Information Flow Control to Secure Dynamic
Web Service Composition™

Dieter Hutter and Melanie Volkamer

German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
[hutter, volkamer]@dfki.de

Abstract. The vision of a landscape of heterogeneous web services de-
ployed as encapsulated business software assets in the Internet is cur-
rently becoming a reality as part of the Semantic Web. When pro-active
agents handle the context-aware discovery, acquisition, composition, and
management of application services and data, ensuring the security of
customers’ data becomes a principle task. To dynamically compose its
offered service, an agent has to process and spread confidential data to
other web services demanding the required degree of security. In this pa-
per we propose a methodology based on type-based information flow to
control the security of dynamically computed data and their proliferation
to other web services.

1 Introduction

The proliferation of web services as self-contained web accessible programs and
the idea of the Semantic Web of making information computer-interpretable en-
ables the dynamic composition of complex services assembled from various indi-
vidual services and typically distributed over the web. Following the paradigm of
pervasive computing, pro-active agents are installed on mobile phones or PDAs
operating on the web and handle the context-aware discovery of appropriate ser-
vices and use Al-based planning techniques to dynamically compose the retrieved
service to solve complex tasks. Web services provide formal specifications of their
well-defined semantics using languages based on description logics like OWL-S
[19] or its predecessor DAML-S [7]. Based on these semantically annotated web
services users who want to achieve a specific goal could be assisted by intelligent
agents that automatically identify and compose the necessary services.

The introduction of web services in general and dynamic web service com-
position (e.g. [6,24,31,24,24, 14]) in particular requires appropriate security fa-
cilities to guarantee the security requirements of all participants. Web services
have to be protected against misuse of their resources on the one hand, and on
the other hand the customers of web services require guarantees with respect
to the security (e.g. confidentiality or integrity) of their data. Security policies

* Parts of this work were sponsored by grants from the German Ministry for Technol-
ogy and Education (BMBF) and the German Science Foundation (DFG)

2 Dieter Hutter and Melanie Volkamer

are used to specify the security requirements of a system. The formalization of
security policies is often guided by the idea to protect integrity or confidentiality
by controlling the access to locations in which confidential information is stored.
This notion of access control is typical for most of the approaches concerned
with the specification of appropriate security policies for web services (e.g. [20,
8]). This results in a web service centered view of security. These policies de-
scribe access rights to web services and the delegation and withdrawal of these
access rights. However, they are less suited to formulate the security needs of
a customer, i.e. to formalize how web services have to deal with provided cus-
tomer’s information. In contrast, information flow control [17,32,16] relies on
the idea of modeling confidentiality of data as restrictions on the flow of infor-
mation between domains of a (global) system. Starting with the work of Goguen
and Meseguer [9,10], the restrictions on information flow have been formalized
as independence properties between actions and observations of domains. In this
paper we present an approach which uses information flow control techniques to
control the distribution of customer’s information in web services using security
policies formulated and provided by the customer.

& Customer

12.4. Public talk in Berlin
13.4. Private meeting in Rome

Secretary SE

o

12.4. Flight

London W

12.4.9:45 - 12:15,
DH234 500 €

Travel agent TA,
Travel agent TA;

13.4. Flight Pay 500 €
Berlin to Rome

13.4.9:00 - 11:20,
MV262 350 €

Payment agent PA,

A Simple Example. As an example consider a future-oriented politician who
uses intelligent web services to organize his traveling in Europe. Living in Lon-
don, he has to give a public talk in Berlin and he will meet the Italian prime
minister the day after in a secret get-together. He informs his web service ‘sec-
retary’ implemented on his PDA about his intentions. This web service decom-
poses the problem into organizing the flights between London, Berlin and Rome
and making arrangements for payment. The secretary contacts a travel agency

Information Flow Control to Secure Dynamic Web Service Composition 3

for the desired flights and obtains in return specific flight information and the
corresponding prices. Afterward, the secretary selects a payment service which
performs the payment of the selected flights.

