
DEMO: Demonstrating Reactive Smartphone-Based Jamming
Ma�hias Schulz

Secure Mobile Networking Lab
TU Darmstadt, Germany

mschulz@seemoo.de

Efstathios Deligeorgopoulos
Secure Mobile Networking Lab

TU Darmstadt, Germany
edeligeorgopoulos@seemoo.de

Ma�hias Hollick
Secure Mobile Networking Lab

TU Darmstadt, Germany
mhollick@seemoo.de

Francesco Gringoli
CNIT / Dept. of Information Engineering

University of Brescia, Italy
francesco.gringoli@unibs.it

ABSTRACT
Reactive Wi-Fi jammers on o�-the-shelf hardware that may facili-
tate mobile friendly jamming applications have only been shown
recently. Until now, no demonstrators existed to reproduce the
results obtained with these systems, hence, inhibiting re-use for fur-
ther research or educational applications. In this work, we present
an Android app that allows to create advanced jamming scenarios
with four Nexus 5 smartphones. We use two of them to inject Wi-Fi
frames with UDP payload, one to receive frames and analyze if
they were corrupted and one that acts as a reactive jammer that
selectively jams according to a UDP port. �e user can choose be-
tween a simple reactive jammer and an acknowledging jammer. All
jammers are implemented as Wi-Fi �rmware patches by using the
Nexmon framework. During the demonstration, users may adjust
parameters of transmi�ed frames and observe the throughputs of
correct and corrupted frames as bar graphs at the receiver. At the
jamming node, users may design an arbitrary jamming signal in the
frequency domain and adjust the jamming power, the target UDP
port and the jammer type. �e MAC addresses used during the
experiments are hard coded to hinder users from simply abusing
the app in other setups. Overall, the demonstration proofs that
highly sophisticated Wi-Fi jammers can run on smartphones.

ACM Reference format:
Ma�hias Schulz, Efstathios Deligeorgopoulos, Ma�hias Hollick, and Fran-
cesco Gringoli. 2017. DEMO: Demonstrating Reactive Smartphone-Based
Jamming. In Proceedings of WiSec ’17, Boston, MA, USA, July 18-20, 2017,
3 pages.
DOI: 10.1145/3098243.3106022

1 INTRODUCTION AND RELATEDWORK
Practical reactive jammers already existed for multiple years. For
their implementation, researchers need to build systems that quickly
react to incoming Wi-Fi frames and send out a jamming signal that
overlaps with the target frame. To meet these strict timing require-
ments, researchers either used so�ware-de�ned radios (SDRs) [2]
or modi�ed the Wi-Fi �rmware of low-cost o�-the-shelf routers

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiSec ’17, Boston, MA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5084-6/17/07. . . $15.00
DOI: 10.1145/3098243.3106022

[1] or, very recently, smartphones [3]. In this work, we focus on
extending the la�er by o�ering an Android app to easily reproduce
the experiments of our prior work, which is based on the Nexmon
framework [4, 5], that allows to modify Wi-Fi �rmwares running in
Broadcom FullMAC chips. �eir jammer not only supports single-
stream 802.11ac frames, but also allows to design arbitrary jamming
waveforms by writing I/Q samples into a bu�er that can be played
back whenever a jamming condition matches. �is combines the
�exibility of an SDR with the ubiquitous availability of low-cost Wi-
Fi chips. Additionally, the authors presented a new jamming a�ack
that sends fake acknowledgements to the transmi�er of a target
frame. �is avoids blocking the transmission of other non-targeted
frames at the transmi�er and is particularly useful for “jamming
for good” scenarios.

In this work, we present an Android app that demonstrates and
controls the jammers presented in [3]. It also implements a frame
transmi�er that injects frames directly from the Wi-Fi �rmware, as
well as a receiver that analyzes the throughput. To ease reuse of
our app, we published the source code and an instruction video on
our website1. In the following, we �rst present our app in Section 2
followed by a description on how users can interact with our app
during the demonstration in Section 3.

2 PRESENTING THE APP
Our Android app has three operating modes: Jammer, Transmi�er
and Receiver. Users may select them using the menu bu�on on the
le�. In the following subsections, we explain the three modes.

