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あらまし 1991年に松本と今井によって提案された人間識別プロトコル (Human Identification

Protocol, HIP)は [1]、20年経った現在においても挑戦的な課題である。HIPの最終的な目標は信
頼されたハードウェアやソフトウェアを用いずに証明者がその人間かどうかを識別することであ
り、HopperとBlumによって 2001年に LPN仮定に基づく最初のHIP(HBプロトコル)が提案さ
れた [2]。本研究ではHBプロトコルの改良を試みる。具体的にはまず、より強力な攻撃モデルの
導入及び安全性モデルの拡張を行う。その後、その安全性モデルを満たす改良方式を示す。本研
究の核となるアイディアは、人間の持つ識別能力と言語学的な知識の利用である。
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Abstract More than 20 years after the introduction by Matsumoto and Imai [1], human

identification protocols (HIP) are still a challenging task for the cryptographic community. One

much-noticed HIP was designed by Hopper and Blum (HB) in 2001 [2].

In this paper, we provide a novel improvement to the HB protocol. As our main result, we

first extend the HIP security model by assuming an attacker who predicts random decisions

made by the human. Then we suggest an improvement–based on human cognitive abilities–to

the HB protocol and prove it secure under the LPN assumption in this new threat model.

1 Introduction

Today’s most common method to identify a

user on a computational device (e.g. PC) is

the classic password method. The user knows

a secret and the computational device can ver-

ify this secret to be correct. But passwords are

not the only way to authenticate a user. While
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every approach shares one similarity, namely

the use of something secret, the different meth-

ods of authentication can nevertheless be di-

vided into three areas, while some are in be-

tween: What I know (e.g. PIN), what I have

(e.g. token) and what I am (e.g. biometrics).

The problem of human identification arises

when we consider a situation in which an un-

aided human wants to give a proof of his iden-

tity to a computational device, but the channel

of communication is insecure. Even more com-

plicated, the human wants to reuse his secret

to identify himself to the same device multi-

ple times. For any secure human identification

protocol (HIP), an attacker shall not be able

to identify himself as the targeted human even

after observing a certain amount of successful

authentications done by that human.

An example is the case of credit card skim-

ming. The attacker could attach a device over

the card slot of an ATM to read the mag-

netic strip of an unaware human’s credit card

while a camera records the PIN. Obviously, the

method of a password (e.g. the PIN) in com-

bination with a token (e.g. the credit card)

fails in this scenario. Also biometrics does

not guarantee security, because the devices for

biometric measurement can be tampered the

same way.

This threat model clearly defines a real-world

scenario and any protocol not secure in this

model will be prone to real-world attacks. Fur-

ther research on HIP has the potential of solv-

ing many problems in today’s user authentica-

tion schemes and hence can significantly im-

prove the state-of-the-art system security.

Related works The research on HIP was

pioneered by Matsumoto and Imai [1]. Hopper

and Blum [2] presented the HB protocol based

on the problem of learning parity with noise

(see [3], for example). Further improvements

of the HB protocol (e.g. the HB+ protocol [4])

concentrated–unlike our improvement–on the

use within smart cards.

Problems from the research area of artificial

intelligence (AI) have been suggested by [5].

The catchphrase is CAPTCHA (completely au-

tomated public Turing test to tell computers

and humans apart) and the idea is to apply

functions that are computable by humans, but

infeasible for computational devices. Our ap-

proach, in contrast, is based on linguistics in-

stead of AI1, does not require to be infeasible

for computational devices and is thus not a

CAPTCHA.

Our contribution Our first contribution is

the extension of the HIP threat model in [1]

by assuming a strong attacker who predicts

random decisions made by the human.

We then introduce a novel method of using

linguistics in cryptography. Our second contri-

bution is a function–based on linguistics–with

the property, that humans can not only easily

compute it, but also don’t need to learn how

to evaluate it.

Finally we use this new function to suggest

an improvement to the HB protocol by ”de-

randomizing” the computations done by the

human user. We proof it to be secure in the

new threat model by giving a reduction to the

original HB protocol.

Outline In section 2 we provide notations,

definitions and assumptions–including our ex-

tended threat model and the novel function

based on linguistics. In section 3 we first de-

fine our improvement to the HB protocol and

then proof it to be secure in the new threat

model. In section 4 we conclude our work.

2 Preliminaries

We first introduce some general notations.

Then we give a definition of the term human
1One could argument that language understanding

is also an AI research area.
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identification protocol. This is followed by the

mathematical assumptions and security defini-

tions used in this paper. Finally we state the

linguistic definitions and assumptions, includ-

ing our novel function.