This example illustrates how the confidentiality of the get-together in Rome
enforces the confidentiality of information dynamically calculated by various web
services when planning the traveling. To keep the get-together secret, the flight
to Rome and the information provided by the travel agent about this flight have
to be confidential. If the price of the flight depends on the flight information then
also the price has to be confidential. This means that even if the payment service
does not obtain any details of the booked flights, the politician has to trust or
ensure that the payment service keeps the possible deduced information about his
whereabouts confidential. Otherwise one might deduce flight information from
the amount of money the service has to pay. The situation changes if the travel
agency offers a flat rate for European flights. Then the price of the flights does not
depend on the selected destinations and its calculation is independent of specific
flight information. In this case the politician does not have to trust the discretion
of the payment service with respect to his whereabouts. Furthermore, while our
politician trusts his payment service with respect to financial information he
may have made bad experiences with payment systems offered by some travel
agencies and instructs his payment system not to pay by credit card any service
offered by these agencies.

Summing up, our politician has his individual security policy with respect
to the confidentiality of his whereabouts and his bank and credit card informa-
tion. This policy has to be dynamically extended to cope with newly computed
or generated information and also with subordinate web services not primarily
known to our politician.

Access Control vs. Information Flow. Standard approaches (like, for instance,
REI [20], Ponder [8]) are based on access control policies that control the execu-
tion of actions on individual objects. However, access control policies suffer from
the problem of Trojan Horses or other information leakage using hidden channels.
The reason for this is that no control is enforced on the use of the provided data
once it is released to an authorized web service. Improper processing of confiden-
tial information and calls to subsiderary web services can disseminate secrets to
web services that are not authorized to read this information. Mandatory access
control might overcome some of these problems by labeling each information and
service with some security level. Policies similar to Bell/LaPadula [2] could be
used to control read/write operations on data depending on the labeling of data
and web services. But still we are faced with two major problems:

First, there is no central authority in the web that is able to fix the security
labels of all services and data. Both customers and web services will provide in-
formation to accomplish a requested service, and both sides will have individual
perceptions about how the provided data may be used. Similar to the dynamic
composition of web services there is a need for a dynamic and consistent com-
position of the related security policies of all participants.

4 Dieter Hutter and Melanie Volkamer

Second, rather than providing statically stored data, web services will search
for new ways to compute requested information from various data available on
the net. The dynamic composition of web service results not only in a dynamic
synthesis of programs (actions) for processing the data but also in a dynamic
generation of new types of data which have to be dynamically classified according
to their stored information.

In this paper we adopt techniques from language-based information flow con-
trol to control the secrecy of dynamically created data according to the policies
of the involved web services. Each data is equipped with a type specifying its
classification with respect to different (user-defined) security categories. In our
example such a type would encompass for instance the degree of privacy of
the whereabouts and the degree of confidentiality of payment information. Cus-
tomers formulate their security requirements by attaching types to customer
data and to individual web services or classes of web services.

The effects of this typing are twofold. First, web services can only be used for
service composition if they provide the necessary clearance for the information
they would receive when executing the service. Second, the computation of any
low-security data has always to be independent of high-security data. Once a new
data is synthesized, it is automatically classified according to the classifications
of the data that have been used to compute it.

We start with a closer look on our approach in Section 2. In Section 3 we
describe how to generate and specify security policies in our approach. Section
4 introduces a type calculus which is used to compute the security classification
of both, newly computed data and composed services. We finish our paper with
a comparison of our work with existing approaches in Section 5.

2 Dynamic Web Service Composition

Web services are software components distributed on various hosts and commu-
nicating over the web using standard protocols based on XML. Internet descrip-
tion languages are typically used to describe the interfaces. Following the idea of
the semantic web [4], the idea of dynamic web service composition (cf. e.g. [30,
3]) is that web services provide their semantics as formal specifications such that
other web services incorporating Al-planning algorithms can make use of these
web services to solve complex (previously unknown) tasks. Different planning al-
gorithms are proposed to implement dynamic web service compositions (cf. [21]
for a survey). For our purposes we are not interested in the concrete planning
process but we will operate on (partial) results of such planning processes just
before the synthesized plans (or parts thereof) are executed. We consider the
result of the planning process as (partial) programs formalized in some ”stan-
dard” sequential programming language. In general they contain calls to other
web services that are basically considered as procedure calls. Data is provided
to web services via input parameters and returned by the web service via output
parameters.

Information Flow Control to Secure Dynamic Web Service Composition 5

We distinguish between atomic and composed web services. While an atomic
web service provides the service defined in its formal specification without re-
questing other web services, a composed web services will distribute subproblems
to other web services. The execution of a web service can be considered as a tree:
all leaves are atomic web services while inner nodes are compound web services.
Plans have to be synthesized for each individual service request because in the
setting of agent-based provision of web services there is no static global system
but instead it is constantly changing by accretion and leave of individual agents
and web services.

