
410

The Secure Platform Problem
Taxonomy and Analysis of Existing Proposals to Address

this Problem
Michael Schläpfer

ETH Zurich
Universitätsstrasse 6

CH-8092 Zurich
+41 44 632 91 96

michschl@inf.ethz.ch

Melanie Volkamer
Technische Universität Darmstadt

Hochschulstrasse 10
64289 Darmstadt, Germany

+49 6151 16 5422
melanie.volkamer@cased.de

ABSTRACT
One of the main open issues in electronic government is the fact
that the individual users’ multi-purpose computing platforms are
used. In terms of security, no guarantee is given since these
platforms are not under the government authority’s control. Even
worse, the number of malware infected computing platforms
increases. This so-called Secure Platform Problem and approaches
aiming to solve it are objects of investigation in this work. We
define criteria that need to be ensured to address this problem.
Furthermore, we propose a taxonomy to classify existing
approaches. Based on the classification and the criteria, we
analyze the different types of approaches by providing concrete
examples. Hereby, we show that none of the existing approaches
fully meets our criteria. Thereby, we focus on the most security
critical class of electronic government services, namely electronic
voting over the Internet. However, most of the discussed
approaches as well as the criteria and classification can also be
applied to other governmental applications.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND
INFORMATION SYSTEMS]: Security and Protection –
Authentication, Invasive Software, Physical Security,
Unauthorized Access

General Terms
Security, Human Factors, Design, Reliability, Verification

Keywords
Electronic Government, Internet voting, Secure Platform Problem,
Insecure Client Problem, Untrusted Terminal Problem

1. INTRODUCTION
Web applications become more and more important and a

growing number of security-critical services are provided over the
Internet. The latest advances are, to provide citizens with
governmental services over the Internet, even with online voting
techniques for political elections and referenda what we refer to as
internet voting throughout this paper. One of the main open issues
of electronic government is that the individual user’s multi-
purpose computing platform is used as the interface to the service.
Since this platform is not under the authority’s control, no
security guarantees can be given. Even worse, the increasing
complexity of the operating systems leads to a growing number of
malware indicating that it is reasonable to not trust any user’s
personal computer at all. The same applies to mobile computing
platforms such as mobile phones and tablet computers. In the
context of internet voting, this so-called Secure Platform Problem
was first mentioned by Ron Rivest [24]. The problem is also
known as the Untrusted Terminal Problem or the Insecure Client
Problem and is not voting specific but applies to any electronic
communication application. However, compared to other
domains, the problem appears to be most influential in electronic
government services and especially in internet voting.
Vulnerabilities in voting systems endanger democracy in its
entirety. Furthermore, compared to other applications, voters have
to be anonymous in order to ensure ballot secrecy.

Many voting protocols, such as [5], [15], and [7] have been
proposed in the last thirty years and some have already been used
for legally binding elections on different levels. Examples include
Estonia, Switzerland, and the Netherlands (compare to [28] for an
overview of all three elections). But most of these voting
protocols and systems in use do not even mention the Secure
Platform Problem, while others trivially assume the voter’s
equipment to be trustworthy, arguing “up-to-date” operating
systems and anti-virus programs, as well as vote updating being
viable solutions to address the problem.

However, there exist few publications proposing solutions to
(partially) address the Secure Platform Problem in internet voting
[19][32]. In addition, several solutions for user and transaction
authentication in e-banking are available which can be adapted for
governmental web services like internet voting as we will show.
The fact that these proposed and existing techniques are rarely
applied in governmental web services, yields that the people in
charge are either not aware of the Secure Platform Problem or the
approaches are not known enough, yet. This is not surprising as
there is no comprehensive document describing the different

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
ICEGOV '12, October 22 - 25 2012, Albany, NY, USA
Copyright 2012 ACM 978-1-4503-1200-4/12/10...$15.00

411

concepts including their advantages and disadvantages as well as
the remaining risks.

This work aims to narrow this gap. We present a taxonomy to
categorize existing approaches and define criteria, an adequate
solution for the Secure Platform Problem should meet.
Furthermore, we provide an overview of existing proposals to
address the Secure Platform Problem proposed for different
applications and analyze them according to the previously defined
criteria.

Furthermore, we intend to raise awareness for this problem that is
mostly neglected and to support decision makers in electronic
government projects with an overview of the currently most
relevant approaches to meet the Secure Platform Problem
including their limitations. Additionally it should encourage
developers to integrate one or more of these approaches in their
products, and researchers to find more adequate solutions.

1.1 Related Work
To our knowledge, no comprehensive overview and discussion of
solution approaches for the Secure Platform Problem exists.
However there are few works addressing subsets of existing
approaches.

The author of [32] describes and compares five different
approaches to address the problem. The discussion is brief and
does only address a fraction of the approaches discussed in this
work.

[19] provides a good introduction and overview of the Secure
Platform Problem. The author classifies some meaningful
approaches and concludes that dedicated hardware devices can
provide the highest security level against the Secure Platform
Problem while he does not analyze this branch of solutions in any
detail due to the expected costs for development, distribution and
maintenance.

The common conclusion of the above authors is that none of the
existing approaches is applicable for large-scale elections.

1.2 Structure of this Work
Section 2 provides an overview of the Secure Platform Problem.
We introduce a new informal adversary model and express the
adversary’s capabilities. In Sect. 3 we formulate the criteria we
used to discuss the different existing solution approaches as well
as a simple taxonomy, which serves to classify the approaches in
Sects. 4 – 6. Section 7 concludes this work and summarizes some
open issues for future work.