2.1 Notations

Throughout this paper, we denote the prover

by H. Sometimes we will call the prover H a

human user, a human or a user. Likewise we

denote the verifier by C and sometimes call it

a computer. The adversary will be denoted by

A, sometimes called an attacker, and will al-

ways be considered to be a probabilistic poly-

nomial time Turing machine. In accordance

with [1, 2] we call the attack of the adversary

an impersonification attack.

For the sake of readability, we omit to ex-

plicitly state for every algorithm the given cal-

culation time depending on the security pa-

rameter.

A protocol is a system of rules on how public

and probabilistic interactive Turing machines

(ITMs) interact with each other. For two pub-

lic and probabilistic ITMs, denoted as (H, C),
the result of the interaction, with inputs x

and y respectively, is denoted by ⟨H(x), C(y)⟩.
The transcript of this interaction is denoted

by Trans(H(x), C(y)).
Any vector x is a column vector unless oth-

erwise specified. |x| denotes the length of the

vector x. For any vectors x, y with |x| = |y|,
x · yT is the dot product of the vector x and

the transpose of the vector y. If it is obvious,

we omit the superscript T.

A function µ(·): N → R is negligible, if for

every positive polynomial p(·) there exists an

integer n0 ∈ N such that for all n > n0 |µ(n)| <
1/p(n) .

Throughout this paper, we use the terms

identification and authentication interchange-

able.

2.2 Mathematical assumptions

Here we give a definition of the well known

and NP-hard LPN problem.

Conjecture 1. Learning Parity in the Pres-

ence of Noise (LPN) (search version). Let A

be a random m × k binary matrix, let x be a

random k-bit vector, let η ∈ ]0, 1/2[ be a con-

stant noise parameter, and let ν be a random

m-bit vector such that |ν| ≤ ηm.

The challenge in the search version of LPN

is, given A, η, and r = (A · x) ⊕ ν, to find a

k-bit vector x′ such that |(A · x′ ) ⊕ r| ≤ ηm.

2.3 Security definitions

First we define a human identification proto-

col as the interaction between two ITMs, with

one ITM as the proofer and the other as the

verifier, under the condition that the compu-

tations of the proofer are done in the mind of

a human. Then we give a detailed explanation

of our extension to the threat model from [1].

This extension is our first contribution.

Definition 1. Human identification protocol.

Let (H, C) be a pair of public and probabilistic

ITMs. Their interaction is an identification

protocol if for any shared input x, Pr[⟨H(x),
C(x)⟩= accept]≥∆ and for each pair of inputs

x ̸= y Pr[⟨H(x), C(y)⟩ = accept] ≤ 1 − ∆,

where 0.5 < ∆ ≤ 1.

It is a human identification protocol, if the

computations of the ITM H are done in the

mind of a human.

Extended threat model. Our threat model

is an extension of the threat model of Mat-

sumoto and Imai. In this model the unaided

human H wants be authenticated by the com-

puter C. Therefore, H and C might exchange

messages until C decides to either accept or

reject H. The messages exchanged between H
and C are relayed by a terminal.
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The passive adversary A has the ability to

witness the human H, his input to the termi-

nal, the computations done inside the terminal

and the messages delivered between the termi-

nal and C.
In our extension of the threat model, we al-

low the adversary to predict the random coins

of H. We believe that this stronger adversary

gives a better representation of the real world.

The reason for this assumption is that we think

humans are no good random generators and,

in addition, we believe that an attacker can

make conclusions by observing the human.

As a real-world example, recall the previous

mentioned credit card skimming attack. Here

an attacker might derive information based on

the camera observation of the human H or his

response time. This possibility is not covered

by the previous threat model.

Another reason, why we think that our ex-

tended threat model is important, is a recent

result on machine learning [6]. It was shown,

that there exists an algorithm such that, given

any instance of the LPN problem with struc-

tured noise, the secret vector can be found in

polynomial time. Structured noise means that

there won’t be an arbitrary burst of noise. In

other words, it is guaranteed that at most p

out of m bits are noisy.

Definition 2. Passive adversary [2]. An iden-

tification protocol (H, C) is (p, k)-secure against
passive adversaries if for all computationally

bounded adversaries A,

Pr
[
A
(
Transk(H(x), C(x)), C(x)

)
= accept

]
≤ p ,

where Transk(H(x), C(x)) is a random vari-

able sampled from k independent transcripts

Trans(H(x), C(x)).

2.4 Linguistics

We start with an explanation of the term

semantics. This is followed by the definitions

of a semantic relation, a semantic network and

our novel function about related words. We

conclude this section by giving a more formal

explanation of our assumption on the human-

computability of that function.

Semantics. Semantics is a sub discipline of

linguistics–the scientific study of language. It

focuses on the intuition of native speakers about

the meaning of words and expressions. It is–

among other things–concerned with the mean-

ing of words, their relations and how they com-

bine to form sentence meanings.