In order to satisfy a requested service, a web service receives sensitive data
together with a security policy which is basically formulated by the customer
and which guides the usage of data with respect to other web services. On the
one hand it classifies the privacy of the provided data according to different
information classes (like for instance traveling or payment information). For ex-
ample, our politician rates his get-together in Rome as confidential while his talk
in Berlin is public. On the other hand the security policy formalizes the trust a
customer has in individual web services or families of web services by assigning
corresponding clearances (split into the different classes of information) to web
services. Then before actually calling a web service, it has to be checked that its
clearance is sufficiently high to obtain the classified data. The called web service
inherits the customer’s security policy and extends it with respect to the clear-
ance of previously unknown web services or the classification of data computed
by the web service. A web service is not allowed to change the classification of
provided data. Downgrading sensitive data would violate the security require-
ments of the customer but also upgrading data is typically useless because the
data could have been already disseminated to web services which do not possess
the newly required clearances.

Web services implement a bi-directed communication, which is important for
policy descriptions: The web service receives a request including sensitive data
from its caller and sends data back, which may also be sensitive. Hence, web
services have to classify their newly computed data according to the security
policies of web services and customers providing the processed information. A
web service implementing an interface to a database may provide, for instance,
its data only to web services with special clearances. Web services that process
only data provided by the customer have to classify the computed data according
to the classification of the used customer’s data.

3 Security Policies for Dynamic Composition

As mentioned in the introduction we adopt the notion of non-interference to
formulate confidentiality as independence between data. The low-security data
must not depend on any high-security data. As a consequence, actions affecting
low-security data are only allowed if they only access low-security data. More
generally, the classification of any computed /synthesized information has to be at
least as high as the classifications of all used data; i.e. no secret bit of information

6 Dieter Hutter and Melanie Volkamer

must be disclosed in public information. Since the way information is assembled
is dynamically planned in web services, also the classification of information
has to be done dynamically during the plan construction and execution. In the
following we adopt a type calculus developed by Volpano and Smith (e.g. [28,
29,25]) to encode classifications as types and use rules of the type calculus to
propagate the types of data along the composition of a given plan.

The classification of data determines the accessibility of this information by
individual web services. In order to receive classified information, web services
must provide a clearance that is at least as high as the classification of the data.
However, in contrast to mandatory access control, there is no central authority
that assigns clearances to individual web services but each individual customer
has its own perception about the security categorization of individual or fam-
ilies of web services. Thus besides the classification of provided information, a
customer has also to provide rules that allow invoked web services to assess the
clearance of potential subcontractors and to decide whether this clearance is
sufficiently high to deal with the data required to perform the service.

Clearances and classifications are formalized with the help of standard infor-
mation flow policies. Such a policy is a lattice (SC, <) where SC'is a finite set of
security classes that is partially ordered by <. In its simplest form SC might be
a set containing two elements, e.g. H and L denoting secret and public, but we
can easily encode also integrity classes (cf. [29] for an example) to differentiate
between trusted or untrusted information.

As illustrated in our example we want to subdivide the clearance of a web
service according to different types of information. For instance, we may want to
classify a travel agency as being high with respect to our whereabouts but low
with respect to our financial situation. Therefore, we combine different informa-
tion flow policies (SC1,<1),...,(SCh,<,) to a composed flow policy (SC, <)
by SC = SCy x ... x SCy and (71,...,7n) < {1q,..., 7)) iff 77 < 7/ holds for
all 1 < k < n. Least upper bound (and greatest lower bound, respectively) are
computed by the least upper bounds (and greatest lower bounds, respectively)
of each component.

Once a customer charges a web service with some task he provides (partially)
classified information to the web service. For instance, our politician tells his sec-
retary about his confidential gathering in Rome and that it has to be kept secret
to some extent. The potential distribution of this data to other web services
is regulated by (i) the classification of the provided data (being, for instance,
secret) and (ii) the clearances the customer assigns to the web services with
respect to this type of information. Let (SC, <) be a (compound) information
flow policy, then we call a partial mapping o, from the set of web services to
SC a web service clearing wrt. (SC, <).