2. PROBLEM DESCRIPTION
In this section, we explain the Secure Platform Problem and
define a new adequate adversary model.

In the context of security critical communication an adversary’s
ultimate goal is to violate confidentiality and/or integrity of
messages sent and received by users. For the purpose of this paper
we define a powerful adversary capable of entirely controlling the
platform of the user. Thus, the adversary does not only control the
network between the user’s computing platform and the
authority’s trusted server, but also acts as the user’s interface to
the network. We abstract from the untrusted platform and assume

it to be part of the adversary-controlled network. Communication
takes place between the user and the adversary as well as between
the server and the adversary. Hence, all communication between
the user and the server is sent through the adversary. Note that the
user is not a machine but human and thus is very limited in terms
of computation power and memory. Fig. 1 depicts our adversary
model. This model extends the common formal protocol analysis
models based on the well-known Dolev-Yao-style adversary [8].

Figure 1. Secure Platform Problem Adversary Model

We add a trust-base to our model, in order to address those
approaches, which introduce techniques to execute certain
trustworthy functionality outside the influence of the adversary.
The functionality and especially the communication capabilities of
the trust-base depend on the individual approaches as well as on
the respective implementation details.

Since we focus on the client-side Secure Platform Problem only,
we assume the server-side as well as the user to be trustworthy.
More specifically, we do not consider the case where users intend
to collaborate with the adversary as it would be the case for vote
selling in internet voting. Furthermore we do not take into account
the adversary to be physically present to influence the user.

Our adversary model yields the following capabilities. We recap
the fundamental capabilities of the Dolev-Yao adversary and
extend them with human capabilities. In particular we assume that
the adversary:

o can learn messages sent from the user to the untrusted
platform;

o can learn messages sent from the server to the network and
further to an untrusted platform;

o can learn messages sent from the trust-base to an untrusted
platform or directly to the network;

o can drop messages to replace them with own messages1

o can manipulate and fabricate arbitrary messages according to
publicly known knowledge and previously sent messages;

;

o can perform every publicly known function;
o knows all implementation details of all used systems;
o can act as a human2

Although the above assumptions describe a powerful adversary,
the capabilities are limited. In particular, the adversary:

.

1 We do not consider denial-of-service attacks in this work.
2 Note, for example, that strategies against Completely Automated

Public Turing tests to tell Computers and Humans Apart
(CAPTCHAs) exist.

412

o cannot break cryptography;
o cannot overhear or manipulate communication between the

user and the trust-base;
o cannot access knowledge dedicated to the user, the trust-base

or the server;
o cannot manipulate the trust-base.

3. EXISTING APPROACHES
In this section, we introduce the properties that will be used to
later on discuss and compare existing approaches. While we are
mainly interested in confidentiality and integrity of messages, we
settle for the following more precise definitions and describe how
they are related. Note that the following criteria and taxonomy
hold for security-critical systems in general. However, we will
take internet voting and corresponding solutions as an example to
discuss the different approach classes in Sects. 4 – 6.

3.1 Criteria
While we are mainly interested in confidentiality and integrity of
messages, we settle for the following more precise definitions and
describe how they are related.

3.1.1 Confidentiality
An approach supports user-to-server-secrecy if it is not possible
for the adversary to learn a secret that the user submitted to server.
This means that the user has the opportunity to submit a message
secretly to the authority’s server and hence privacy holds.

3.1.2 Integrity
If it is possible for the server to verify the integrity and
authenticity of a received message with respect to the user-sent
message, we say the approach supports user-to-server-integrity.
Note that individual verifiability in internet voting allows the
voter to verify that the server correctly received the voter’s ballot.
But this is not enough to ensure vote integrity since the voter must
also be given the possibility to complain in the case the
verification fails. Moreover, individual verifiability also requires
integrity and authenticity of messages sent from the server to the
user in order for the user to be able to verify what message the
server actually received. From the authority’s perspective, vote
integrity is then given by the fact that the user did not complain.

3.1.3 Further Criteria
Especially but not exclusively in internet voting, an application
should provide anonymity. We say an approach supports user-
anonymity if it is not possible for the adversary to reveal the
origin of a message sent to the server. Note that it is possible for a
user to send messages that are not secret but cannot be linked to
the sender and thus privacy holds too.

Beside security properties other non-functional properties such as
user-friendliness, cost-efficiency, and practicality for large-scale
settings must be considered as well. Although we focus on
security, we also discuss these properties where it applies but we
do not define any measurement for that.

3.2 Taxonomy of Approaches
Following, we propose a taxonomy to give an overview and to
classify the different approaches. In scientific literature mainly
two different classes of solutions for the Secure Platform Problem
can be found. While one class aims to make the platform
trustworthy, the other class of approaches assumes the user’s
platform to be insecure. See Fig. 2 for an overview of the classes
that are covered in this work.

In the following sections we refer to this taxonomy, summarize
concrete examples, and discuss them according to the above
criteria. Particularly, Sect. 4 examines approaches to make the
platform trustworthy. Approaches distrusting the user’s platform
are discussed in Sect. 5, where we summarize approaches without
trusted devices and Sect. 6, where we discuss solutions based on
dedicated trusted devices.

Figure 2. Taxonomy of Analyzed Approaches

4. TRUSTWORTHY PLATFORM
Approaches in this category aim to improve the user’s platform
integrity in a way that it becomes trustworthy. These approaches
lead to the situation where the platform becomes the trust-base
and users no longer access the communication interface to the
adversary.