2.1 Jammer mode
�e Jammer is the main operating mode (see Figure 1). It consists
of a menu bar, a power control slider and a start bu�on at the top.
Below, user-interface (UI) elements can be loaded to either design a
jamming waveform in the frequency domain or to analyze it in the
time or frequency domain. �e reason for designing jamming sig-
nals in the frequency domain stems from the design of the jammer.
To send waveforms instead of Wi-Fi frames as jamming signals,
we use an I/Q-sample bu�er originally intended to hold signals
for internal calibrations. �e size of this bu�er is limited to 512
samples that can be played back multiple times in a loop. As writing
samples to the bu�er takes much longer than playing them back,

1Download the source code of our app from h�ps://nexmon.org/jamming-app, the
one of the �rmware from h�ps://nexmon.org/jamming-app-�rmware and watch the
instruction video on h�ps://nexmon.org/jamming-app-video.

https://nexmon.org/jamming-app
https://nexmon.org/jamming-app-firmware
https://nexmon.org/jamming-app-video

WiSec ’17, July 18-20, 2017, Boston, MA, USA M. Schulz et al.

the bu�er cannot be re�lled in real-time to create a continuously
arbitrary signal transmission. Hence, we need to limit ourselves
to cyclically repeating signals to avoid glitches between each two
playback repetitions. �ose signals are sine and cosine functions,
where integer multiples of their periods exactly �t into the selected
bu�er size. �e inverse discrete Fourier transform (IDFT) creates
exactly those signals. By dividing the sampling rate by the IDFT
size, one de�nes the subcarrier spacing (e.g., 40 MSps / 128 Samples
= 312.5 kHz, which equals Wi-Fi’s subcarrier spacing). As the Wi-Fi
chip oversamples its digital signals by a factor of two, the sampling
rate is always twice the signal bandwidth (e.g., 20 MHz bandwidth
is sampled at 40 MSps). As out-of-band subcarriers are removed by
a low-pass �lter in the analog domain, we only consider subcarriers
up to the band edges.

To manipulate the transmi�ed waveform, the user may change
amplitudes and phases using the UI-elements illustrated in Figure 1b
and Figure 1c, the resulting complex baseband signal is illustrated
in Figure 1d. In general, the signal power used for jamming is split
over all the activated subcarriers. If only one subcarrier is active,
the power is focused on this subcarrier. Se�ing many subcarriers
increases the peak-to-average-power ratio (PAPR, see Figure 1d)
which reduces the power on each subcarrier that can be transmi�ed.
To e�ciently use the available transmit power, the user should
design signals with low PAPR. To get started more quickly, the
user may select presets from the menu bar to, for example, activate
all pilot subcarriers on a 20 MHz channel. To con�gure additional
se�ings such as the jammer type or the UDP port to target, the user
may enter the options dialog from the menu. �ere are also dialogs
to select the Wi-Fi channel, the bandwidth as well as a help dialog
containing instructions on how to use the app.

2.2 Transmitter mode
In the Transmi�er mode, the user may create multiple UDP streams
by clicking the plus-bu�on in the lower right corner. In the up-
coming dialog (see Figure 2a), the user may set a transmit power, a
UDP port as well as modulation se�ings. A�er creation, the stream
se�ings are listed in the UI-element (see Figure 2b) but are inactive
by default. To start a stream, the user may press the play bu�on on
the le� of each stream entry. �is makes the app send an ioctl to
the Wi-Fi �rmware containing these se�ings. �e �rmware then
starts a timer task to periodically inject Wi-Fi frames on the con-
�gured Wi-Fi channel. �ose frames have their destination and
source MAC addresses set to “NEXMON” and “JAMMER” which
are the addresses that activate the reactive jamming operation in
the �rmware.

2.3 Receiver mode
In the Receiver mode, our app shows a bar graph indicating the cur-
rent throughputs (see Figure 3) per observed UDP stream (de�ned
by the transmi�ing node id, UDP port and modulation se�ings). As
the reactive jammer only starts jamming a�er analyzing the UDP
header, this part is normally undamaged and jammed frames can be
di�erentiated from unjammed frames by checking the frame check
sequence (FCS). To simplify the app, we perform the FCS checks
and �lter frames in the �rmware and send the results using new
UDP frames on port 5500 to our app that creates the graphs.

(a) Menu bar of the Jammer mode. Under VIEW, the user selects one (landscape
orientation) or two (portrait orientation) of the UI-elements shown below.

(b) In the Amplitude UI-element, the user sets the amplitudes per subcarrier of
the signal used for jamming.

(c) In the Phases UI-element, the user sets the phases per subcarrier of the sig-
nal used for jamming.

(d) In the Time Domain Plot UI-element, we display the time domainwaveform
resulting from the amplitude and phase settings. We also display the PAPR.

(e) In the Frequency Domain Plot UI-element, we display the power distribution
of the jamming signal in the selected signal bandwidth.

Figure 1: �e user interface (UI) of the Jammer mode con-
sists of a menu bar and four UI-elements that can be loaded
below to either design a jamming signal in the frequency
domain or to analyse the resulting waveform.

