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ABSTRACT 
One of the main open issues in electronic government is the fact 
that the individual users’ multi-purpose computing platforms are 
used. In terms of security, no guarantee is given since these 
platforms are not under the government authority’s control. Even 
worse, the number of malware infected computing platforms 
increases. This so-called Secure Platform Problem and approaches 
aiming to solve it are objects of investigation in this work. We 
define criteria that need to be ensured to address this problem. 
Furthermore, we propose a taxonomy to classify existing 
approaches. Based on the classification and the criteria, we 
analyze the different types of approaches by providing concrete 
examples. Hereby, we show that none of the existing approaches 
fully meets our criteria. Thereby, we focus on the most security 
critical class of electronic government services, namely electronic 
voting over the Internet. However, most of the discussed 
approaches as well as the criteria and classification can also be 
applied to other governmental applications. 

Categories and Subject Descriptors 
K.6.5 [MANAGEMENT OF COMPUTING AND 
INFORMATION SYSTEMS]: Security and Protection – 
Authentication, Invasive Software, Physical Security, 
Unauthorized Access 

General Terms 
Security, Human Factors, Design, Reliability, Verification 

Keywords 
Electronic Government, Internet voting, Secure Platform Problem, 
Insecure Client Problem, Untrusted Terminal Problem 

1. INTRODUCTION 
Web applications become more and more important and a 

growing number of security-critical services are provided over the 
Internet. The latest advances are, to provide citizens with 
governmental services over the Internet, even with online voting 
techniques for political elections and referenda what we refer to as 
internet voting throughout this paper. One of the main open issues 
of electronic government is that the individual user’s multi-
purpose computing platform is used as the interface to the service. 
Since this platform is not under the authority’s control, no 
security guarantees can be given. Even worse, the increasing 
complexity of the operating systems leads to a growing number of 
malware indicating that it is reasonable to not trust any user’s 
personal computer at all. The same applies to mobile computing 
platforms such as mobile phones and tablet computers. In the 
context of internet voting, this so-called Secure Platform Problem 
was first mentioned by Ron Rivest [24]. The problem is also 
known as the Untrusted Terminal Problem or the Insecure Client 
Problem and is not voting specific but applies to any electronic 
communication application. However, compared to other 
domains, the problem appears to be most influential in electronic 
government services and especially in internet voting. 
Vulnerabilities in voting systems endanger democracy in its 
entirety. Furthermore, compared to other applications, voters have 
to be anonymous in order to ensure ballot secrecy. 

Many voting protocols, such as [5], [15], and [7] have been 
proposed in the last thirty years and some have already been used 
for legally binding elections on different levels. Examples include 
Estonia, Switzerland, and the Netherlands (compare to [28] for an 
overview of all three elections). But most of these voting 
protocols and systems in use do not even mention the Secure 
Platform Problem, while others trivially assume the voter’s 
equipment to be trustworthy, arguing “up-to-date” operating 
systems and anti-virus programs, as well as vote updating being 
viable solutions to address the problem. 

However, there exist few publications proposing solutions to 
(partially) address the Secure Platform Problem in internet voting 
[19][32]. In addition, several solutions for user and transaction 
authentication in e-banking are available which can be adapted for 
governmental web services like internet voting as we will show. 
The fact that these proposed and existing techniques are rarely 
applied in governmental web services, yields that the people in 
charge are either not aware of the Secure Platform Problem or the 
approaches are not known enough, yet. This is not surprising as 
there is no comprehensive document describing the different 
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concepts including their advantages and disadvantages as well as 
the remaining risks.  

This work aims to narrow this gap. We present a taxonomy to 
categorize existing approaches and define criteria, an adequate 
solution for the Secure Platform Problem should meet. 
Furthermore, we provide an overview of existing proposals to 
address the Secure Platform Problem proposed for different 
applications and analyze them according to the previously defined 
criteria.  

Furthermore, we intend to raise awareness for this problem that is 
mostly neglected and to support decision makers in electronic 
government projects with an overview of the currently most 
relevant approaches to meet the Secure Platform Problem 
including their limitations. Additionally it should encourage 
developers to integrate one or more of these approaches in their 
products, and researchers to find more adequate solutions. 

1.1 Related Work 
To our knowledge, no comprehensive overview and discussion of 
solution approaches for the Secure Platform Problem exists. 
However there are few works addressing subsets of existing 
approaches. 

The author of [32] describes and compares five different 
approaches to address the problem. The discussion is brief and 
does only address a fraction of the approaches discussed in this 
work.  

[19] provides a good introduction and overview of the Secure 
Platform Problem. The author classifies some meaningful 
approaches and concludes that dedicated hardware devices can 
provide the highest security level against the Secure Platform 
Problem while he does not analyze this branch of solutions in any 
detail due to the expected costs for development, distribution and 
maintenance. 