4.1 Trusted Computing
The key idea of applying Trusted Computing [29] techniques to
overcome the Secure Platform Problem is to use an appropriate
security architecture based on a security kernel and special
Trusted Computing hardware. [1] and [33] discuss the application
of this approach for internet voting in detail.

Trusted Computing efficiently overcomes malicious software on
the user’s computing platform because an eligible message can
only be created after successful verification of the system’s
integrity. However, there are still open problems with Trusted
Computing, such as in remote attestation [31]. Moreover, the
concept is not widespread enough, users might already have a
personal computer with integrated Trusted Platform Module but
the security architecture and security kernel are still missing. It is
questionable whether or not this technique will be applied on a
large scale in near future. However, the approach would allow
convenient and user-friendly solutions for secure services, even
for internet voting as this would all run in the background.

4.2 Bootable Clean Operating System
Otten [22] recommended developing a special voting operating
system based on an open-source operating system that boots and
runs directly from a read-only data medium such as a CD or DVD.
This medium would then be distributed to all users. After having

413

received, users need to configure their computer to boot from this
medium. Additional security checks and secure distribution are
required to overcome the risk of getting a malicious medium that,
for example, communicates with a malicious server.

While this approach overcomes many Secure Platform Problem
related issues, it does not meet the particular problem of a
manipulated BIOS. Such an attack allows the adversary to load a
malicious environment in which the secure operating system is
virtually executed without the user or the authority noticing it.
Avoiding this kind of attack is only possible by applying Trusted
Computing hardware as described before. Therefore, it does not
ensure secrecy, nor integrity in our adversary model. However one
has to keep in mind that developing such low-level attacks is not a
trivial task and an adversary would have to cope with a variety of
different hardware settings to successfully mount a large-scale
attack in such a setting. Challenges include developing a CD or
DVD that boots from all the different hardware and software
settings around and that all necessary drivers are provided to be
able to automatically connect to the Internet. This may lead to
high development, distribution, and maintenance costs. Another
difficulty for the authority is to verify that users really used the
clean operating system and that it was running on hardware, not in
a virtual machine potentially under the adversary’s control.

4.3 Guidelines and Education
A simple approach to address the Secure Platform Problem is the
provision of special guidelines and the education of users in how
to protect their own computer systems from malware. Examples
include the guidelines provided for the student elections in
Austria [30] and those developed by the German society of
computer scientists [11]. They include information about software
updating, firewall-settings and how to verify SSL certificates.

This approach claims to reduce the probability that malware
infects a user’s system. However, only standard and well-known
attacks can be prevented and it is questionable whether a
sufficient fraction of users are able to follow the guidelines and to
really protect their systems. In addition, users cannot be forced to
apply the security guidelines. Regarding user-friendliness, it is
likely that many users would not follow the instructions because
of additional work. Note that in contrast to e-banking the laziness
of an individual user in e-voting not only impacts herself but the
outcome of the election, i.e., the entirety of the participating users
is affected. Furthermore, an adversary could distribute modified
guidelines to mislead inexperienced users to behave incorrectly
and thus to put themselves at risk.

5. WITHOUT TRUSTED DEVICES
Distrusting the user’s computing platform leads to the need of
establishing a secure channel directly between the user and the
server. This channel can either be established using cryptography
or by an out-of-band channel that is not under the adversary’s
control.

5.1 Human-Computer Cryptography
Human-computer or paper-and-pencil cryptography has a long
history and given enough time, pencils, and paper, humans may
theoretically perform every computation a computer can do. In
terms of our model, such approaches aim to provide the user with

the capabilities to encrypt and authenticate messages directly.
Hence, a trust-base is not needed and all the defined security
properties can be achieved. However, the vast majority of humans
lack sufficient memory and computation power to perform strong
cryptographic operations in a reasonable amount of time.
Nevertheless, some interesting approaches such as [16] and
Schneier’s Solitaire algorithm [27] were proposed. For example,
in Solitaire the randomness in a shuffled deck of playing cards is
used for the encryption of messages but the approach has some
weaknesses.

Bertà examined in [3] the human limitations with respect to
encrypting and authenticating sufficiently large messages in
practical settings. He concludes that no sufficiently strong
cryptographic protocol to encrypt or authenticate messages exists
such that humans could apply it.

Because of the obvious lack of user-friendliness we do not
consider human-computer cryptography as a practical solution for
the Secure Platform Problem.

5.2 Codebook Cryptography
Although humans are not good in performing reasonably strong
cryptographic operations, they are considerably strong in
comparing patterns. This fact is exploited by the concept of
codebook cryptography. The idea is that prior to the
communication, the trusted server encrypts all possible messages
and then distributes the corresponding codebook, i.e., the clear-
text / cipher-text mapping, over an out-of-band channel3

Following we present some widely discussed examples of this
approach for electronic voting.

 to the
user. The user chooses a clear-text message and looks up the
corresponding cipher-text (code) to be entered into the untrusted
platform. The platform then sends the cipher-text to the server.
Hence, the adversary does not learn the clear-text message and
since not in possession of the codebook, the adversary cannot
replace the message with another one that is accepted by the
server. Thus, this approach is resilient against the Secure Platform
Problem but needs a secure out-of-band channel for distribution.