DEMO: Demonstrating Reactive Smartphone-Based Jamming WiSec ’17, July 18-20, 2017, Boston, MA, USA

3 USING THE APP
During the demonstration, the user gets four rooted Nexus 5 smart-
phones (with stock �rmware M4B30Z). We illustrate the setup in
Figure 4. Each phone has our Jammer app preinstalled. In a �rst
experiment, the user starts one phone in Receiver mode and a
second in Transmi�er mode and sets up a UDP transmission on port
3939 with 1000 802.11ac frames per second with MCS 6. An active
transmission is indicated by the phone’s noti�cation LED blinking
in cyan. �e Receiver should show a bar graph for a new stream
on port 3939 indicating only correct frame check sequences. �en
the user starts another phone in Jammer mode, selects the “20 MHz
pilots”-preset, targets port 3939 and activates the Simple Reactive
Jammer whose activity is indicated by the phone’s LED blinking in
red. �e graph at the receiver should now indicate a high amount
of corrupted frames at a reduced frame reception rate due to the
retransmission delay. In a second experiment, the user starts
another transmi�er on the forth phone on port 4040. �is transmis-
sion should not be jammed. Hence, the Receiver should show a new
bar graph indicating only correct frame check sequences, while
frames with port 3939 are still corrupted. �is experiment shows
that the jammer di�erentiates between UDP ports. In a third ex-
periment, the user starts another UDP stream on port 3030 on the
second phone that also transmits on port 3939. As the transmi�er
is blocked by retransmi�ing jammed frames, only a few frames
on port 3030 may be seen at the receiver. To unblock the transmit
queue, the user may switch the jammer type to “Acknowledging
Jammer” in the Options dialog. �is lets the jammer transmit ac-
knowledgments a�er jamming a frame to avoid retransmissions.
As a result, the number of correctly received frames on port 3030
increase, but also the number of corrupted frames on port 3939.
Overall, this experiment presents the e�ects of an acknowledging
jammer. Last but not least, the user may experiment with di�erent
modulation and power se�ings, design arbitrary jamming signals
in the frequency domain and change the distance between the
smartphones.

4 ACKNOWLEDGMENTS
�is work has been funded by the DFG SFB 1053 MAKI, by LOEWE
NICER, LOEWE CASED and BMBF/HMWK CRISP and was sup-
ported by the EC framework H2020-ICT-2014-1 project WiSHFUL
(Grant agreement no. 645274).

REFERENCES
[1] Daniel S. Berger, Francesco Gringoli, Nicolò Facchi, Ivan Martinovic, and Jens B.

Schmi�. 2016. Friendly Jamming on Access Points: Analysis and Real-World
Measurements. IEEE Transactions on Wireless Communications 15, 9 (2016),
6189–6202.

[2] Danh Nguyen, Cem Sahin, Boris Shishkin, Nagarajan Kandasamy, and Kapil R.
Dandekar. 2014. A real-time and protocol-aware reactive jamming framework
built on so�ware-de�ned radios. In ACM workshop on So�ware radio implemen-
tation forum (SRIF) 2014.

[3] Ma�hias Schulz, Francesco Gringoli, Daniel Steinmetzer, Michael Koch, and
Ma�hias Hollick. 2017. Massive Reactive Smartphone-Based Jamming using Ar-
bitrary Waveforms and Adaptive Power Control. In ACM Conference on Security
and Privacy in Wireless & Mobile Networks (WiSec) 2017. Boston, USA.

[4] Ma�hias Schulz, Daniel Wegemer, and Ma�hias Hollick. 2016. DEMO: Using
NexMon, the C-based WiFi �rmware modi�cation framework. InACMConference
on Security and Privacy in Wireless and Mobile Networks (WiSec) 2016. ACM,
Darmstadt, Germany, 213–215.

[5] Ma�hias Schulz, Daniel Wegemer, and Ma�hias Hollick. 2017. Nexmon: �e
C-based Firmware Patching Framework. (2017). h�ps://nexmon.org

(a) Dialog for setting up new UDP
streams.

(b) List of streams that can be started
by clicking the play button.

Figure 2: In the Transmitter mode, the user may setup UDP
streams that the Wi-Fi �rmware injects.

Figure 3: �e Receiver mode displays bar graphs indicating
the current throughput per stream. Jammed frames have an
incorrect frame check sequence, while others are correctly
received.

Figure 4: Weprovide these fourNexus 5 smartphones during
the demonstration. �e �rst one on the le� is a transmitter
sending at UDP ports 3939 and 3030. �e second one sends at
4040. �e third one is the jammer targeting frames on port
3939 and the fourth one is the receiver.

https://nexmon.org

	Abstract
	1 Introduction and Related Work
	2 Presenting the app
	2.1 Jammer mode
	2.2 Transmitter mode
	2.3 Receiver mode

	3 Using the app
	4 Acknowledgments
	References