The dynamic nature of web service composition results in the problem that
typically a customer can neither know all subjects (i.e. web services) that will
be involved in his request nor anticipate all types of information that will be
communicated between the web services. As a consequence, his initially formu-
lated security policy will cover only a fraction of the involved subjects and data

Information Flow Control to Secure Dynamic Web Service Composition 7

and has to be extended accordingly on the fly by involved web services. We will
sketch this conservative extension of security policies in the following.

Since a customer usually does not know about all available web services,
the web service clearance 0,5 provided by the customer may be undefined for
some unknown web services WS. Suppose that another web service WS’ acting
on behalf of the customer creates a plan involving the provision of confidential
data to WS. Since the plan violates the security requirements (we assume that
unknown services have no clearences at all), it would be rejected when checked
by the type calculus presented in Section 4. However, we can incorporate a del-
egation mechanism that allows the customer to delegate a web service WS’ the
right to extend 0,5 to a new mapping o, , that coincides with o, in all its
defined values (i.e. oys(z) = ol,,(x) for all © € domain(oys)). Therefore, the
customer provides a delegation classification that is again a partial mapping oge;
from the set of web services to SC. g4e(WS) denotes the maximal clearance a
web service WS may allocate to an unknown web service. Let L be the bottom
element of SC then o4 (WS) = L denotes that WS is not allowed to classify
any previously unknown web service. Let T be the top element in SC, then
cdel(WS) = T gives WS full discretionary power with respect to the classifica-
tion of previously unknown web services. Notice however, that once the customer
or some web service with appropriate delegation rights has fixed the clearance
of a web service it cannot be changed anymore.

As mentioned before, we consider SC' as a set of tuples 71,...,7,. Each
tuple reflects the classification or clearance with respect to different security
categories or aspects like, for instance, location information or payment details.
Web services, like web interfaces to data bases, may act as data sources and
formulate their own security requirements for the newly provided data. Besides
classifying the new data according to the given categories they can introduce new
security categories by introducing a new lattice (SC’, <) operating on tuples

(T, sTn, Tnt1y- -« Tntm) such that for all tuples in SC’: (11,..., Thym) <
(T1s .y Tpyyn) implies (71,...,7,) < (7,...,7,) and additionally, (r1,...,7,) <
(t1,...,7)) implies (71,..., Tnitm) < (T, o s Th Tnt1y -« s Tntm)-

Analogously, the web service conservatively extends the mappings o, and
Odel to o), and o/, which now operate on SC’ instead of SC but are iden-
tical to the former mappings with respect to all previously existing categories,
Le. ity s Tadm & Oos(WS) = (71,0, Togm) T 0ws(WS) = {11,...,7a)
for all web services WS; and 3y 41,..., Tngm : 04 (WS) = (11, ..., Tngm) iff
Gdet(WS) = (71, ...,7,) for all web services WS. All data provided by the call
of such a web service are classified as | with respect to newly introduced cate-
gories. Otherwise the web service could easily block information provided freely
by the customer if it introduces a new category, classifies the provided data as
high with respect to this category, and gives no clearance for this category to
any web service. Similarly, we can restrict mappings o, and oge; by removing
particular categories.

FEzxample revisited. Let us consider the example we presented in the introduction.
The first step in this example is the specification of o, by the customer. The

8 Dieter Hutter and Melanie Volkamer

customer selects two categories location info and payment info with H and L
as potential values to formulate his security policy. Location info relates to in-
formations about his whereabouts while payment info covers information about
the details of his bank accounts or credit cards. He rates the web services as fol-
lows. Since he trusts in his secretary with respect to both categorizes, he chooses
ows(SE) = (H, H). However, he does not trust the travel agencies with respect
to all his payment informations: os(TA4;) = (H,L) for ¢ € {1,2}. Contrarily,
he trusts both payment agents, paying for him the bills with respect to different
accounts, in all his payment information. However, he only trusts the first agent
in keeping also his whereabouts secret. The reason might be that the correspond-
ing bank account belongs to some public agency and cash audits may reveal the
details of the trip. Thus, we obtain oy (PA1) = (H, H) and ous(PA2) = (L, H).

4 Type Calculus To Enforce Security Policies

In the last section we described the mechanism to synthesize a common security
policy for all participating web services that is consistent with the initially for-
mulated policy of the customer. This section illustrates how a web service can
prove whether the execution of its synthesized plan would violate the requested
security policy and how it can classify newly computed data according to the
given information flow policy.

