasswordGui.java: Provides a GUI enabling a user to enter his/her password.  

• Timer.java:  This class provides methods for chronometry purposes.  

• LogEntryTimer.java: This class is used in conjunction with measuring the duration of program 

function reading, writing, copying, and cryptographic calculations.  

 

Package copyDVD.core.crypto 

• HashReader.java: This class implements methods to read data from an optical disc, write it to 

the target directory, and simultaneously build a hash on-the-fly.  
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• LogSignerFactory.java: Based on the factory pattern, this class delivers objects of either the 

LogSignerMac or LogSignerSignature class.  

• LogSigner.java: An interface class which provides methods to sign and verify a log’s content. 

This interface is implemented by the LogSinerMac and LogSignerSignature classes. 

• LogSignerMac.java: This class provides all functionality to sign and verify messages with 

MACs. In addition, signing keys can be evolved for forward integrity purposes.  

• LogSignerSignature.java: This class provides all functionality to sign and verify messages with 

digital signatures.  

 

Package copyDVD.core.log 

• LogEntry.java: The data structure defining a log entry.  

• LogEntryReader.java: Reads all log entries out of a log file.  

• LogEntryWriter.java: Writes log entries onto a log file.  

 

Package copyDVD.copy 

• StartCopyDVD.java: Derived from the AbstractStart.java class. It hosts the main method to 

start the copy tool. Depending on the number of parameters passed to the main method, it 

processes CLI-commands or initializes the CopyDVDGui. 

• CopyDVDGui.java: Extends its abstract class by enabling the copying feature for a user.  

• CopyDVDHandler.java: This class extends the AbstractHandler and implements the copying 

methods needed to copy optical media.  

• CopyDVDParamter.java: The AbstractParamater data structure is extended with additional 

functionality to maintain key database parameters.  

 

Package copyDVD.verify 

• StartVerifyDVD.java: Derived from the AbstractStart.java class, it either processes CLI-

commands for verification, or initializes the VerifyDVDGui. 

• VerfiyDVDGui.java: All functionality is already implemented in its abstract class. For this 

reason, the bodies of abstract methods remain empty.  

• VerifyDVDHandler.java: All functionality is already implemented in its abstract class. For this 

reason, the bodies of abstract methods remain empty. 
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• VerifyDVDParamter.java: All functionality is already implemented in its abstract class. For this 

reason, the bodies of abstract methods remain empty. 

 

6.6 JUnit Test Cases 

The prototype was developed using JUnit Test cases allowing testing of the essential functions of the 

prototype in a very efficient way, helping to maintain the quality of the code after having made changes 

to the prototype. 

 

6.7 Cryptographic Algorithms Used 

The prototype tools have been developed using standard Java cryptographic packages. Cryptographic 

methods
9
 used for the prototype can be seen in the following table: 

 
Symmetric Asymmetric 

File Hashes SHA-1 SHA-1 

Log Entries HMAC SHA1 SHA1withRSA 

Logs Files HMAC SHA1 SHA1withRSA 

Table 6.1: Cryptographic Algorithms Used 

 

Initially RSAwithMD5 was used to sign the log entries and the logs. The results of the tests shown in 

chapter 7 supported the switch to SHA1withRSA. 

 

6.8 Log Structure 

Let  �� be the log entry of the i.th file o�,  �/ ≔ �7/ �8/ … �*/    the log as defined in chapter 3.3.1, and |	the 

signature of �/. If data is copied in raw copy mode, the raw image is treated as one file.  

The structure of �� is shown in Figure 6.5.  

 

Figure 6.5: Log Entry Structure 

 

                                                
9
 http://download.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html 
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The main component of a log entry is the hash value of o�. In order to associate and indisputably 

identify a file via its corresponding log entry, additional information needs to be specified:  
• # denotes a sequential number assigned to detect missing log entries. 
• �� denotes a timestamp which marks the time o� has been copied. 
• ��� denotes the absolute source path of o�. 