The common conclusion of the above authors is that none of the 
existing approaches is applicable for large-scale elections. 

1.2 Structure of this Work 
Section 2 provides an overview of the Secure Platform Problem. 
We introduce a new informal adversary model and express the 
adversary’s capabilities. In Sect. 3 we formulate the criteria we 
used to discuss the different existing solution approaches as well 
as a simple taxonomy, which serves to classify the approaches in 
Sects. 4 – 6. Section 7 concludes this work and summarizes some 
open issues for future work.  

2. PROBLEM DESCRIPTION 
In this section, we explain the Secure Platform Problem and 
define a new adequate adversary model. 

In the context of security critical communication an adversary’s 
ultimate goal is to violate confidentiality and/or integrity of 
messages sent and received by users. For the purpose of this paper 
we define a powerful adversary capable of entirely controlling the 
platform of the user. Thus, the adversary does not only control the 
network between the user’s computing platform and the 
authority’s trusted server, but also acts as the user’s interface to 
the network. We abstract from the untrusted platform and assume 

it to be part of the adversary-controlled network. Communication 
takes place between the user and the adversary as well as between 
the server and the adversary. Hence, all communication between 
the user and the server is sent through the adversary. Note that the 
user is not a machine but human and thus is very limited in terms 
of computation power and memory. Fig. 1 depicts our adversary 
model. This model extends the common formal protocol analysis 
models based on the well-known Dolev-Yao-style adversary [8]. 

 
Figure 1. Secure Platform Problem Adversary Model 

We add a trust-base to our model, in order to address those 
approaches, which introduce techniques to execute certain 
trustworthy functionality outside the influence of the adversary. 
The functionality and especially the communication capabilities of 
the trust-base depend on the individual approaches as well as on 
the respective implementation details. 

Since we focus on the client-side Secure Platform Problem only, 
we assume the server-side as well as the user to be trustworthy. 
More specifically, we do not consider the case where users intend 
to collaborate with the adversary as it would be the case for vote 
selling in internet voting. Furthermore we do not take into account 
the adversary to be physically present to influence the user. 

Our adversary model yields the following capabilities. We recap 
the fundamental capabilities of the Dolev-Yao adversary and 
extend them with human capabilities. In particular we assume that 
the adversary: 

o can learn messages sent from the user to the untrusted 
platform; 

o can learn messages sent from the server to the network and 
further to an untrusted platform; 

o can learn messages sent from the trust-base to an untrusted 
platform or directly to the network; 

o can drop messages to replace them with own messages1

o can manipulate and fabricate arbitrary messages according to 
publicly known knowledge and previously sent messages; 

; 

o can perform every publicly known function; 
o knows all implementation details of all used systems; 
o can act as a human2

Although the above assumptions describe a powerful adversary, 
the capabilities are limited. In particular, the adversary: 

. 

                                                                 
1 We do not consider denial-of-service attacks in this work. 
2 Note, for example, that strategies against Completely Automated 

Public Turing tests to tell Computers and Humans Apart 
(CAPTCHAs) exist. 
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o cannot break cryptography; 
o cannot overhear or manipulate communication between the 

user and the trust-base; 
o cannot access knowledge dedicated to the user, the trust-base 

or the server; 
o cannot manipulate the trust-base. 

3. EXISTING APPROACHES 
In this section, we introduce the properties that will be used to 
later on discuss and compare existing approaches.  While we are 
mainly interested in confidentiality and integrity of messages, we 
settle for the following more precise definitions and describe how 
they are related. Note that the following criteria and taxonomy 
hold for security-critical systems in general. However, we will 
take internet voting and corresponding solutions as an example to 
discuss the different approach classes in Sects. 4 – 6. 

3.1 Criteria 
While we are mainly interested in confidentiality and integrity of 
messages, we settle for the following more precise definitions and 
describe how they are related. 

3.1.1 Confidentiality 
An approach supports user-to-server-secrecy if it is not possible 
for the adversary to learn a secret that the user submitted to server. 
This means that the user has the opportunity to submit a message 
secretly to the authority’s server and hence privacy holds. 

3.1.2 Integrity  
If it is possible for the server to verify the integrity and 
authenticity of a received message with respect to the user-sent 
message, we say the approach supports user-to-server-integrity. 
Note that individual verifiability in internet voting allows the 
voter to verify that the server correctly received the voter’s ballot. 
But this is not enough to ensure vote integrity since the voter must 
also be given the possibility to complain in the case the 
verification fails. Moreover, individual verifiability also requires 
integrity and authenticity of messages sent from the server to the 
user in order for the user to be able to verify what message the 
server actually received. From the authority’s perspective, vote 
integrity is then given by the fact that the user did not complain. 