Our approach is based on the work of D. Volpano and G. Smith [29, 25] on
using type systems to secure information flow. Its underlying idea is as follows.
We assume that a program has low-level and high-level inputs and computes
some low-level and high-level outputs. Such a program is considered secure if
the low-level output of the program does not depend on the high-level input.
The basic idea is to monitor the data flow of high-level input with the help
of a type system and prove that no high-level input was used to compute any
low-level output.

Therefore, types are attached to all constructs in the programming language
that store or provide information (like, for instance, locations, parameters or
variables). Typing rules are formulated that specify the consequences to the
involved types once any particular statement of the programming language is
executed.

The programming language used in [29] is a simplified sequential program-
ming language which provides conditionals, loops, and procedures. We extend
this language by the additional feature of calling web services WS (in a blocking
mode) by call(WS, z,y). Figure 1 presents the syntax of this language. Op and
R are just place holders for the various functions and relations built into the
language. Examples are 4+, —, <, and =. Metavariables z and P ranges over
identifiers, [over locations and n over numerical literals.

The security classes SC' of the underlying information flow policy (SC, <)
constitute the set of so-called data types which are used to classify data. Data are
represented by expressions in the programming language. Hence, all expressions
FExpr possess a data type 7 denoting their classification. Intuitively, the type of

Information Flow Control to Secure Dynamic Web Service Composition 9

(Expr) ex=z| P|n|l]|Op(ee)|eRe | proc(in z,out y) c
(Comm) c::=z:=¢€' | c;c | Ple,e') | call(WS, z,y) | while e do ¢
if e then c else ¢’ | letvar z := e in ¢ |
letproc P (in z,0out y) cin ¢

Fig. 1. Syntax of the language

FExpr has to be equal to or higher than the least upper bound of the security
types of all information we have used to evaluate Expr. For instance, given two
expressions e and e’ then Op(e, ¢’) obtains the least upper bound of the security
types of e and €’ as its security type.

Type calculus rules are used to propagate data types along expressions. The
following rule illustrates this for expressions constructed with the help of a func-
tion Op. 7y represents the assignment of the variables and is used to map occurring
variables to their types.

yre:T,yke T
vEOp(e,e): T

Op

The rule makes use of an implicit type coercion: v F e : 7 and 7 < 7/ implies
~vFe: 7 ("upgrading data”). Hence we can always upgrade implicitly the type
of e and €’ to its least upper bound 7 in order to apply the rule.

Variables are used to store information. They need a sort of clearance to hold
classified information. This is denoted by a phrase type 7 acc. v F x : 7 acc says
that = has the clearance to house data with a classification up to 7. Again there
is a contravariant type coercion by v F e : 7 acc and 7/ < 7 implies v F e : 7'acc
to simplify the following typing rule for assignments.

YyFx:Tacc,yFe:T
Yz :=e:7cemd

Assign

A phrase type 7 ¢md is assigned to a program fragment, like a statement or a
block of statements, to store information about the security types of changed
variables inside the fragment. If a fragment has type 7 ¢md then only variables
with clearances 7 and higher will be changed inside the block. The idea is that
the execution of the fragment does not assign to variables of type 7’ var for
7/ lower than 7. It is thus permissible for the fragment to be executed condi-
tionally depending on the values of variables labelled 7 or lower without leaking
information from the context into lower graded variables.

Variables play two roles: first, they provide data and have a classification 7
and second, they store information and need a clearance 7 acc. Both notions are
integrated into a phrase type 7 var combining the classification 7 cmd and the
clearance T acc.

[29] provide also types and typing rules for procedures which we simplified for
our purposes (since we omit in-out parameters). A phrase type 7 proc(r, 2 acc)
indicates that the call of the procedure has type 7 c¢md, the input parameter
has the classification 71 and the output must have the clearance 72 acc. [e'\ Ple

10 Dieter Hutter and Melanie Volkamer

denotes the capture-avoiding substitution of e’ for all free occurrences of P in e.
Then the rules for declaring (polymorphic) procedures are as follows.