• ��� denotes the relative destination path of o�.  
• &R� the size of the copied file.  
• ��6� is the data last modified which exists on the optical disc.  
• �� � (+o�,. This is the hash built during copying.  

In order to illustrate the structure of a log created by the prototype, an example of a raw copy log is 

shown below: 

<Entry> 

  <Counter>1<\Counter> 

  <Timestamp>23.7.2011 || 16:22:10 (+889 ms)<\Timestamp> 

  <FileIn>\\.\Y:<\FileIn> 

  <FileOut>c:\CopyDVD\CopyTarget\Copy\rawCopy.iso<\FileOut> 

  <Size>0<\Size> 

  <DateLastModified>19416857022935<\DateLastModified> 

  <Hash>0f82b50a456270b0e5b6e45f4275aaab5997e03d<\Hash> 

<\Entry> 

<EntryAuthentication>bb60d7abfc7ff5d83b367a4b32ee534e81554de9<\EntryAuthentication> 

<LogAuthentication>3e500f38aac87c4472974198d822245b0f48edaa<\LogAuthentication> 

As can be seen, the log entries are built using xml tags which enable direct and simple reading access of 

a log file. Each log entry has an attached signature. Once the log is written, it is closed by the log 

signature |.  

It should be noted that the prototype checks the content of the log as described in the following: 

• Entries are accepted as valid if the content of a log entry is valid from a syntactical point of 

view. Content between ending tags and beginning tags is ignored. 

• Every <Entry> <\Entry> must be followed by an <EntryAuthentication>. 

• <Entry> and <EntryAuthentication> blocks can be toggled within the log as long as they are 

toggled together. 

• The last <LogAuthentication>  <\LogAuthentication>  read  is used to verify the content in 

the <Entry> and <EntryAuthentication> blocks. 

•  
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6.9 Verification 

The data residing on a hard drive is analyzed using the verification tool. Data and log verification needs 

to be distinguished.  

Verifying Log Integrity 

Depending on the signing method which has been used, verification distinguishes by either using the 

private MAC key or a public key. The following pseudo code describes the verification of a log file for 

the asymmetric case. 

�k���	 
�!U%#�	:"�	S!U	��	2" #$�	�1"	&#Z
	�! "&.	
�#&�	�/ � �7/ �8/ …�*/ 				%#&�	�$	%�Z	"
� #"&	�#�1	"
� �	&#Z
	�! "&		
��Z�#Z
	�! "	|, �1"	&#Z
	�! "	�$	%�Z	�′	

p����k���	 
�" #$���Z�
�"Z #��+,	� 

���%"	
	%�Z�
�"Z #��	 � 	� !";	
#
�	&"�� � 0;	
$� 	"	�1	��/ 	#
	�′	�� 

#
� "0"
�	&"�� ;	
�1#%"	+#	��"&	
��	0	��1	&"�� ,	��	

"��Z	"
� �	�J���� 	#&	0#&&#
Z" 
%�Z�
�"Z #��	 � 	$	%&"; 
#
� "0"
�	&"�� ;	

"
��1#%"	
#$	+	2" #$��#Z
+�� , R� , S!U,	! � 	� !",	��	

"��Z	"
� �	�� 	1	&	U""
	0��#$#"�	� 	#
&" �"�" 
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"
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"
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"
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 "�! 
	+�′, %�Z�
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� 
	

Each log entry, as well as the signature of the log is checked for its authenticity. This method returns a 

set of valid log entries and a Boolean value which indicates whether verification was successful or 

failed. Verification fails if, and only if, at least one of these signatures do not match. In this case, these 

entries disqualify for data verification and are therefore removed from the list.  