3.1.3 Further Criteria 
Especially but not exclusively in internet voting, an application 
should provide anonymity. We say an approach supports user-
anonymity if it is not possible for the adversary to reveal the 
origin of a message sent to the server. Note that it is possible for a 
user to send messages that are not secret but cannot be linked to 
the sender and thus privacy holds too. 

Beside security properties other non-functional properties such as 
user-friendliness, cost-efficiency, and practicality for large-scale 
settings must be considered as well. Although we focus on 
security, we also discuss these properties where it applies but we 
do not define any measurement for that. 

3.2 Taxonomy of Approaches 
Following, we propose a taxonomy to give an overview and to 
classify the different approaches. In scientific literature mainly 
two different classes of solutions for the Secure Platform Problem 
can be found. While one class aims to make the platform 
trustworthy, the other class of approaches assumes the user’s 
platform to be insecure. See Fig. 2 for an overview of the classes 
that are covered in this work. 

In the following sections we refer to this taxonomy, summarize 
concrete examples, and discuss them according to the above 
criteria. Particularly, Sect. 4 examines approaches to make the 
platform trustworthy. Approaches distrusting the user’s platform 
are discussed in Sect. 5, where we summarize approaches without 
trusted devices and Sect. 6, where we discuss solutions based on 
dedicated trusted devices.  

 
Figure 2. Taxonomy of Analyzed Approaches 

4. TRUSTWORTHY PLATFORM 
Approaches in this category aim to improve the user’s platform 
integrity in a way that it becomes trustworthy. These approaches 
lead to the situation where the platform becomes the trust-base 
and users no longer access the communication interface to the 
adversary. 

4.1 Trusted Computing 
The key idea of applying Trusted Computing [29] techniques to 
overcome the Secure Platform Problem is to use an appropriate 
security architecture based on a security kernel and special 
Trusted Computing hardware. [1] and [33] discuss the application 
of this approach for internet voting in detail. 

Trusted Computing efficiently overcomes malicious software on 
the user’s computing platform because an eligible message can 
only be created after successful verification of the system’s 
integrity. However, there are still open problems with Trusted 
Computing, such as in remote attestation [31]. Moreover, the 
concept is not widespread enough, users might already have a 
personal computer with integrated Trusted Platform Module but 
the security architecture and security kernel are still missing. It is 
questionable whether or not this technique will be applied on a 
large scale in near future. However, the approach would allow 
convenient and user-friendly solutions for secure services, even 
for internet voting as this would all run in the background. 

4.2 Bootable Clean Operating System 
Otten [22] recommended developing a special voting operating 
system based on an open-source operating system that boots and 
runs directly from a read-only data medium such as a CD or DVD. 
This medium would then be distributed to all users. After having 
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received, users need to configure their computer to boot from this 
medium. Additional security checks and secure distribution are 
required to overcome the risk of getting a malicious medium that, 
for example, communicates with a malicious server. 

While this approach overcomes many Secure Platform Problem 
related issues, it does not meet the particular problem of a 
manipulated BIOS. Such an attack allows the adversary to load a 
malicious environment in which the secure operating system is 
virtually executed without the user or the authority noticing it. 
Avoiding this kind of attack is only possible by applying Trusted 
Computing hardware as described before. Therefore, it does not 
ensure secrecy, nor integrity in our adversary model. However one 
has to keep in mind that developing such low-level attacks is not a 
trivial task and an adversary would have to cope with a variety of 
different hardware settings to successfully mount a large-scale 
attack in such a setting. Challenges include developing a CD or 
DVD that boots from all the different hardware and software 
settings around and that all necessary drivers are provided to be 
able to automatically connect to the Internet. This may lead to 
high development, distribution, and maintenance costs. Another 
difficulty for the authority is to verify that users really used the 
clean operating system and that it was running on hardware, not in 
a virtual machine potentially under the adversary’s control. 

4.3 Guidelines and Education 
A simple approach to address the Secure Platform Problem is the 
provision of special guidelines and the education of users in how 
to protect their own computer systems from malware. Examples 
include the guidelines provided for the student elections in 
Austria [30] and those developed by the German society of 
computer scientists [11]. They include information about software 
updating, firewall-settings and how to verify SSL certificates. 

This approach claims to reduce the probability that malware 
infects a user’s system. However, only standard and well-known 
attacks can be prevented and it is questionable whether a 
sufficient fraction of users are able to follow the guidelines and to 
really protect their systems. In addition, users cannot be forced to 
apply the security guidelines. Regarding user-friendliness, it is 
likely that many users would not follow the instructions because 
of additional work. Note that in contrast to e-banking the laziness 
of an individual user in e-voting not only impacts herself but the 
outcome of the election, i.e., the entirety of the participating users 
is affected. Furthermore, an adversary could distribute modified 
guidelines to mislead inexperienced users to behave incorrectly 
and thus to put themselves at risk. 