v b proc(in z1,0out x9)c: 7,
v F [proc(in z1,0ut z32)c / Pl : 7 emd

v F letproc P(in z1,out x2) cin ¢ : 7 emd LetProc

Y[z1: 71, 2 T2 accl e T emd

v F proc(in z1,0ut x2)c: 7 proc(ri, 72 acc) Proc

The rule for typing the application of procedures is straightforward:
vk P: 7 proc(r, s acc),

yFey:m,
vy es: T acc

ApplyP
v E P(ey,e2) : 7 emd ppryToc

The idea of our approach is that web service calls can be treated like proce-
dures. We consider web services as external procedures. We can encode global
states as global variables common to various web services. In contrast to proce-
dures, web services have to be first class citizens in our approach possessing their
individual clearances. The call of a web service has to be guarded by a check
whether the input to be provided to the service lies within its clearance. Thus
we introduce a new phrase type 7 proc(r1,m2) 7' to type web services. First, the
phrase denotes that the call of the web service has type 7 ¢md. This information
is only required in the presence of common variables (global states) of calling and
called web services. Second, the input has the classification 7 and the resulting
output requires the clearing 7. Additionally, 7/ defines the clearance of the web
service from the caller’s point of view. It is crucial to understand the difference
between the classification 7; of the input parameter and the clearance 7/ which
the calling web service assigns to the called web service. In general, web services
are polymorphic in their types, for example, 7 and 75 are type variables that
are related by the constraint 71 = 7». In this case the output would require the
same clearance as the classification of the input. An example would be a web
service that simply copies its input to the output. Thus 7y and 75 reflect the
constraints on the security types considering the computation inside the called
web service while 7/ reflects the trust the calling web service has in the called
web service.

The rule for typing the call to the web services is similar to the corresponding
rule for procedure calls:

vy B WS : 7 proc(r, s ace)r’,
yFep:m,

Yk es: 1y acce

vy <7

yETR <7

v F call(WS, e, e2) : 7 emd

ApplyW S

Information Flow Control to Secure Dynamic Web Service Composition 11

There is, however, one difference between a sub web service call and a pro-
cedure call: while we know the body of a procedure being part of the program
itself, we do not know the interior of called web services because firstly, there is
no fixed program so no fixed body can be exported as part of the specification
of a web service, and secondly because in general owners of web services do not
want to disclose the source code of their web services. Instead a web service
will export its security type (considered as a procedure) T proc(r, T2 acc) as
part of its overall specification. Given the inherited security policy o, of the
customer and the published security type 7 proc(ri, 2 acc) of a suitable web
service WS’ to be called by a web service WS, WS can assemble the type of
WS’ to 1 proc(mi, 2 acc) aus(WS'). Contrarily, the called web service requires
the type of each parameter. Hence, the calling web service provides the security
type of each parameter as intrinsic part of a call.

Ezxample revisited. Let us consider the example we presented in the introduction.
In Section 3 we illustrated already how he customer chooses his security policy.
In a next step the customer instructs his secretary agent SE to organize his trip
to Berlin and Rome. The trip to Berlin is not classified at all, i.e. (L, L) while
the second trip contains confidential location information: (H, L). The secretary
agent constructs a plan of how to decompose the task into a sequence of web
service calls and comes up with the following program:

call TAl) ﬂightBerlinv pTiCEBerlin);
TA2) ﬂightRomea priceRome);

PA17 p’riceBerlina Ok—P);

call
call

call

—~ o~~~

PA4, pricerome, 0kP);

Both travel agents publish H proc(X, X acc) (X being a type variable) as their
specification of their security types. This means that the output (the price of the
flight) requires the same security class as the input (the flight requirements). It
reflects the fact that the price is calculated with the help of the flight information.
Suppose, a travel agent would offer a flat rate for European flights, i.e. each flight
in Europe would cost the same amount of money, then he could publish a security
type H proc(X, L acc). Both payment agents specify H proc(X, L acc) as their
security types since we assume that their acknowledgments okP do not depend
on the prices.

Based on these typings, the type calculus rates priceperin as L wrt. location
information and pricegome as H. As a consequence, the secretary agent cannot
use PAs to pay the flight to Rome because it only has a L-clearance with respect
to location information. If we suppose that the secretary makes use of a flat rate-
offer then pricegrome would be rated as L which would enable the use of PAs to
pay the flight.

12 Dieter Hutter and Melanie Volkamer

5 Related Work

The dynamic composition of web services is a quite new research area coming
up within the last four years. [21] gives a survey about the different Al-planning
approaches to tackle dynamic composition. Since our approach is independent of
the way a plan is generated we will not go into the details of these approaches.