Definition 3. Semantic relation. The term

semantic relationship refers to relations between

different words and their various meanings. A

semantic relation is a relation that maps two

or more concepts to the truth set.

Examples of semantic relations are synonymy

(A denotes the same as B), hyponymy (A is

more specific than B) and meronymy (A is part

of B).

Definition 4. Semantic network. Let S :=

{Sk}k∈N be the space drawn from a dictio-

nary such that Sk ⊆ {0, 1}k. Then a semantic

network N (S) is a weighted partially directed

graph. It represents (a subset of) semantic

relations as edges–weighted between zero and

one by the strength of the semantic relation–

between the elements of S (the vertices).

The purpose of definition 4 is to give a visu-

alisation that might help the reader to under-

stand the following definition.

Definition 5. Related words. Rg,δ(ξ, s) is

a binary relation with g ∈ N, δ ∈ (0, 1], s

∈ S and ξ is a formula with literals from S
and operators from the set of logical opera-

tors {∧,∨,¬}. Then ξ defines a subset of the

semantic network N (S).
We further define Rg,δ(ξ, s) = 1 if and only

if there exists a path between the subset ξ and
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term s inN (S), whereby the length of the path

is at most g and the weight of each edge is

greater than some threshold δ.

Definition 5 states our second contribution.

While we defined it as a relation, it is obvious

that this relation is well-behaved and thus a

function. To be more precisely, it is a family of

functions, because for different indexes g and

δ it results in a different function. In section 3

we will show how this family of functions can

be of use in cryptography.

Conjecture 2. Human-computability of

Rg,δ(ξ, s). We assume that there exist g, δ,

S such that for every s ∈ S and ξ as de-

fined above most humans can easily compute

Rg,δ(ξ, s) in their mind.

This assumption is based on the common

believe in semantics, that native speakers have

a good intuition about the meaning of and re-

lation between words and expressions.

3 New results

We begin this section by restating the HB

protocol from [2] and recapitulating its secu-

rity properties. Then we give a brief analysa-

tion of the HB protocol in the extended threat

model. Finally we describe our improvement

to the HB protocol and conclude this section

with the corresponding security proof.

3.1 Original HB protocol

Informally speaking, the computer C gener-

ates the matrix Am×k and sends this matrix

to the human user. The human H computes

r = (A · x) with some errors and replies with

this vector to C.
If sufficient many bits in the response are

correct, C has evidence that H is the claimed

user and will–possibly after some repetitions

to strengthen the evidence–accept H.

Shared secrets: H and C share a secret vec-

tor x ∈ {0, 1}k.
Public parameters: η ∈ (0, 1/2)

(C1) C sets i := 0

(C2) C selects m random challenges c1,. . . ,cm

from {0, 1}n and sends them to H
(H1) For every challenge cj : With probabil-

ity 1 − η, H responds with rj := cj · x,
otherwise H calculates his response as

rj := 1 − cj · x
(C3) For every challenge cj : If rj = cj · x,

then C increments i

(C4) If i ≥ (1 − η) · m, C accepts H

3.1.1 Security of the HB protocol

Next we compare the security of the HB pro-

tocol in both threat models.

Security in the original threat model We

will cite two theorems from [2]. The first the-

orem states that if H responses with random

answers, he will be accepted with only negli-

gible probability. The second theorem states

that the security of this protocol is based on

the LPN assumption. For proofs of these the-

orems, we refer to section 4 in [2].

Theorem 1. [2] IfH guesses random responses

r, C will accept H with probability at most(
1

2

)m m∑
i=(1−η)m

(
m

i

)
≤ e−com,

where c0 ≥ 2
3 is a constant depending only on

η.

Theorem 2. [2] If LPN is hard, then [... the

HB protocol is] secure against a passive adver-

sary.

Security in the extended threat model

The assumed hardness of the LPN problem is

based on the distribution of the noise. In the
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HB protocol, this distribution is based on the

humans random decisions.

But in the extended threat model, the ad-

versary can predict the humans random de-

cisions. Therefore the distribution and fre-

quency of the noise are known to the attacker.

It follows that the LPN instance degenerates

and becomes solvable by the adversary within

linear time by Gaussian elimination.

Even by assuming a slightly weaker attacker,

that can only partially predict the humans de-

cisions, it was shown in [6] that the attacker

might be able to find the secret vector in poly-

nomial time by exploiting some known struc-

ture of the noise.

3.2 Improved HB protocol

The goal of our proposed improvement is to

completely relieve the human from the task of

making random decisions while keeping a good

distribution of his noisy answers. We achieve

this by using our previously defined function

about related words to communicate a secret

bit between the computer and the human.