5. WITHOUT TRUSTED DEVICES 
Distrusting the user’s computing platform leads to the need of 
establishing a secure channel directly between the user and the 
server. This channel can either be established using cryptography 
or by an out-of-band channel that is not under the adversary’s 
control. 

5.1 Human-Computer Cryptography 
Human-computer or paper-and-pencil cryptography has a long 
history and given enough time, pencils, and paper, humans may 
theoretically perform every computation a computer can do. In 
terms of our model, such approaches aim to provide the user with 

the capabilities to encrypt and authenticate messages directly. 
Hence, a trust-base is not needed and all the defined security 
properties can be achieved. However, the vast majority of humans 
lack sufficient memory and computation power to perform strong 
cryptographic operations in a reasonable amount of time. 
Nevertheless, some interesting approaches such as [16] and 
Schneier’s Solitaire algorithm [27] were proposed. For example, 
in Solitaire the randomness in a shuffled deck of playing cards is 
used for the encryption of messages but the approach has some 
weaknesses. 

Bertà examined in [3] the human limitations with respect to 
encrypting and authenticating sufficiently large messages in 
practical settings. He concludes that no sufficiently strong 
cryptographic protocol to encrypt or authenticate messages exists 
such that humans could apply it. 

Because of the obvious lack of user-friendliness we do not 
consider human-computer cryptography as a practical solution for 
the Secure Platform Problem. 

5.2 Codebook Cryptography 
Although humans are not good in performing reasonably strong 
cryptographic operations, they are considerably strong in 
comparing patterns. This fact is exploited by the concept of 
codebook cryptography. The idea is that prior to the 
communication, the trusted server encrypts all possible messages 
and then distributes the corresponding codebook, i.e., the clear-
text / cipher-text mapping, over an out-of-band channel3

Following we present some widely discussed examples of this 
approach for electronic voting. 

 to the 
user. The user chooses a clear-text message and looks up the 
corresponding cipher-text (code) to be entered into the untrusted 
platform. The platform then sends the cipher-text to the server. 
Hence, the adversary does not learn the clear-text message and 
since not in possession of the codebook, the adversary cannot 
replace the message with another one that is accepted by the 
server. Thus, this approach is resilient against the Secure Platform 
Problem but needs a secure out-of-band channel for distribution. 

5.2.1 Code Voting 
Chaum was the first who applied this concept to internet voting 
[5]. The key idea of Code Voting is that the user gets a code sheet 
together with the general election information via mail. The code 
sheet links each candidate or party to a random alphanumeric 
code. In order to cast a vote for a specific candidate, the user 
enters the corresponding code into a text-field. This code is 
submitted to the authority that is able to derive the user’s choice 
by mapping the code back to the candidate. Since not in 
possession of the code sheet, the untrusted platform (i.e., the 
adversary) can neither derive the user’s choice nor change the 
ballot’s content to another meaningful choice. Helbach and 
Schwenk [14] as well as Oppliger et al. [20] proposed different 
improvements like additional verification codes that are sent back 
from the server for individual verifiability. To overcome the vote-
buying problem the authors in [21] introduced an additional 
finalization code. Ryan et al. recently suggested in [26] and [13] 
                                                                 
3 In this case the trust-base represents the out-of-band channel that 

provides confidentiality and integrity of the received codebook. 
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to use Code Voting in combination with Prêt-à-Voter in order to 
allow individual verifiability. In this approach, the server can only 
send a valid confirmation code to the user if a majority of trustees 
confirm the correct recording of the voting code that was sent by 
the user. The main disadvantage of the Code Voting approach 
concerns user-friendliness, which decreases in particular for 
implementing complex ballots with multiple candidates to choose 
from. In addition, a trusted procedure to generate and distribute 
the code sheets is required what introduces additional complexity 
and costs. 

5.2.2 Prêt-à-Voter 
Another elegant implementation of codebook cryptography can be 
found in Prêt-à-Voter [25], where the candidate list is permuted 
and the permutation is encrypted. While Prêt-à-Voter was 
proposed for poll-site-based settings, it could be adapted for 
internet voting too. The user receives the ballot paper with the 
permuted list of candidates and the encryption of the permutation 
via mail. Then, she enters the index of the chosen candidate 
together with the encryption of the permutation (which could also 
serve as a ballot sequence number). The permutation is decrypted 
by the authority’s server and is used to derive the user’s choice. 
However, since using a permuted list of valid choices, the 
platform, although not able to learn the user’s choice, can mount a 
randomization attack by choosing a different index and therefore 
user-to-server-integrity is not provided while secrecy holds. 