5.2.1 Code Voting
Chaum was the first who applied this concept to internet voting
[5]. The key idea of Code Voting is that the user gets a code sheet
together with the general election information via mail. The code
sheet links each candidate or party to a random alphanumeric
code. In order to cast a vote for a specific candidate, the user
enters the corresponding code into a text-field. This code is
submitted to the authority that is able to derive the user’s choice
by mapping the code back to the candidate. Since not in
possession of the code sheet, the untrusted platform (i.e., the
adversary) can neither derive the user’s choice nor change the
ballot’s content to another meaningful choice. Helbach and
Schwenk [14] as well as Oppliger et al. [20] proposed different
improvements like additional verification codes that are sent back
from the server for individual verifiability. To overcome the vote-
buying problem the authors in [21] introduced an additional
finalization code. Ryan et al. recently suggested in [26] and [13]

3 In this case the trust-base represents the out-of-band channel that

provides confidentiality and integrity of the received codebook.

414

to use Code Voting in combination with Prêt-à-Voter in order to
allow individual verifiability. In this approach, the server can only
send a valid confirmation code to the user if a majority of trustees
confirm the correct recording of the voting code that was sent by
the user. The main disadvantage of the Code Voting approach
concerns user-friendliness, which decreases in particular for
implementing complex ballots with multiple candidates to choose
from. In addition, a trusted procedure to generate and distribute
the code sheets is required what introduces additional complexity
and costs.

5.2.2 Prêt-à-Voter
Another elegant implementation of codebook cryptography can be
found in Prêt-à-Voter [25], where the candidate list is permuted
and the permutation is encrypted. While Prêt-à-Voter was
proposed for poll-site-based settings, it could be adapted for
internet voting too. The user receives the ballot paper with the
permuted list of candidates and the encryption of the permutation
via mail. Then, she enters the index of the chosen candidate
together with the encryption of the permutation (which could also
serve as a ballot sequence number). The permutation is decrypted
by the authority’s server and is used to derive the user’s choice.
However, since using a permuted list of valid choices, the
platform, although not able to learn the user’s choice, can mount a
randomization attack by choosing a different index and therefore
user-to-server-integrity is not provided while secrecy holds.

5.2.3 CAPTCHA
In [21] the authors propose the application of visual CAPTCHAs
(Completely Automated Public Turing test to tell Computers and
Humans Apart) to overcome the Secure Platform Problem.
Candidates are displayed in a random order and represented by
visual CAPTCHAs. This approach is simple to be integrated in
any internet voting system. Its user-friendliness is questionable.
While people might know this kind of images from other
applications, it is often difficult to figure out what is displayed.
Besides the fact that our model assumes an adversary with human
capabilities, who is able to solve CAPTCHAs, it is particularly
easy for the adversary to perform a randomization attack by just
randomly choose a CAPTCHA different from the user-chosen
one. A more advanced approach is discussed in [23]. Here,
arbitrary CAPTCHAs, which are not related to the candidates’
names, appear next to the actual candidate’s name, while the
candidate order can stay as it is. The user decodes the CAPTCHA
related to her favorite candidate and enters the resulting code into
a text-field. Automated breaking of these CAPTCHAs becomes
more difficult because of the fact that the adversary does not know
the encoded clear-text in advance. However, it still does not solve
the Secure Platform Problem in our adversary model.

5.3 Procedural Approaches
Some approaches suggest adapting the voting process in order to
overcome various problems in internet voting. Some of the
proposals can even be applied to mitigate the Secure Platform
Problem and are therefore discussed here.

5.3.1 Vote-Updating
The general idea of vote-updating is that the user can update the
electronic vote as often as she wants, ideally from different

devices. In hybrid systems, the user can even replace the
electronic vote on election day by a traditional paper ballot at the
polling station. There are several different approaches to enable
vote-updating, while they have different advantages and
disadvantages as shown in [12].

Enabling vote-updating, the adversary looses certainty about how
the user really voted since she may have used another device or
went to the polling station on election day to cast a different vote.
Correspondingly, the adversary will not know for sure whether the
modifications will influence the result or not. Of course, this only
applies if the votes cannot be linked to the users.

Vote-updating helps particularly in the case where users distrust
the voting system after casting their vote. For instance, this is the
case when they misinterpret information presented to them, detect
malware on their computers, or if they are not convinced that the
ballot was properly sent and stored. However, statistics in Estonia,
where internet voting, is used for political elections since 2007,
indicate that only few people update their vote [9]. It might be the
case that very few incidents happen but more likely most users are
simply not able to notice manipulations and blindly trust their
systems.

Vote-updating is easy to implement and to understand by users.
However, a challenge is to ensure that only one vote is counted
and no problems with replay-attacks or delays on the network can
cause that an earlier cast valid vote is counted. Opponents of vote-
updating argue that this approach influences the value and
character of an election. They argue that the act of casting a vote
is something special and should not be repeatable because
otherwise it might get the character of a game.

5.3.2 Anonymous Voting
Anonymous voting allows the user to cast a ballot without the
adversary being able to link the ballot to its origin. The following
protocol serves as simple example for anonymous voting. Prior to
the election the user gets an official letter from the election
authority, containing credentials that allow the person in
possession of these credentials to cast exactly one eligible ballot
and the authority does not know who got what credential. Now
the user uses a public computer in an internet cafe that cannot be
associated to her and enters the received credentials to prove
eligibility. Then she enters the favorite candidate and submits the
vote together with the credentials to the election authority’s
server. The adversary learns the candidate whom was voted for
but does not learn who voted. Hence, voter privacy holds. It is
obvious that in this simple example neither secrecy nor integrity
holds, unless combined with other approaches. A more advanced
example for this category is based on blind signature schemes that
have been proposed for the first time in [10] and was later used in
many other protocol proposals. While this approach is more
sophisticated from a cryptographic point of view, it does address
the Secure Platform Problem to the same extent as the simple
protocol above. Under the assumption that the untrusted system
does not know the identity of the user who is using it, user-
anonymity is given but neither secrecy, nor integrity.

