
DEMO: Using NexMon, the C-based WiFi firmware
modification framework

Matthias Schulz
Secure Mobile Networking Lab

TU Darmstadt, Germany
mschulz@seemoo.de

Daniel Wegemer
Secure Mobile Networking Lab

TU Darmstadt, Germany
dwegemer@seemoo.de

Matthias Hollick
Secure Mobile Networking Lab

TU Darmstadt, Germany
mhollick@seemoo.de

ABSTRACT
FullMAC WiFi chips have the potential to realize modifi-
cations to WiFi implementations that exceed the limits of
current standards or to realize the implementation of new
standards, such as 802.11p, on off-the-shelve hardware. As a
developer, one, however, needs access to the firmware source
code to implement these modifications. In general, WiFi
firmwares are closed source and do not allow any modifica-
tions. With our C-based programming framework, NexMon,
we allow the extension of existing firmware of Broadcom’s
FullMAC WiFi chips. In this work, we demonstrate how
to get started by running existing example projects and by
creating a new project to transmit arbitrary frames with a
Nexus 5 smartphone.

1. INTRODUCTION
WiFi chips are mainly offered in two variants: SoftMAC

chips that outsource time uncritical tasks into the driver
and FullMAC chips that implement the complete medium
access control (MAC) layer in the WiFi chip and only ex-
change Ethernet frames with the driver. In this work, we
focus on the second category. These chips are mainly used in
smartphones. They pursue the goal to relieve the main pro-
cessor from handling and processing every received frame.
The firmware not only offers to exchange Ethernet and WiFi
frame headers, it also supports automatic address resolution
protocol (ARP) responses and transmission control protocol
(TCP) offloading.

Even though, WiFi manufacturers may offer a larger range
of capabilities to developers and open up their firmwares
similarly to existing open source SoftMAC drivers, such as
bcrmsmac, manufactures keep firmwares locked and do not
even offer datasheets that fully describe their internal chip
architectures. The latter missing information includes the
internal memory layout with memory mapped peripherals
such as direct memory access (DMA) controllers, debug reg-
isters and other chip control registers.

In previous works, such as monmob [1] and bcmon [2], de-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WiSec’16 , July 18-22, 2016, Darmstadt, Germany
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4270-4/16/07.

DOI: http://dx.doi.org/10.1145/2939918.2942419

BCMDHD cfg80211 driver

MMC driver to interface SDIO

ARM Cortex R4
microcontroller

SDIO
core

ROM

RAM

D11
core

802.11ac
PHY

Backplane Bus

Android kernel space

BCM4339 Wi-Fi system on chip

Debug
core

Figure 1: All Broadcom WiFi system-on-chips have a similar
architecture. On SoftMAC chips, the D11 core is directly
accessible by the driver, while on FullMAC chips an ARM
processor arbitrates between driver and D11 core.

velopers patched parts of existing WiFi firmwares of Broad-
com’s BCM432x and BCM4330 chips to enable monitor mode
and frame injection on iPhones and Android smartphones.
Their works are currently not only used for WiFi penetra-
tion testing using mobile devices, but also in the research
community to try out new MAC-layer communication pro-
tocols on smartphones. Even though, monmob and bcmon
opened up access to the MAC-layer on smartphones, the
patches them-selves are closed source and, hence, not easily
extensible. For example, a new mesh implementation may
rather focus on mesh frames than on processing all received
frames of a WiFi receiver running in monitor mode. Using
the latter requires to drop many received frames in the op-
erating system which is less energy efficient than dropping
them directly in the firmware.

With NexMon [3] we offer a framework to modify the WiFi
firmware of Nexus 5 smartphones with Broadcom BCM4339
chips (but are not limited to this platform). As illustrated
in Fig. 1, all of Broadcom’s WiFi chips have a similar ar-
chitecture. It consists of an interface to the driver (here
SDIO), a physical layer core and a D11 core which is a real-
time capable programmable state machine. Modifications
to the D11’s firmware are illustrated in [4]. Compared to
SoftMAC chips, FullMAC chips also include an ARM pro-
cessor that runs a firmware similar to the bcrmsmac driver
on Linux. It is used to process received frames from the D11
core and forward them as Ethernet frames to the driver, as
well as to process frames from the driver and send them
out using the D11 core. In this work, we demonstrate how
to use the NexMon framework to modify a chip’s firmware.

http://dx.doi.org/10.1145/2939918.2942419

In the following section, we first introduce the framework
and then present some examples that are also available on
our project website1. In the appendix, we describe how a
conference participant can interact with our demonstrator.