With the advent of pervasive computing, a lot of difficulties arouse with re-
spect to the transmitted, stored, used and computed sensitive data. There are
various approaches concerned with trust management (e.g. [12,13]) and authen-
tication techniques, i.e. how to ensure that a web service does not try to cheat
[22] because cheating would not gain any benefits in the underlying economic
model.

Various aspects of security policy of web services have been investigated.
Some aspects were concerned with how to specify a policy in a machine readable
and user friendly way at the same time (see e.g. IBM and Micosoft’s Web Ser-
vices security specification [11], especially the WS-Policy part), how to compose
different policies and how to prove that the web service does ensure its policy
specification with each request. Current approaches concentrate on access con-
trol. So the plan is executed in any case and if the access control matrix forbids
any access during the execution, it stops and a new plan has to be created. The
approaches can be distinguished with respect to the type of policy they work
with: e.g. KAoS [27] and Ponder [8], which handle security policies for authenti-
cation and obligations, or REI [20], which works with security policies for rights,
prohibitions, obligations and dispensations. There are also two approaches which
concentrate on the composition of security policies independent of the type of the
policy: The main idea, Samarati et al. present in [5] and a practical extension is
introduces with IBM’s algebra for composing policies based on their Enterprise
Privacy Authentication Language (EPAL) [11], [26].

Starting with the work of Goguen and Meseguer, information flow control
has been subject of a large variety of different approaches introducing different
formal notions of independence. Most prominent, McLean [18], Zakinthinos and
Lee [32] and Mantel [16] proposed frameworks to embed these different notions
in a uniform framework. Our work is based on language-based information flow.
The general problem whether a program leaks information from high-level to low-
level is undecidable. Thus, type calculi as they are proposed, for instance, in [29]
are incomplete. Meanwhile following Volpano and Smiths work, more refined type
calculi (e.g. [23]) have been developed that are able to recognize more programs
as secure. They are, for instance, able to detect if different program paths will
result in the same low-level results. In this case the condition whether to take
the one path or the other can freely use high-level inputs. However, the power
of these approaches result in a more expensive computation and propagation of
types. Since dynamically composed web services are rather simple programs, we
decided to use a less refined type calculus, which require less resources.

Information Flow Control to Secure Dynamic Web Service Composition 13

6 Conclusion

We presented an approach to use language-based information flow control to en-
sure the confidentiality (as well as integrity) of user’s data provided to dynami-
cally composed web services. The data flow of confidential data is monitored by
a type calculus which propagates the security requirements of the user along the
planning and execution of dynamically composed web services.

Future work concern the development of an appropriate language to encode
the security requirements o, of a customer. Possible solutions are based on the
use of appropriate description logics [1]. Moreover, we will analyze the appli-
cation of negotiation mechanisms in case the web service does not fit with the
policy of a web service which should be called. Here the SLAng approach [15]
might be helpful.

Another problem in this context arises if the web service executes its plan
but one of the chosen web services is not available anymore. An easy solution
would be to try to find another web service with the same policy and functional
specification. But if the web service cannot find such a web service, we do not
want to start from scratch again by creating a new plan for the whole task, but
we would like to patch the existing plan by creating only a plan for the changed
sub tasks. In order to come up with such a solution we have to investigate how the
change of the security types of some variables or parameters will effect existing
proofs of the type calculus.

Acknowledgements

We are grateful for many fruitful and inspiring discussions that we had with our
former colleague Axel Schairer on this work in general and on earlier versions of
this paper in particular. We would also like to thank the anonymous referees for
their helpful feedback on this work.

References

1. Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology lan-
guages for the semantic web. In Dieter Hutter and Werner Stephan, editors, Mech-
anizing Mathematical Reasoning, Festschrift in Honor of J.H.Siekmann. Springer-
Verlag, LNCS 2605, 2005.

2. D. E. Bell and L. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report MTR-~2997, MITRE, 1976.

3. V. Richard Benjamins, Enric Plaza, Enrico Motta, Dieter Fensel, Rudi Studer, Bob
Wielinga, Guus Schreiber, and Zdenek Zdrahal. Ibrow3 - an intelligent brokering
service for knowledge-component reuse on the world wide web. In 11th Knowledge
Acquisition for Knowledge-Based System Workshop (KAW98), 1998.