5.3.3 Test Ballots
Test ballots are dedicated ballots the adversary cannot distinguish
from real ones. The user casts one real ballot and some test ballots

415

in random order. Since the adversary does not know the real ballot
he may manipulate one or more test ballots. After the election, the
processing of all test ballots is made fully transparent to a group
of auditors or even to the public for verification. Successful
attacks require the adversary to manipulate a large number of
votes and therefore it is likely to detect at least a fraction of the
manipulations. The approach does not provide integrity of the real
vote itself but strongly indicates possible manipulations by
analyzing the proper handling of the test ballots. To detect
manipulations in the context of the Secure Platform Problem, the
test ballots must be individually verifiable by the user. Hence, the
test ballots are exposed after the election’s vote casting phase and
the adversary learns the real ballot.

6. TRUSTED DEVICES
In the context of e-banking, a variety of technical solutions for
user and transaction authentication have been presented and even
deployed on a large scale. In the following we will analyze these
approaches regarding the security criteria that we defined and give
some hints on how such approaches could be adapted to internet
voting.

Solutions based on trusted devices can be classified into
standalone approaches, where the trusted device (TD) is not
attached to the user’s untrusted platform, and connected
approaches, where the trusted device is connected to the
adversary, for example, to the user’s platform. The term trusted
indicates that users must trust the devices to offer trustworthy
functionalities and that they securely store confidential data. If the
device additionally stores a specific user’s secret information,
such as cryptographic keys, we call the device a personal trusted
device (PTD). Examples of personal trusted devices are smart
cards. They can perform certain cryptographic operations and
store individual secret information, i.e., the user’s secret key.
Since additional devices are required to access the smart cards,
users need to trust these devices too. Hence, in smart card based
approaches the card readers are also part of the trusted device. In
our model, the trust-base is the user’s smart card including the
reader that is used to access the card.

6.1 Standalone Trusted Devices
Standalone trusted devices could be seen as calculators. The user
communicates directly with the device and no communication
takes place between the trusted device and any other party than
the user.

Challenge-response authentication protocols for e-banking
solutions that use a smart card reader with a pin pad and a display
are an example for this category of approaches. The bank first
sends a challenge code through the user’s untrusted platform to
the user who in turn enters this code into the card reader together
with the bankcard’s PIN (personal identification number) for
accessing the card. The card then computes a MAC (message
authentication code)4

4 Other cryptographic operations can be used and in practice,

asymmetric cryptography is often applied, where the challenge
code is signed using the secret key stored on the card.

 of the challenge code and secret information
stored on the card. This MAC is displayed to the user through the
reader’s display. Finally, the user enters the MAC into the

untrusted platform and submits it back to the bank. If the response
code corresponds to a valid MAC, the bank is convinced that the
correct card (containing the secret information) as well as a person
who knows the correct PIN to access the card are involved in the
protocol run.

To adapt this approach to internet voting, such a device could be
used to encrypt and authenticate the ballot. The user enters the
candidate choice directly into the PTD and gets back an encrypted
ballot, for example, represented as an alphanumeric code. The
user enters the encrypted ballot into her untrusted platform and
submits it to the server. Such an approach can be used to provide
“digital” code voting without a separated out-of-band channel.
The initial vote codes are digitally provided to the users via their
untrusted platforms. The vote codes are then used like the
challenges in the above described challenge-response authentica-
tion example. The user enters the MAC of a secret key and the
vote code that corresponds to her choice into the untrusted
platform to submit this vote to the server. The authority in
possession of the same secret key computes the MACs for all
candidate codes and compares them with the received MAC to
derive the user’s choice. Furthermore, the server could again
compute the MAC of the received MAC and send it back to the
user as a confirmation code that can be verified by the user when
again performing the same operation using the PTD. In practice a
more sophisticated scheme is required to prevent the authority
from learning individual users’ votes.

Since no clear-text referring to a user’s choice is submitted to the
adversary, the approach supports user-to-server-secrecy. The other
way round the user can use the trust-base to decrypt messages
encrypted by the server. The setting provides user-to-server-
integrity if combined with a verifiable confirmation code as
described above. However, user-friendliness is questionable since
the user must relay all encrypted communication between the
trust-base and the server. In the case of a few short codes, this
may be applicable but not necessarily in complex elections where
the user must choose multiple candidates.

6.2 Connected Trusted Devices
In contrast to standalone TDs, connected TDs are attached to the
adversary, in most cases to the user’s untrusted platform, thus
there is a communication channel between the adversary and the
trust-base. Simple approaches offer specific functionalities to the
platform they are attached to such as securely storing secret
information. More sophisticated networked devices are able to
directly communicate with the remote server. Generally, the more
functionalities a TD offers, the more vulnerabilities may occur.
However, in our model we limited the adversary’s capabilities by
assuming that the adversary cannot manipulate the trust-base.

The communication interfaces of a connected TD directly affect
the possible security guarantees of any protocol making use of it.
To make this clear, we will summarize the possible
communication capabilities of the trust-base, provide examples,
and discuss the properties of each setting.

6.2.1 No Communication Between User and Trust-
Base

The trust-base has no interface to communicate with the user and
all communication is based on the untrusted platform (which is

416

part of the adversary). Particularly the user can only communicate
with the adversary and neither secrecy nor integrity can be
achieved with respect to our model. The only guarantee in this
setting is that during the protocol run, the TD is attached to a
computer, which is reachable by the adversary.