2. PATCHING FRAMEWORK
The NexMon patching workflow is illustrated in Fig. 2.

The patch code resides in the patch.c file. The compiler is
instructed to create separate sections for each symbol, that
means functions and global variables. The linker uses the
patch.ld file to place the patch functions at defined locations.
Symbols we intend to place by ourselves result in separate
sections, other symbols are gathered in the text section. To
call other functions existing in the firmware, the linker needs
to know their locations to create correct branch instructions.
To define those locations, we use the wrapper.h file, which
contains function prototypes and addresses of the locations
of those functions. From the header file, we create a wrap-
per.c file containing dummy function stubs and a wrapper.ld
file to place the dummy functions using the linker. When
linking the patch.o file to the wrapper.o file, the resulting
wrapper.elf file contains the correct branch instructions as
well as symbols from the wrapper and the patch files at the
correct addresses. To only insert the sections of our patch
into the resulting firmware, we need to extract each section
from the elf-file into separate binary files. Then, we inte-
grate those files into the original firmware binary using a
Python script called patcher.py.

3. EXAMPLE PATCHES
On our project website, we offer multiple example

projects that one can test on Nexus 5 smartphones. The

1NexMon project: https://dev.seemoo.tu-darmstadt.de/
bcm/bcm-public

hello world example project simply illustrates how to print
on the chip’s console and read the result in Android user
space. The monitor mode example shows how to activate
promiscuous mode and forward each received WiFi frame
directly to the driver without further processing. To ana-
lyze firmware code in RAM and ROM, we offer the debug-
ger example. It sets hardware breakpoints to redirect pro-
gram execution at a breakpoint into a handler function that
can read and change register values. This can, for exmaple,
be used to analyze function arguments of functions residing
in ROM or to perform single-step debugging to figure out,
where errors occur during execution.

4. ACKNOWLEDGMENTS
This work has been funded by the German Research Foun-

dation (DFG) in the Collaborative Research Center (SFB)
1053 “MAKI – Multi-Mechanism-Adaptation for the Future
Internet”, by LOEWE CASED, LOEWE NICER, and by
BMBF/HMWK CRISP.

5. REFERENCES
[1] A. Blanco and M. Eissler. One firmware to monitor ’em

all., 2012.

[2] O. Ildis, Y. Ofir, and R. Feinstein. Wardriving from
your pocket – Using wireshark to reverse engineer
broadcom wifi chipsets, 2013.

[3] M. Schulz, D. Wegemer, and M. Hollick. NexMon: A
Cookbook for Firmware Modifications on Smartphones
to Enable Monitor Mode. arXiv:1601.07077, 2015.

[4] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi,
F. Giuliano, and F. Gringoli. Wireless MAC processors:
Programming MAC protocols on commodity hardware.
In Proc. of the 31st Annual IEEE International
Conference on Computer Communications
(INFOCOM), 2012.

wrapper.h

function protopyes

and addresses of

existing firmware

functions

Makefile

patch.c

modified/new

firmware code

patch.ld

function addresses

Compiler

....bin

binary files

containing

patch code

wrapper.c

dummy functions

wrapper.ld

function addresses

wrapper.o

binary containing

dummy functions

with correct

offsets

Compiler

patch.elf

ELF file containing

compiled patches

and dummy

functions

fw-bcmdhd.orig.bin

original firmware file

fw-bcmdhd.bin

patched firmware

binary

patch.o

binary containing

functions with

correct offsets

Linker
Binary

extraction

Linker

Merge Files

via Python script

Figure 2: The NexMon firmware patching framework allows to write firmware patches in C or assember and to compile them
into binary patches that can be linked to existing firmware functions.

https://dev.seemoo.tu-darmstadt.de/bcm/bcm-public
https://dev.seemoo.tu-darmstadt.de/bcm/bcm-public

APPENDIX
During the demonstration at the conference, we intend to
show the participants how to get started with NexMon.
Thereto, we bring a couple of Nexus 5 smartphones and
laptops to program them. In addition, we intend to sup-
port participants who want to try out NexMon on their own
smartphones. After creating a patched firmware file, it is
combined with a driver and added to a boot.img file that also
contains various binaries for penetration testing. A partic-
ipant can use fastboot in bootloader mode to boot a Nexus
5 smartphone with the custom boot.img. This leaves the ex-
isting boot partitions in flash memory untouched and the
phone can be rebooted into the original Kernel by a simple
restart of the smartphone.

As a first test, the conference participants can take one of
our example patches and execute them on the phone. The
monitor mode example is a good starting point as it allows
to run well known tools such as tcpdump or airodump-ng to
observe and capture frames on the selected WiFi channel.
The Nexus 5 supports single stream transmissions on chan-
nels with up to 80 MHz bandwidth in the 2.4 and 5 GHz
WiFi bands following the 802.11ac standard and below.