Verifying Data Integrity 

Data is verified depending on the list and the Boolean value which are returned by the log verification 

function. Data verification can only be successful if, and only if, the VerifyLogIntegrity-method returns 

+�′, � !",.  
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The following describes the logic applied. 
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The first if-statement determines whether the file exists on the hard drive or has been deleted. If it was 

found, the second if-statement determines whether the file has been modified or not. If all log file 

entries have been processed and the remaining map is not empty, files have been added spuriously.  

 

6.10 Graphical User Interface 

In this section the main functions of the GUI of the copying and verification tools are explained. Both 

tools are started using the configuration .ini file as a parameter. The verification tool is set up using the 

same abstract GUI, disabling and hiding functions not needed for the verification. Therefore, the 

verification tool GUI is not described in this document. 

 

6.10.1 Alias Dialog 

Once started, the alias dialog shown in the figure below asks for the user’s alias. 
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Figure 6.6: Alias Dialog 

 

Provided the alias is in the key database, the main screen pops up (see Copy Tab). 

 

6.10.2 File Menu 

The file menu  

 

Figure 6.7: File Menu 

 

provides the functionality to exit the program, report test results of a copying or verification function 

(note: results are written  to the log), and to open a new configuration file as shown below. 
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Figure 6.8: Open Configuration File Window 

 

6.10.3 Configuration Menu 

The configuration menu 

 

Figure 6.9: Configuration Menu 

 

is used for setting a new log file via the LogFile dialog, 



 

6. Implementation 58 

 

Figure 6.10: Log File Dialog 

 

setting the source and target directories (same selection dialog as for the .ini files) of the copying 

process, and selecting which files should be copied. The menu also hosts two radio button groups, one 

for selecting the file/raw copy mode, the other for the de-/activation of forward integrity. 

 

6.10.4 Copy Tab 

 

Figure 6.11: Copy Tab 

 

The copy tab displays all the parameters that have been set by loading the .ini file. The copy button 

starts the copying process from the source to the target directory. 

After pressing the copy button, a password dialog (not shown) allows the users to enter the password 

needed to read the user’s private key from the key database. 
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6.10.5 Log Integrity Tab 

 

Figure 6.12: Log Integrity Tab 

 

By pressing the verify button, the tab allows the verification of the log file that has been specified. In 

the case of digital signatures, the verification starts immediately. In the case of signing with MACs, the 

password must be entered using the password dialog. 

 

6.10.6 Data Integrity Tab 

 

Figure 6.13: Data Integrity Tab 

 

This tab allows the verification of the integrity of the log file versus the target directory shown. All 

buttons are self explanatory. The password login described in the previous chapter applies as well. 

Note, this includes log integrity. 
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6.11 Prototype Setup 

The following describes all the components that are used in conjunction with the setup of the 

prototype. 

 

6.11.1 Key Database 

In order to implement the key database, the key and certificate management utility keytool
10

 supplied 

by Oracle is used. Personal public/private key pairs and associated certificates can be administered with 

this utility.  

The keytool stores the keys and certificates in a file called keystore. Keystore is protected with a 

password. In addition, every private key requires entering a separate user (identified by an alias) 

specific  password. 

To generate the keystore, the private/public key, and the certificate, two batch jobs are used: 

keystore.bat deletes the old keystore and generates a new keystore including a new private and public 

key for a given alias. 

certificate.bat generates the certificate for a given alias. 

CopyDVD.keystore is the keystore used for developing the prototype. 

Bjoern.cert is the certificate used for the test user with the alias bjoern. 

 

6.11.2 Ini and Property Files 

Parameters maintained in the CopyDVD.ini file are: 

• Source: This field denotes the path of the optical disc drive to be read.  

• Target: This field contains the path to write data to.  

• SecureLog: All logging messages created by the log4j framework are written onto the log file 

denoted in the given path.  

• FileFilter: A regular expression to define the filter pattern in file copy modus. Examples of a 

filter are “.*” in order to copy all files or “.*pdf” in order to copy all files ending with pdf.  

• Forward Integrity: This parameter is set to “activated” if forward integrity is desired.  