Widely deployed examples for this setting are smart cards in
combination with class 1 card readers directly attached to the
platform via USB. Unfortunately, the adversary immediately
learns every message sent by the user, particularly the PIN that
protects access to the card. Hence, after the first time the user
enters the PIN, the adversary may arbitrarily use the card and
perform whatever cryptographic operation the smart card offers,
as long as it is attached to the untrusted platform. Applying this to
internet voting the user does not know what is being processed by
the TD and in a setting where vote updating is allowed, the user
does not even notice that the smart card is being used at a later
time to replace a vote. Another example are hardware tokens like
the mIDentity developed by Kobil [17] for e-banking and other
sensitive applications where a browser runs in a “secure”
environment on the TD. However, as there is no communication
between the trust-base and the user none of the defined security
properties are guaranteed with respect to our model.

6.2.2 Unidirectional Communication from the User
to the Trust-Base

The TD provides an input interface to the user such as a pin pad
and the user can send clear-text messages to the TD, which are
encrypted afterwards. Hence, such approaches provide user-to-
server-secrecy as well as user-to-server-integrity. Depending on
the protocol, the user can even verify the correct reception of the
message (individual verifiability). To do so, the user enters her
choice together with a random number into the TD, which in turn
encrypts these messages with a secret key as well as a hash value
thereof. The secret key is shared between the server and the TD.
The TD sends the encrypted values to the adversary for submitting
them to the server. After reception, the server first decrypts them
and verifies their integrity before sending the random number
back to the adversary as confirmation. The adversary provides this
confirmation to the user and the user is convinced that the server
received the correct message if and only if the confirmation
corresponds to the previously entered random number. Since the
adversary cannot break cryptography, the best strategy would be
to guess the random number, which is not feasible for large
enough numbers. In this setting the server cannot send any secret
or authentic message to the user because the TD is not able to
communicate with the user differently than through the adversary.

Examples include smart cards in combination with class 2 readers.
These readers provide a pin pad to prevent the platform from
learning the PIN since it is directly entered into the trusted card
reader. Because the adversary does not learn the PIN, unnoticed
access to the smart card’s functionality is prevented.

6.2.3 Unidirectional Communication from the Trust-
Base to the User

The TD has an output interface such as a display or a speaker. The
adversary learns every message sent by the user. Therefore A can
learn every message sent by the user and again the adversary may
learn the PIN to access TD’s functionality. It is possible to avoid
this, for example, by displaying a randomly permuted pin pad on

the untrusted platform’s display on which the user has to enter the
PIN [4]. The corresponding permutation is displayed on the TD’s
display. Every time the TD is accessed it challenges the user,
using the output interface. Moreover, the TD’s output interface
can be used to verify that the server received the correct message.
To do so, the server sends confirmation messages, which the trust-
base is able to decrypt and verify. The verification result is then
provided to the user. Hence, depending on the concrete
implementation, secrecy and integrity from the user to the server
as well as vice versa can be achieved. Thus, it overcomes the
Secure Platform Problem but requires sophisticated user interfaces
to assure secrecy and therefore lacks user-friendliness for practical
applications. User-to-server-integrity can conveniently be
achieved by individual verifiability. More specifically, the PTD’s
trustworthy output interface can be used to verify information
received by the server.

Examples are smart cards and readers with only a confirmation
display. The display can be used to verify data that will be
processed by the smart card. Another example. Which is already
widely applied in e-banking is transaction authentication.
Confirmation information of every transaction entered by the user
is sent over a dedicated channel to the user. The user verifies the
correctness and authorizes the transaction. One concrete
implementation is based on short messages and mobile phones as
TDs. The user enters the desired transaction into the untrusted
platform and sends it to the bank’s server. The server generates a
transaction authentication number (TAN) and sends a short
message containing the beneficiary’s account number, the amount,
and the TAN to the user’s mobile phone. Now, the user verifies
the correctness of the transaction information. If verifica- tion is
successful, the user authorizes the transaction by entering the
TAN into the untrusted platform to send it to the server. The
server compares the received TAN with the expected TAN and
accepts the transaction if they are equal. This concept could be
used for internet voting to allow individual verification but it is
only secure as long as the adversary cannot break confidentiality
and integrity of the short messages sent by the authority’s server.
Unfortunately today’s implementations cannot prevent either.
Moreover, it is questionable whether it is reasonable to assume
mobile phones to be trustworthy. In near future communication
platforms may conflate and voting as well as short messaging may
be performed using the same platform, which introduces the
Secure Platform Problem again.

6.2.4 Bidirectional Communication between the
Trust-Base and the User

The trust-base provides an input as well as an output interface to
communicate with the user. In this setting the user may enter
confidential messages directly into the TD. In contrast to the
setting where communication exclusively takes place from the TD
to the user, user-friendliness is improved because of the fact, that
security-critical messages can directly be entered, thereby
conveniently enabling user-to-server-secrecy. User-to-server-
integrity is based on the ability of the TD to encrypt (and sign)
messages. This setting also allows individual verifiability based
on the TD’s trustworthy output interface to the user.

Examples are smart cards in combination with class 3 readers.
These devices offer a high degree of security and a convenient
way for the user to securely communicate with the trusted server.