To write a patch on their own, we instruct the confer-
ence participants to create their own “playground” project
executing the following command in the firmware patching
directory:

make newproject NEWPROJECT=my_playground

This copies the bcmdhd driver as well as template
patch.c, patch.ld, Makefile, and patcher.py files into a new
my playground directory. Then the conference participant
has to select a function to hook so that our patch gets
executed as soon as this function is called. We, there-
fore, propose the wlc radio upd function that sets up the
physical layer core and activates the ability to transmit
frames. We intend to overwrite the branch link instruc-
tion that calls wlc radio upd with a branch link instruction
to our wlc radio upd hook function that we insert into our
patch.c file. The hook function should first call the origi-
nal wlc radio upd function and then execute our own code
before returning to the calling function. To achieve this,
we write the wlc radio upd hook function in assembler as
it makes it easier to control how registers are used. We
also need to save the link register before executing branch
link instructions. Otherwise we cannot return to the calling
function. The code looks as follows:

__attribute__ ((naked)) void wlc_radio_upd_hook(void) {
asm("push {lr}\n"

"bl wlc_radio_upd\n"
"push {r0-r3}\n"
"bl wlc_radio_upd_hook_in_c\n"
"pop {r0-r3}\n"
"pop {pc}\n");

}

This patch function should be placed in the free space
starting at 0x180020 in the firmware. This is achieved by
the following line in the linker.ld file:

.text.wlc_radio_upd_hook 0x180020: ←↩
{ KEEP(patch.o (.text.wlc_radio_upd_hook)) }

This will only place the function in the object and elf-files.
To extract the binary files, we need to set the FUNCTIONS
variable in the Makefile to wlc radio upd hook. To insert the
binary file into the firmware, we need to insert the following
line in the patcher.py file:

ExternalArmPatch(getSectionAddr(←↩
".text.wlc_radio_upd_hook "), ←↩
"wlc_radio_upd_hook.bin"),

As stated above, we intend to call our patch instead of the
original function by replacing the branch link instruction at
address 0x195B48 in the WLC UP ioctl handler. Thereto,
we insert the following line in the patcher.py file:

BLPatch (0x195B48 , getSectionAddr(←↩
".text.wlc_radio_upd_hook ")),

At this point, we can almost test, if the patch is working,
but we are still missing the wlc radio upd hook in c function
called by our hook. As a start, we can simply insert a printf
instruction as follows into the patch.c file:

void wlc_radio_upd_hook_in_c(void) {
printf ("hello world\n");

}

As we do not need to place this function at a specific
address, the linker places it in the common .text section. To
insert this section into the firmware, we need to uncomment
the corresponding line in the patcher.py file. To test the
new firmware, we run the following commands in the root
directory of the NexMon project:

make boot
make reloadfirmware FWPATCH=my_playground

This reboots the smartphone with the built boot.img and
copies the patched firmware as well as the corresponding
driver module to the SD card. Here, it gets loaded as a
kernel module. To load the firmware into the WiFi chip, we
need to setup the wlan0 interface and can then print the
console of the chip using dhdutil :

adb shell "su -c ’ifconfig wlan0 up && ←↩
dhdutil -i wlan0 consoledump ’"

In the output, one should see the hello world message. If
it works, we continue to write the following code to create
a new sk buff, reserve space for additional headers, copy a
beacon frame into the data variable and create a new station
control block (SCB), which is required to transmit a frame
through wlc sendctl.

char pkt[] = {
0x80 , 0x00 , 0x00 , 0x00 , 0xff , 0xff , 0xff , 0xff ,
0xff , 0xff , 0xcc , 0xcc , 0xcc , 0xcc , 0xcc , 0xcc ,
0xdd , 0xdd , 0xdd , 0xdd , 0xdd , 0xdd , 0x10 , 0x00 ,
0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
0x64 , 0x00 , 0x21 , 0x05 , 0x00 , 0x06 ,
’N’, ’E’, ’X’, ’M’, ’O’, ’N’ // SSID

};

void wlc_radio_upd_hook_in_c(void) {
sk_buff *p; void *scb;
struct wlc_info *wlc = WLC_INFO_ADDR;
void *bsscfg = wlc_bsscfg_find_by_wlcif(wlc , 0);
p = pkt_buf_get_skb(wlc ->osh , sizeof(pkt) + 202);
p->data += 202; p->len -= 202;
memcpy(p->data , pkt , sizeof(pkt));
scb = __wlc_scb_lookup(wlc , bsscfg , pkt , 0);
wlc_scb_set_bsscfg(scb , bsscfg);
wlc_sendctl(wlc , p, wlc ->active_queue , scb ,

1, 0, 0);
}

Running this code sends out a beacon frame announcing
the service set identifier (SSID) NEXMON. One can, for ex-
ample, use tcpdump to receive this frame on a nearby device
listening on WiFi channel 1 and filtering for the host address
cc:cc:cc:cc:cc:cc.

	Introduction
	Patching framework
	Example patches
	Acknowledgments
	References