4. T. Berners-Lee, J. Hendler, J., and O. Lassila. The semantic web. Scientific
American, May 2001.

5. P.A. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security, 5(1):1-35, 2002.

14

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Dieter Hutter and Melanie Volkamer

J. Bryson, D. Martin, S.I. Mcllraith, and L.A. Stein. Agent-based composite ser-
vices in DAML-S: The behavior-oriented design of an intelligent semantic web. In
Ning Zhong, Jiming Liu, and Yiyu Lao, editors, Web Intelligence. Springer Verlag,
2002.

DAML-S DARPA agent markup language for services, version 0.9.
http://www.daml.org/services/daml-s/0.9/daml-s.html.

Naranker Dulay, Nicodemos Damianou, Emil Lupu, and Morris Sloman. A policy
language for the management of distributed agents. In Agent Oriented Software
Engineering, AOSE, pages 84—100. Springer, 2001.

J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 11-20, Oakland, CA,
USA, 1982.

J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 75—86, Oakland, CA, USA,
1984.

IBM and Microsoft. Security in a Web Service World: A proposed architecture
and roadmap. www-106.ibm.com/developerworks/webservices/library /ws-secmap,
April 2002.

L. Kagal, T. Finin, and A. Joshi. Trust based security for pervasive computing
enviroments. IEEE Computer, 24(12):154-157, December 2001.

L. Kagal, T. Finin, and A. Joshi. Developing secure agent systems using delegation
based trust management. In K. Fischer and D. Hutter, editors, Security of Mo-
bile MultiAgent Systems (SEMAS 02) held at Autonomous Agents and MultiAgent
Systems (AAMAS 02), 2002.

M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning
with owls-xplan. 1st Intl. AAAT Fall Symposium on Agents and the Semantic Web,
2005.

D. Davide Lamanna, James Skene, and Wolfgang Emmerich. Slang: A language
for defining service level agreements. In IEEE Workshop on Future Trends of
Distributed Computing Systems, FTDCS, pages 100—, 2003.

H. Mantel. Possibilistic Definitions of Security — An Assembly Kit. In Proceedings
of the IEEE Computer Security Foundations Workshop, pages 185—199, Cambridge,
UK, 2000.

J. D. McLean. Proving Noninterference and Functional Correctness using Traces.
Journal of Computer Security, 1(1):37-57, 1992.

J.D. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proceedings of IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1994.

OWL ontology web language, w3c standard technical recommendation.
http://www.w3.org/TR/2003/WD-owl-ref-20030331/.

Anand Patwardhan, Vlad Korolev, Lalana Kagal, and Anupam Joshi. Enforcing
policies in pervasive environments. In MobiQuitous, pages 299-308, 2004.
Joachim Peer. Web service composition as ai planning - a survey. Technical report,
University of St. Gallen, March 2005.

S.D. Ramchurn, D. Huynh, and N.R. Jennings. Trust in multi-agent systems. The
Knowledge Engineering Review, 19(1):1-25, 2004.

A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

M. Sheshagiri, M. desJardins, and T. Finin. A planner for composing services
described in DAML-S. In Proceedings of AAMAS 2003 Workshop on Web Services
and Agent-Based Engineering, 2003.

25.

26.

27.

28.

29.

30.

31.

32.

Information Flow Control to Secure Dynamic Web Service Composition 15

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded
imperative language. In Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, pages 355-364, New York, NY, 1998.

William H. Stufflebeam, Annie I. Antén, Qingfeng He, and Neha Jain. Specifying
privacy policies with p3p and epal: lessons learned. In Workshop on Privacy in the
Electronic Society, WPES, page 35, 2004.

Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Austin Tate, and Jeff Dal-
ton. Applying kaos services to ensure policy compliance for semantic web services
workflow composition and enactment. In International Semantic Web Conference,
pages 425-440, 2004.

Dennis M. Volpano and Geoffrey Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167-187, 1996.

Dennis M. Volpano and Geoffrey Smith. A type-based approach to program secu-
rity. In TAPSOFT, pages 607—621, 1997.

R. Waldinger. Deductive composition of web software agents. In NASA Workshop
on Formal Approaches to Agent-Based Systems. Springer-Verlag, LNCS 1871, 2000.
D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web ser-
vices composition using SHOP2. In Proceedings of the 2nd International Semantic
Web Conference (ISWC2003), pages 20-23, Sanibel Island, Florida, USA, October
2003.

A. Zakinthinos and E. S. Lee. A General Theory of Security Properties. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 94-102, Oakland,
CA, USA, 1997.