5.2.3 CAPTCHA 
In [21] the authors propose the application of visual CAPTCHAs 
(Completely Automated Public Turing test to tell Computers and 
Humans Apart) to overcome the Secure Platform Problem. 
Candidates are displayed in a random order and represented by 
visual CAPTCHAs. This approach is simple to be integrated in 
any internet voting system. Its user-friendliness is questionable. 
While people might know this kind of images from other 
applications, it is often difficult to figure out what is displayed. 
Besides the fact that our model assumes an adversary with human 
capabilities, who is able to solve CAPTCHAs, it is particularly 
easy for the adversary to perform a randomization attack by just 
randomly choose a CAPTCHA different from the user-chosen 
one. A more advanced approach is discussed in [23]. Here, 
arbitrary CAPTCHAs, which are not related to the candidates’ 
names, appear next to the actual candidate’s name, while the 
candidate order can stay as it is. The user decodes the CAPTCHA 
related to her favorite candidate and enters the resulting code into 
a text-field. Automated breaking of these CAPTCHAs becomes 
more difficult because of the fact that the adversary does not know 
the encoded clear-text in advance. However, it still does not solve 
the Secure Platform Problem in our adversary model. 

5.3 Procedural Approaches 
Some approaches suggest adapting the voting process in order to 
overcome various problems in internet voting. Some of the 
proposals can even be applied to mitigate the Secure Platform 
Problem and are therefore discussed here. 

5.3.1 Vote-Updating 
The general idea of vote-updating is that the user can update the 
electronic vote as often as she wants, ideally from different 

devices. In hybrid systems, the user can even replace the 
electronic vote on election day by a traditional paper ballot at the 
polling station. There are several different approaches to enable 
vote-updating, while they have different advantages and 
disadvantages as shown in [12]. 

Enabling vote-updating, the adversary looses certainty about how 
the user really voted since she may have used another device or 
went to the polling station on election day to cast a different vote. 
Correspondingly, the adversary will not know for sure whether the 
modifications will influence the result or not. Of course, this only 
applies if the votes cannot be linked to the users. 

Vote-updating helps particularly in the case where users distrust 
the voting system after casting their vote. For instance, this is the 
case when they misinterpret information presented to them, detect 
malware on their computers, or if they are not convinced that the 
ballot was properly sent and stored. However, statistics in Estonia, 
where internet voting, is used for political elections since 2007, 
indicate that only few people update their vote [9]. It might be the 
case that very few incidents happen but more likely most users are 
simply not able to notice manipulations and blindly trust their 
systems. 

Vote-updating is easy to implement and to understand by users. 
However, a challenge is to ensure that only one vote is counted 
and no problems with replay-attacks or delays on the network can 
cause that an earlier cast valid vote is counted. Opponents of vote-
updating argue that this approach influences the value and 
character of an election. They argue that the act of casting a vote 
is something special and should not be repeatable because 
otherwise it might get the character of a game. 

5.3.2 Anonymous Voting 
Anonymous voting allows the user to cast a ballot without the 
adversary being able to link the ballot to its origin. The following 
protocol serves as simple example for anonymous voting. Prior to 
the election the user gets an official letter from the election 
authority, containing credentials that allow the person in 
possession of these credentials to cast exactly one eligible ballot 
and the authority does not know who got what credential. Now 
the user uses a public computer in an internet cafe that cannot be 
associated to her and enters the received credentials to prove 
eligibility. Then she enters the favorite candidate and submits the 
vote together with the credentials to the election authority’s 
server. The adversary learns the candidate whom was voted for 
but does not learn who voted. Hence, voter privacy holds. It is 
obvious that in this simple example neither secrecy nor integrity 
holds, unless combined with other approaches. A more advanced 
example for this category is based on blind signature schemes that 
have been proposed for the first time in [10] and was later used in 
many other protocol proposals. While this approach is more 
sophisticated from a cryptographic point of view, it does address 
the Secure Platform Problem to the same extent as the simple 
protocol above. Under the assumption that the untrusted system 
does not know the identity of the user who is using it, user-
anonymity is given but neither secrecy, nor integrity. 

5.3.3 Test Ballots 
Test ballots are dedicated ballots the adversary cannot distinguish 
from real ones. The user casts one real ballot and some test ballots 
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in random order. Since the adversary does not know the real ballot 
he may manipulate one or more test ballots. After the election, the 
processing of all test ballots is made fully transparent to a group 
of auditors or even to the public for verification. Successful 
attacks require the adversary to manipulate a large number of 
votes and therefore it is likely to detect at least a fraction of the 
manipulations. The approach does not provide integrity of the real 
vote itself but strongly indicates possible manipulations by 
analyzing the proper handling of the test ballots. To detect 
manipulations in the context of the Secure Platform Problem, the 
test ballots must be individually verifiable by the user. Hence, the 
test ballots are exposed after the election’s vote casting phase and 
the adversary learns the real ballot. 