• CopyMode: Via this parameter, it is distinguished whether data is copied file-by-file or as iso 

images.  

                                                
10

 Version 1.4.2: http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html 
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• Store: The path of the keystore file.  

• Password: The keystore password. Note that this is not the alias password.  

• Certificate: The location of a public key certificate.  

• Type: Sets the encryption method (MAC or digital signatures) for the program. 

The log4j.properties file contains information steering the logging format, the logging destination and 

the logging details. The logging level can be set on a single class. 

 

6.11.3 Prototype Tools 

The CopyDVD.jar file provided covers all the functions of the prototype whereas VerifyDVD.jar can be 

used for verifying purposes only. It should be noted that the verification tool is working on the basis of 

digital signatures only.  

Both tools make use of the log4j and ini4j libraries decribed in chapter 6.1.  
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7 Performance Measurements 

In order to evaluate the performance impact of the signing methods digital signature and MAC, the 

design of the system had to cope with both methods. Log entries and logs were always signed with the 

same method. 

 

7.1 Performance Test Scenarios 

To analyze the cost impact of different secure logging approaches the following methods were 

analyzed: 

• MAC method: Each log entry and the entire file is signed with a MAC without forward 

integrity. 

• MAC-FI method: Each log entry and the entire file is signed with a MAC with forward 

integrity. 

• Digital Signature method: Each log entry and the entire file is signed with a digital signature. 

In addition, all tests were conducted by copying in two different modes: 

• Raw Copy Mode: The disc is copied raw disc image. 

• File Copy Mode: Each file on the disc is copied. The directory structure is retained. 

All tests were executed on two different computers with the following characteristics: 

Name/Brand Medion Dell 

Operating System Windows Vista 32bit 

Service Pack 2 

Windows XP 32 bit 

Service Pack 3 

CPU Intel Core 2  

2.13 GHz 

Intel Pentium M  

1.86 GHz 

RAM 2 GB 2GB 

Optical Disc Drive HL-DT ST DVD-ROM  

GDR8164B ATA-Device 

Philips CDRW/DVD SCB5265 

 

Figure 7.1: Test PC Descriptions 

 

The Omega Pro copies up to 600 discs in one go until it has to be recharged with new sets of discs. 

When processing large piles of optical media, several optical disc drives run parallel to each other. 

Due to the sequential processing of reading optical media in one drive, it can be expected that results 

scale linear in relation to the number of media per optical disc drive.  
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Effects of parallel processing using several optical disc drives were not analyzed. As long as these 

processes use the same CPU, it is expected that this will have an impact on the overall performance.  

7.2 Results 

The following presents the major findings of the tests conducted. All test were executed using the Junit 

4 Java package and were run automatically. Test results were logged and analyzed. The log files used, 

and the analysis of the results can be found in the accompanying documentation. 

Initially, all tests were carried out using the RSAwithMD5 algorithm for digital signatures. Subsequent 

tests using the SHAwithRSA algorithms revealed that the usage of these algorithms does not impact the 

overall performance. Therefore, SHAwithRSA was chosen for the prototype. 

 

In order to evaluate the impact of measuring, the timer used in the prototype was switched off and 

results were compared to each other. The results which have been achieved clearly indicate that the 

usage of the timer has a negligible impact. 

All tests shown in this section have been conducted using a DVD with 4.37GB of content.  

To reduce the impact of internal system processes in the evaluation, all the tests were carried out three 

times and the average was used in the analysis. 

 

7.2.1 Copying 

Figures 7.2 and 7.3 show the results of the tests. All results are illustrated in seconds. The legend of the 

diagram below denotes: 

Log Signature: time needed to sign the log file itself. 

Log Entry Signature: time needed to sign the the sum of all log entries. 

Hash on the Fly: time needed to calculate the hash on the fly for copied data. 

Write to Hard Drive: time needed to write the data to the hard drive. 