417

More complex solutions allow the TD to directly communicate
with the server using standard network communication protocols.
The Zone Trusted Information Channel (ZTIC) [2][34] was
recently developed by IBM and is widely deployed by a popular
Swiss bank. The ZTIC is a networked USB-attached smart card
reader for application and transaction authentication in e-banking.
The device consists of a small display and a few buttons. Trans-
actions with yet unknown recipients have to be verified by the
payer using the device’s display and authorized by pressing a
respective button on the device. The device communicates directly
with the bank’s server using the untrusted platform as a network
proxy only. Adapting such a solution for internet voting offers a
high degree of security while being convenient with respect to
user-friendliness.

Borchert et al. propose the use of camera-equipped mobile phones
for user and transaction authentication in e-banking. They provide
a variety of ideas and implementations [4]. However, we do not
consider mobile phones to be trustworthy for internet voting
applications.

7. CONCLUSION AND FUTURE WORK
The Secure Platform Problem is one of the most serious problems
in any online application and thus needs to be addressed in
particular if it comes to e-governmental and internet voting
applications. We introduced in this paper an adversary model that
reflects the Secure Platform Problem as well as criteria which
needs to be ensured in this model. We provided a taxonomy of
approaches. We classified these approaches into those that aim to
improve the trustworthiness of the user’s platform and those that
distrust the user’s platform completely. We described and
analyzed existing approaches to address the Secure Platform
Problem in the context of remote electronic voting. The results
can be summarized as followed:

Distrusting the platform requires a secure channel directly from
the user to the election authority’s server. This channel can be
established either without or with trusted devices. We pointed out
that approaches without trusted devices are more cost-efficient,
while they also lack user-friendliness.

Trusted Computing offers convenient options for highly security
critical applications such as internet voting. However, it is unclear
whether corresponding operating systems and software will be
available and used by a sufficiently large group of users in the
foreseeable future. We noted that one must still trust the various
manufacturers to have properly implemented the Trusted
Computing hardware and software. For political systems where
users participate only every couple of years, e.g., in elections,
codebook cryptography seems to offer the most promising
solution approaches. Trusted devices without communication
interface to the user are useless regarding the Secure Platform
Problem, more sophisticated solutions have great advantages with
respect to user-friendliness as well as concerning the level of
security obtainable. The high operational costs for maintenance,
distribution, and support may not be in due proportion to the
benefits for many voting settings unless the devices can be used
for other applications too (e.g., e-banking or other frequently used
e-government services). However, in countries like Switzerland
where all citizens participate at political decisions several times a
year, the use of special-purpose trusted devices might be
applicable.

Thereby, we believe to raise awareness for the Secure Platform
Problem that has been mostly neglected in past. We further
believe that the results of this paper support decision makers in
electronic government projects with an overview of the currently
most relevant approaches to meet the Secure Platform Problem
including their limitations. Additionally, we strongly believe that
this paper encourage developers to integrate one or more of these
approaches in their products, and researchers to find more
adequate solutions.

Combinations of the discussed approaches may have effects on
the security properties as well as on user-friendliness. An example
is the combination of vote updating with codebook cryptography
in internet voting as it is implemented in the Norwegian system
[18]. Therefore, as future work we plan to analyze different
combinations of existing approaches.

We exclusively focused on the client-side Secure Platform
Problem and assumed the voter to be trustworthy. In specific
settings like in internet voting this assumption does not
necessarily hold. Therefore, we plan to examine existing
approaches in the context of the entire voting system.
Furthermore, it needs to be examined whether particular
approaches impact verifiability or other important requirements
which needs to be ensured in the context of internet voting. For
instance, Code Voting requires a secure process for generating
and distributing the code sheets since voter privacy must also hold
against the authority. This will be part of future investigations,
too.

8. ACKNOWLEDGEMENTS
We would like to thank Rolf Oppliger and the members of the
Swiss E-Voting Competence Center for the fruitful discussions
and valuable inputs. This research is partly supported by the Swiss
Federal Chancellery.

9. REFERENCES
[1] A. Alkassar, A.R. Sadeghi, S. Schulz, and M. Volkamer.

Towards Trustworthy Online Voting. In Proceedings of the
1st Benelux Workshop on Information and System Security–
WISSec, 2006.

[2] M. Baentsch, P. Buhler, R. Hermann, F. Höring, T. Kramp,
and T. Weigold. A Banking Server’s Display on Your Key
Chain. ERCIM News, pages 44–45, 2008.

[3] I.Z. Berta and I. Vajda. Limitations of humans when using
malicious terminals. Tatra Mountains Mathematical
Publications, 29:1–16, 2004.

[4] B. Borchert. Trojanersichere Online Accounts. http://www-
ti.informatik.uni-tuebingen.de/~borchert/Troja/.

[5] David Chaum: Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Commun. ACM 24(2):
pages 84-88. 1981.

[6] D. Chaum. Surevote: technical overview. In Proceedings of
the Workshop on Trustworthy Elections (WOTE’01), 2001.

[7] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward
a secure voting system. IEEE Symposium on Security and
Privacy, pages 354–368, May 2008.

418

[8] D. Dolev and A. Yao. On the Security of Public Key
Protocols. IEEE Transactions on Information Theory,
29(2):198-208, 1983

[9] Estonia. Statistics of Internet Elections in Estonia.
http://www.vvk.ee/ voting-methods-in-
estonia/engindex/statistics.

[10] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret
voting scheme for large scale elections. In Proceedings of the
Workshop on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, ASIACRYPT ’92,
pages 244– 251, London, UK, Springer, 1993.

[11] Gesellschaft für Informatik. Information für GI-Mitglieder zu
möglichen Sicherheitsproblemen auf Client-seite bei
Vorstands- und Präsidiumswahlen mit dem
Onlinewahlverfahren. Technical report, https://www.gi-
ev.de/fileadmin/redaktion/Wahlen/handreichungen_gi_onlin
ewahlen.pdf, 2007.