6. TRUSTED DEVICES 
In the context of e-banking, a variety of technical solutions for 
user and transaction authentication have been presented and even 
deployed on a large scale. In the following we will analyze these 
approaches regarding the security criteria that we defined and give 
some hints on how such approaches could be adapted to internet 
voting. 

Solutions based on trusted devices can be classified into 
standalone approaches, where the trusted device (TD) is not 
attached to the user’s untrusted platform, and connected 
approaches, where the trusted device is connected to the 
adversary, for example, to the user’s platform. The term trusted 
indicates that users must trust the devices to offer trustworthy 
functionalities and that they securely store confidential data. If the 
device additionally stores a specific user’s secret information, 
such as cryptographic keys, we call the device a personal trusted 
device (PTD). Examples of personal trusted devices are smart 
cards. They can perform certain cryptographic operations and 
store individual secret information, i.e., the user’s secret key. 
Since additional devices are required to access the smart cards, 
users need to trust these devices too. Hence, in smart card based 
approaches the card readers are also part of the trusted device. In 
our model, the trust-base is the user’s smart card including the 
reader that is used to access the card. 

6.1 Standalone Trusted Devices 
Standalone trusted devices could be seen as calculators. The user 
communicates directly with the device and no communication 
takes place between the trusted device and any other party than 
the user. 

Challenge-response authentication protocols for e-banking 
solutions that use a smart card reader with a pin pad and a display 
are an example for this category of approaches. The bank first 
sends a challenge code through the user’s untrusted platform to 
the user who in turn enters this code into the card reader together 
with the bankcard’s PIN (personal identification number) for 
accessing the card. The card then computes a MAC (message 
authentication code)4

                                                                 
4 Other cryptographic operations can be used and in practice, 

asymmetric cryptography is often applied, where the challenge 
code is signed using the secret key stored on the card. 

 of the challenge code and secret information 
stored on the card. This MAC is displayed to the user through the 
reader’s display. Finally, the user enters the MAC into the 

untrusted platform and submits it back to the bank. If the response 
code corresponds to a valid MAC, the bank is convinced that the 
correct card (containing the secret information) as well as a person 
who knows the correct PIN to access the card are involved in the 
protocol run. 

To adapt this approach to internet voting, such a device could be 
used to encrypt and authenticate the ballot. The user enters the 
candidate choice directly into the PTD and gets back an encrypted 
ballot, for example, represented as an alphanumeric code. The 
user enters the encrypted ballot into her untrusted platform and 
submits it to the server. Such an approach can be used to provide 
“digital” code voting without a separated out-of-band channel. 
The initial vote codes are digitally provided to the users via their 
untrusted platforms. The vote codes are then used like the 
challenges in the above described challenge-response authentica- 
tion example. The user enters the MAC of a secret key and the 
vote code that corresponds to her choice into the untrusted 
platform to submit this vote to the server. The authority in 
possession of the same secret key computes the MACs for all 
candidate codes and compares them with the received MAC to 
derive the user’s choice. Furthermore, the server could again 
compute the MAC of the received MAC and send it back to the 
user as a confirmation code that can be verified by the user when 
again performing the same operation using the PTD. In practice a 
more sophisticated scheme is required to prevent the authority 
from learning individual users’ votes. 

Since no clear-text referring to a user’s choice is submitted to the 
adversary, the approach supports user-to-server-secrecy. The other 
way round the user can use the trust-base to decrypt messages 
encrypted by the server. The setting provides user-to-server-
integrity if combined with a verifiable confirmation code as 
described above. However, user-friendliness is questionable since 
the user must relay all encrypted communication between the 
trust-base and the server. In the case of a few short codes, this 
may be applicable but not necessarily in complex elections where 
the user must choose multiple candidates. 

6.2 Connected Trusted Devices 
In contrast to standalone TDs, connected TDs are attached to the 
adversary, in most cases to the user’s untrusted platform, thus 
there is a communication channel between the adversary and the 
trust-base. Simple approaches offer specific functionalities to the 
platform they are attached to such as securely storing secret 
information. More sophisticated networked devices are able to 
directly communicate with the remote server. Generally, the more 
functionalities a TD offers, the more vulnerabilities may occur. 
However, in our model we limited the adversary’s capabilities by 
assuming that the adversary cannot manipulate the trust-base. 

The communication interfaces of a connected TD directly affect 
the possible security guarantees of any protocol making use of it. 
To make this clear, we will summarize the possible 
communication capabilities of the trust-base, provide examples, 
and discuss the properties of each setting. 

6.2.1 No Communication Between User and Trust-
Base 

The trust-base has no interface to communicate with the user and 
all communication is based on the untrusted platform (which is 
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part of the adversary). Particularly the user can only communicate 
with the adversary and neither secrecy nor integrity can be 
achieved with respect to our model. The only guarantee in this 
setting is that during the protocol run, the TD is attached to a 
computer, which is reachable by the adversary.  