Read Optical Disc: time needed to read the optical media. 
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Figure 7.2: Medion Copy Test Results 

 

 

Figure 7.3: Dell Copy Test Results 
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Results can be summarized as follows: 

• In comparison to the older Dell, all Medion results are significantly better, showing the impact 

of CPU power and optical disc performance.  

• On the Dell, the “Read” of the file copy mode differs in a significant way (3 times more) from 

the results in the raw copy mode. This cannot be seen on the Medion where this difference is 

negligible. This behavior is due to reaching the limits of the Dell CPU while being in file copy 

mode. 

• Compared to the time used for the other items, the signing of the log entries and of the log add 

almost no overhead to either PC. The only exception to this is by using digital signatures in 

conjunction with the file copy mode. The DVD used contains 1700 files, resulting in the same 

number of log entries that have to be signed. Even in this case, the overhead is minimal 

compared to the other items. 

• Current operation processes (sum of Read and Write) consume most of the time used for 

copying (see Figure 7.4). 

 

Figure 7.4: Relation of Old and New Functionality 

 

• The overhead of the hash on the fly has the biggest impact of all new cryptographic functions 

implemented by the secure logging methods. Assuming Read and Write to be the basis (100%), 
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as a direction only, as these percentages are heavily dependent on the speed of the optical 

drive (determining the basis of 100%) and the CPU used (determining the overhead on the 

basis of the 100%). 

 

7.2.2 Verifying 

The results of the verify tests can be seen Figures 7.5 and 7.6. 

 

Figure 7.5: Medion Verification Test Results 
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Figure 7.6: Dell Verification Test Results 

 

The main finding can be summarized as follows: 

• The hash calculations are the most time consuming and vary around 79 s for the faster CPU 

and 140 s for the slower one.  

• The next biggest time consumer is reading from the hard drive with approximately 51 s for the 

Dell and 39 s for the Medion. Tests carried out on the Dell showed that the time needed to read 

is highly dependent on the fragmentation of the disc. The Dell test shown in this document was 

conducted using an external disc drive with more than 100GB of free capacity. Therefore, the 

Dell results show a small standard deviation only.  

• The Medion results were achieved by copying to the local disc. In all the cases, the higher 

standard deviation of the read function (versus the Dell tests) was caused by one single test 

showing abnormally high read times. In many cases, the read operation from the hard drive 

was extremely fast: more than 4 GB were read in less than 10 s corresponding to a transfer rate 

of more than 400 MB/s. This only can be achieved by reading out of the disc drive cache.  

• The entry and log verification is negligible in all cases. Although digital signatures in file copy 

mode consume much more time (due to the large number of files - 1700), in all cases these 

steps consume less than 1s. 
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8 Summary 

In the following the results of this work are summarized. The outlook provides an overview of what still 

needs to be done to develop a production ready system. 

 

8.1 Results Achieved 

The results of this project demonstrate that secure logging with digital signatures enhances the 

functionality of the Omega Pro copying machine in away that the copied data provides digital evidence.  

The logging mechanisms which have been proposed guarantee that the security requirements data 

integrity, log integrity, and authenticity are met. 

Test results indicate that secure logging with digital signature adds approximately 28 % to 35% of costs 

in terms of run time. This overhead is predominantly due to the hash on-the-fly calculations made 

during the copying process. Log signing plays a role that can be neglected. 

Data copied by the Omega Pro is admissible and credible. As a consequence, the productivity of the 

authorities using the copying machine is increased by using the efficient analysis processes that have 

been proposed. The analysis of optical media for digital evidence is no longer a necessity. 

 

8.2 Prototype Boundaries 

The prototype developed does not guard against all attacks prior to finishing the copying process. 

Examples: manipulating DVDs prior to copying (insert/replace) and malware on the copying machine. 

These threats must be addressed by organizational/technical means. 

Hard drive failures on the external drive can potentially result in the verification process not working 

anymore. To guard against this, a raid protected external hard drive should be used. 