[12] R. Grimm and M. Volkamer. Multiple Cast in Online Voting
- Analyzing Chances. In R. Krimmer, editor, Electronic
Voting 2006 - 2nd International Conference, volume 86 of
LNI, pages 97–106, Bonn, 2006.

[13] J. Heather, P. Y. A. Ryan, and V. Teague. Pretty good
democracy for more expressive voting schemes. In
ESORICS, pages 405–423, 2010.

[14] J. Helbach and J. Schwenk. Secure Internet Voting with
Code Sheets. In VOTE-ID, pages 166–177. Springer, 2007.

[15] M. Hirt and K. Sako. Efficient receipt-free voting based on
homomorphic encryption. 19th international conference on
Theory and application of cryptographic techniques, pages
539–556, 2000.

[16] T. Matsumoto. Human-computer cryptography: An attempt.
In Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pages 68–75. ACM, 1996.

[17] mIDentity from KOBIL.
http://www.kobil.com/index.php?id=49&L=0.

[18] H. Nore. Open source remote electronic voting in norway.
Presentation at the Council of Europe, Strasbourg 16/11-
2010, 2010.

[19] R. Oppliger. How to address the secure platform problem for
remote internetvoting. SIS, 2:153–173.

[20] R. Oppliger, J. Schwenk, and J. Helbach. Protecting Code
Voting Against Vote Selling. In Sicherheit, pages 193–204,
2008.

[21] R. Oppliger, J. Schwenk, and C. Löhr. Captcha-based code
voting. In R. Krimmer and R. Grimm, editors, Electronic
Voting, volume 131 of LNI, pages 223–222. GI, 2008.

[22] D. Otten. Mehr Demokratie durch Internetwahlen?
Presentation at Nixdorf Forum, Paderborn, 2005.

[23] S. Popoveniuc and P. L. Vora. Remote ballot casting with
captchas.
http://www.seas.gwu.edu/~poorvi/RemoteBallotCasting.pdf,
2008.

[24] R.L. Rivest. Electronic voting. In Proceedings of Financial
Cryptography 01, pages  243 –268. Springer, 2001.

[25] P. Ryan and S. Schneider. Prêt à Voter with Re-encryption
Mixes. In Proceedings  of Computer Security, ESORICS
2006, pages 313–326. Springer, 2006.

[26] P.Y.A. Ryan and V. Teague. Pretty good democracy. In
Proceedings of the 17th International Workshop on Security
Protocols, Cambridge, UK, 2009.

[27] B. Schneier. The solitaire encryption algorithm,
http://www.schneier.com/solitaire.html, 1999.

[28] G. Schryen and E. Rich. Security in Large-Scale Internet
Elections: A Retrospective  An alysis of Elections in
Estonia, the Netherlands, and Switzerland. Trans. Info. For.
 Sec., 4:729–744, December 2009.

[29] Trusted Computing Group.
http://www.trustedcomputinggroup.org/.

[30] Team of oeh-wahl.gv.at. Sicherheitsempfehlung für
Endbenutzer. Technical report, http://www.oeh-
wahl.gv.at/Content.Node/E-
Voting_Sicherheitsempfehlung.pdf, 2009.

[31] L. van Doorn. Trusted computing challenges. In Proceedings
of the 2007 ACM Workshop on Scalable Trusted Computing,
STC ’07, pages 1–1, New York, NY, USA, 2007. ACM.

[32] M. Volkamer. Evaluation of Electronic Voting -
Requirements and Evaluation Procedures to Support
Responsible Election Authorities, Volume 30 of LNBIP.
Springer, 2009.

[33] M. Volkamer, A. Alkassar, A.R. Sadeghi, and S. Schulz.
Enabling the Application of Open Systems Like PCs for
Online Voting. In Proceedings of Workshop on Frontiers in
Electronic Elections. Citeseer, 2006.

[34] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler,
and M. Baentsch. The Zurich Trusted Information Channel –
An Efficient Defence Against Man-in-the-middle and
Malicious Software Attacks. Trusted Computing-Challenges
and Applications, pages 75–91, 2008.

	1. INTRODUCTION
	1.1 Related Work
	1.2 Structure of this Work

	2. PROBLEM DESCRIPTION
	3. EXISTING APPROACHES
	3.1 Criteria
	3.1.1 Confidentiality
	3.1.2 Integrity
	3.1.3 Further Criteria

	3.2 Taxonomy of Approaches

	4. TRUSTWORTHY PLATFORM
	4.1 Trusted Computing
	4.2 Bootable Clean Operating System
	4.3 Guidelines and Education

	5. WITHOUT TRUSTED DEVICES
	5.1 Human-Computer Cryptography
	5.2 Codebook Cryptography
	5.2.1 Code Voting
	5.2.2 Prêt-à-Voter
	5.2.3 CAPTCHA

	5.3 Procedural Approaches
	5.3.1 Vote-Updating
	5.3.2 Anonymous Voting
	5.3.3 Test Ballots

	6. TRUSTED DEVICES
	6.1 Standalone Trusted Devices
	6.2 Connected Trusted Devices
	6.2.1 No Communication Between User and Trust-Base
	6.2.2 Unidirectional Communication from the User to the Trust-Base
	6.2.3 Unidirectional Communication from the Trust-Base to the User
	6.2.4 Bidirectional Communication between the Trust-Base and the User

	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