Widely deployed examples for this setting are smart cards in 
combination with class 1 card readers directly attached to the 
platform via USB. Unfortunately, the adversary immediately 
learns every message sent by the user, particularly the PIN that 
protects access to the card. Hence, after the first time the user 
enters the PIN, the adversary may arbitrarily use the card and 
perform whatever cryptographic operation the smart card offers, 
as long as it is attached to the untrusted platform. Applying this to 
internet voting the user does not know what is being processed by 
the TD and in a setting where vote updating is allowed, the user 
does not even notice that the smart card is being used at a later 
time to replace a vote. Another example are hardware tokens like 
the mIDentity developed by Kobil [17] for e-banking and other 
sensitive applications where a browser runs in a “secure” 
environment on the TD. However, as there is no communication 
between the trust-base and the user none of the defined security 
properties are guaranteed with respect to our model. 

6.2.2 Unidirectional Communication from the User 
to the Trust-Base 

The TD provides an input interface to the user such as a pin pad 
and the user can send clear-text messages to the TD, which are 
encrypted afterwards. Hence, such approaches provide user-to-
server-secrecy as well as user-to-server-integrity. Depending on 
the protocol, the user can even verify the correct reception of the 
message (individual verifiability). To do so, the user enters her 
choice together with a random number into the TD, which in turn 
encrypts these messages with a secret key as well as a hash value 
thereof. The secret key is shared between the server and the TD. 
The TD sends the encrypted values to the adversary for submitting 
them to the server. After reception, the server first decrypts them 
and verifies their integrity before sending the random number 
back to the adversary as confirmation. The adversary provides this 
confirmation to the user and the user is convinced that the server 
received the correct message if and only if the confirmation 
corresponds to the previously entered random number. Since the 
adversary cannot break cryptography, the best strategy would be 
to guess the random number, which is not feasible for large 
enough numbers. In this setting the server cannot send any secret 
or authentic message to the user because the TD is not able to 
communicate with the user differently than through the adversary. 

Examples include smart cards in combination with class 2 readers. 
These readers provide a pin pad to prevent the platform from 
learning the PIN since it is directly entered into the trusted card 
reader. Because the adversary does not learn the PIN, unnoticed 
access to the smart card’s functionality is prevented. 

6.2.3 Unidirectional Communication from the Trust-
Base to the User 

The TD has an output interface such as a display or a speaker. The 
adversary learns every message sent by the user. Therefore A can 
learn every message sent by the user and again the adversary may 
learn the PIN to access TD’s functionality. It is possible to avoid 
this, for example, by displaying a randomly permuted pin pad on 

the untrusted platform’s display on which the user has to enter the 
PIN [4]. The corresponding permutation is displayed on the TD’s 
display. Every time the TD is accessed it challenges the user, 
using the output interface. Moreover, the TD’s output interface 
can be used to verify that the server received the correct message. 
To do so, the server sends confirmation messages, which the trust-
base is able to decrypt and verify. The verification result is then 
provided to the user. Hence, depending on the concrete 
implementation, secrecy and integrity from the user to the server 
as well as vice versa can be achieved. Thus, it overcomes the 
Secure Platform Problem but requires sophisticated user interfaces 
to assure secrecy and therefore lacks user-friendliness for practical 
applications. User-to-server-integrity can conveniently be 
achieved by individual verifiability. More specifically, the PTD’s 
trustworthy output interface can be used to verify information 
received by the server. 

Examples are smart cards and readers with only a confirmation 
display. The display can be used to verify data that will be 
processed by the smart card. Another example. Which is already 
widely applied in e-banking is transaction authentication. 
Confirmation information of every transaction entered by the user 
is sent over a dedicated channel to the user. The user verifies the 
correctness and authorizes the transaction. One concrete 
implementation is based on short messages and mobile phones as 
TDs. The user enters the desired transaction into the untrusted 
platform and sends it to the bank’s server. The server generates a 
transaction authentication number (TAN) and sends a short 
message containing the beneficiary’s account number, the amount, 
and the TAN to the user’s mobile phone. Now, the user verifies 
the correctness of the transaction information. If verifica- tion is 
successful, the user authorizes the transaction by entering the 
TAN into the untrusted platform to send it to the server. The 
server compares the received TAN with the expected TAN and 
accepts the transaction if they are equal. This concept could be 
used for internet voting to allow individual verification but it is 
only secure as long as the adversary cannot break confidentiality 
and integrity of the short messages sent by the authority’s server. 
Unfortunately today’s implementations cannot prevent either. 
Moreover, it is questionable whether it is reasonable to assume 
mobile phones to be trustworthy. In near future communication 
platforms may conflate and voting as well as short messaging may 
be performed using the same platform, which introduces the 
Secure Platform Problem again. 