 

8.3 Outlook 

The prototype has been developed to prove that secure logging methods add value to the current 

copying process at an affordable cost. It is not production ready.  

To enhance security, and to make the prototype is ready for production, the following enhancements 

must be put in place: 

• The code has to be cleaned up by removing the timer functionality and the symmetric 

cryptographic classes. 

• The Omega Pro has to be set up as a trusted server, able to communicate with the verifier in a 

secure way. 
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• The validation tool has to be enhanced to communicate with the trusted server. 

• The Omega Pro is able to copy several optical disc media in parallel to each other. The copying 

processes have to run in threads in order to implement this functionality. The prototype has 

been developed on a single thread basis only. Therefore, the prototype functionality needs to 

be enhanced by multi-threading the copying process. As long as one log per optical media is 

used, the logging process can remain as it is. Logs generated during this process should then be 

brought together. The combined log must be signed again. 
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9.2 Performance Measurement Tables 

Copying Measurements 

PC Medion 

Function Copy 

  Raw Copy File Copy   

  Dig. Sign. MAC MAC with FI Dig. Sign. MAC MAC with FI Average 

Current Mode             

Read      256.390 266.179 263.976 280.902 270.382 269.079 267.818 

Write     7.056 7.042 6.969 7.505 6.975 7.033 7.097 

Subtotal 263.446 273.221 270.944 288.407 277.357 276.112 274.915 

New Functionality             

Hash      92.861 94.028 91.527 93.237 92.135 93.361 92.858 

SignEntr 36 1 1 17.395 350 345 3.021 

SignLog   17 1 1 63 37 37 26 

Subtotal 92.915 94.029 91.529 110.695 92.522 93.743 95.905 

Total 356.362 367.249 362.473 399.102 369.879 369.855 370.820 

 

PC Dell EXT 

Function Copy 

  Raw Copy File Copy   

  

Dig. 

Sign. MAC MAC with FI Dig. Sign. MAC MAC with FI Average 

Current Mode             

Read      419.383 419.839 460.258 1.424.182 1.417.568 1.430.384 928.602 

Write     12.202 11.683 11.542 11.877 12.747 12.670 12.120 

Subtotal 431.585 431.522 471.801 1.436.059 1.430.315 1.443.054 940.723 

New Functionality             

Hash      263.668 261.374 262.119 257.029 257.205 257.239 259.772 

SignEntry 603 1 2 33.822 550 653 5.939 

SignLog   42 1 1 107 91 86 55 

Subtotal 264.313 261.376 262.123 290.958 257.845 257.979 265.766 

Total 695.897 692.899 733.923 1.727.017 1.688.160 1.701.033 1.206.488 

 

 

 

Verifying Measurements 

PC Medion 

Function Verify 
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  Raw Copy File Copy   

  

Dig. 

Sign. MAC MAC with FI 

Dig. 

Sign. MAC MAC with FI Average 

New Functionality               

Hash      76.458 81.541 76.381 84.060 79.636 78.344 79.403 

Read      9.065 88.740 9.820 91.432 20.138 15.929 39.187 

VerifyEntry 1 1 1 697 209 214 187 

VerifyLog   1 1 1 28 28 30 15 

Total 85.525 170.282 86.202 176.217 100.011 94.516 118.792 

 

PC Dell EXT 

Function Verify 

  Raw Copy File Copy   

  

Dig. 

Sign. MAC MAC with FI 

Dig. 

Sign. MAC MAC with FI Average 

New Functionality               

Hash      136.490 136.447 136.588 142.111 143.694 145.264 140.099 

Read      42.753 42.732 43.065 56.539 58.975 63.908 51.329 

VerifyEntry 2 1 1 1.139 240 240 271 

VerifyLog   3 1 1 37 41 45 21 

Total 179.248 179.181 179.656 199.826 202.951 209.458 191.720 

 

 