6.2.4 Bidirectional Communication between the 
Trust-Base and the User 

The trust-base provides an input as well as an output interface to 
communicate with the user. In this setting the user may enter 
confidential messages directly into the TD. In contrast to the 
setting where communication exclusively takes place from the TD 
to the user, user-friendliness is improved because of the fact, that 
security-critical messages can directly be entered, thereby 
conveniently enabling user-to-server-secrecy. User-to-server-
integrity is based on the ability of the TD to encrypt (and sign) 
messages. This setting also allows individual verifiability based 
on the TD’s trustworthy output interface to the user. 

Examples are smart cards in combination with class 3 readers. 
These devices offer a high degree of security and a convenient 
way for the user to securely communicate with the trusted server. 
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More complex solutions allow the TD to directly communicate 
with the server using standard network communication protocols. 
The Zone Trusted Information Channel (ZTIC) [2][34] was 
recently developed by IBM and is widely deployed by a popular 
Swiss bank. The ZTIC is a networked USB-attached smart card 
reader for application and transaction authentication in e-banking. 
The device consists of a small display and a few buttons. Trans- 
actions with yet unknown recipients have to be verified by the 
payer using the device’s display and authorized by pressing a 
respective button on the device. The device communicates directly 
with the bank’s server using the untrusted platform as a network 
proxy only. Adapting such a solution for internet voting offers a 
high degree of security while being convenient with respect to 
user-friendliness. 

Borchert et al. propose the use of camera-equipped mobile phones 
for user and transaction authentication in e-banking. They provide 
a variety of ideas and implementations [4]. However, we do not 
consider mobile phones to be trustworthy for internet voting 
applications. 

7. CONCLUSION AND FUTURE WORK 
The Secure Platform Problem is one of the most serious problems 
in any online application and thus needs to be addressed in 
particular if it comes to e-governmental and internet voting 
applications. We introduced in this paper an adversary model that 
reflects the Secure Platform Problem as well as criteria which 
needs to be ensured in this model. We provided a taxonomy of 
approaches. We classified these approaches into those that aim to 
improve the trustworthiness of the user’s platform and those that 
distrust the user’s platform completely. We described and 
analyzed existing approaches to address the Secure Platform 
Problem in the context of remote electronic voting. The results 
can be summarized as followed:  

Distrusting the platform requires a secure channel directly from 
the user to the election authority’s server. This channel can be 
established either without or with trusted devices. We pointed out 
that approaches without trusted devices are more cost-efficient, 
while they also lack user-friendliness. 

Trusted Computing offers convenient options for highly security 
critical applications such as internet voting. However, it is unclear 
whether corresponding operating systems and software will be 
available and used by a sufficiently large group of users in the 
foreseeable future. We noted that one must still trust the various 
manufacturers to have properly implemented the Trusted 
Computing hardware and software. For political systems where 
users participate only every couple of years, e.g., in elections, 
codebook cryptography seems to offer the most promising 
solution approaches. Trusted devices without communication 
interface to the user are useless regarding the Secure Platform 
Problem, more sophisticated solutions have great advantages with 
respect to user-friendliness as well as concerning the level of 
security obtainable. The high operational costs for maintenance, 
distribution, and support may not be in due proportion to the 
benefits for many voting settings unless the devices can be used 
for other applications too (e.g., e-banking or other frequently used 
e-government services). However, in countries like Switzerland 
where all citizens participate at political decisions several times a 
year, the use of special-purpose trusted devices might be 
applicable. 

Thereby, we believe to raise awareness for the Secure Platform 
Problem that has been mostly neglected in past. We further 
believe that the results of this paper support decision makers in 
electronic government projects with an overview of the currently 
most relevant approaches to meet the Secure Platform Problem 
including their limitations. Additionally, we strongly believe that 
this paper encourage developers to integrate one or more of these 
approaches in their products, and researchers to find more 
adequate solutions. 

Combinations of the discussed approaches may have effects on 
the security properties as well as on user-friendliness. An example 
is the combination of vote updating with codebook cryptography 
in internet voting as it is implemented in the Norwegian system 
[18]. Therefore, as future work we plan to analyze different 
combinations of existing approaches. 

We exclusively focused on the client-side Secure Platform 
Problem and assumed the voter to be trustworthy. In specific 
settings like in internet voting this assumption does not 
necessarily hold. Therefore, we plan to examine existing  
approaches in the context of the entire voting system. 
Furthermore, it needs to be examined whether particular 
approaches impact verifiability or other important requirements 
which needs to be ensured in the context of internet voting. For 
instance, Code Voting requires a secure process for generating 
and distributing the code sheets since voter privacy must also hold 
against the authority. This will be part of future investigations, 
too. 
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