The following is the improved HB protocol:

Shared secrets: H and C share a secret vec-

tor x ∈ {0, 1}k and a secret ξ ⊂ N (S).
Public parameters: g ∈ N, δ ∈ (0, 1], N (S)

(C1) C selects m random words s1,. . . ,sm

from the dictionary S
(C2) C selects m random challenges c1,. . . ,cm

from {0, 1}n and sends s1,. . . ,sm and

c1,. . . ,cm to H
(H1) For every challenge-word pair (cj ,sj): If

Rg,δ(ξ, sj) = 0, H responds with rj :=

cj · x, otherwise H responds with rj :=

1 − cj · x
(C3) For all challenge-word-response triples

(c1,s1,r1),. . . ,(cm,sm,,rm): IfRg,δ(ξ, sj)

= 0, C checks if rj := cj · x, else C checks
if rj := 1 − cj · x. If any rj is wrong, C
rejects.

3.2.1 Security proof

Our security proof is organized as a sequence

of games. Game number one will be the orig-

inal HB protocol. The second game serves as

a bridging step to allow us a clearer indistin-

guishability-based transition to game 3. This

transition covers the major changes in the pro-

tocol and allows the adversary to gain a neg-

ligible advantage. The final game is another

bridging step and results in the improved HB

protocol.

Theorem 3 is the main theorem of this sec-

tion and will be proven at the end.

Theorem 3. If the HB protocol is secure un-

der the LPN assumption in the threat model

defined by [1], then the extended HB proto-

col is secure under the LPN assumption in the

extended threat model.

Game 1

Game 1 is the original HB protocol as stated

in section 3.1.

Game 2

This is the same as game 1, except that the

computer performs the following additional steps:

First the computer draws a number of random

words from the dictionary equal to the number

of challenges it generates. Then the computer

sends those words to the human.

To be more precisely, we add the steps (C1.1)

and (C2.1), while adjusting step (C2) as fol-

lows:
(C1.1) C selects m random words s1,. . . ,sm

from the dictionary S
(C2) C selects m random challenges c1,. . . ,cm

from {0, 1}n

(C2.1) C sends s1,. . . ,sm and c1,. . . ,cm to H

Lemma 1. For any passive adversary A, the
advantage for an impersonification attack in

game 2 is equal to the advantage for an im-

personification attack in game 1.

Proof. The additional steps in game 2 are not

related to the security properties of game 1.
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Thus the attacker does not gain any advan-

tage.

Game 3

In Game 3 we do the following changes to

game 2: The ITMs H and C share an addi-

tional secret ξ ⊂ N (S). The parameters g, δ

and N (S) are the new public parameters. η is

substituted for the probability that for a ran-

dom s ∈ S, the relation Rg,δ(ξ, s) evaluates to

1 and the computations of H take this substi-

tution into account.

Summarized, this means the following parts

of the protocol are changed or added:

Shared secrets: H and C share a secret vec-

tor x ∈ {0, 1}k and a secret ξ ⊂ N (S).
Public parameters: g ∈ N, δ ∈ (0, 1], N (S)

(C1.2) C sets η to be the probability, that for

s
r←− S the relation Rg,δ(ξ, s) evaluates

to 1.

(H1) For every challenge-word pair (cj ,sj): If

Rg,δ(ξ, sj) = 0, H responds with rj :=

cj · x, otherwise H responds with rj :=

1 − cj · x
Remark 1. We will ignore the different public

parameters in the security proof by assuming

dummy (fake) public parameters.

Conjecture 3. We assume, that the size of

the dictionary S and the secret ξ are such,

that in step (C1.2) the value of η is set to be

strictly between 0 and 1/2.

This is a very likely assumption if S is a

dictionary of a natural language and ξ is re-

stricted to be easily rememberable by most

humans.

Then in step (H1) of game 3, the probability

Pr
[
Rg,δ(ξ, sj) = 0

]
is 1 − η and thus equal

to the probability distribution in step (H1) of

game 1 and game 2.

Lemma 2. For the advantage of the passive

adversary A in performing an impersonifica-

tion attack, the following equation holds:

Advimp
game 3,A ≤ Advimp

game 2,A + negligible .

Proof. Let D be a PPT algorithm, distinguish-

ing between game 2 and game 3. The only no-

ticeable difference between game 2 and game

3 could be in the human’s answers. To notice

this difference, D needs to know the secret ξ.

To compute ξ in any given instance of this

protocol is equal to solving the correspond-

ing LPN problem. Therefore, the distinguisher

needs to guess ξ.

Because S is assumed to be the dictionary of

a natural language, the distinguishers advan-

tage in guessing ξ can be considered negligible.

It follows, that the advantage of D in distin-

guishing game 2 from game 3 is negligible.

Then the advantage of a passive attacker A
in game 3 is:

Advimp
game 3,A ≤ Advimp

game 2,A + negligible .

Game 4

In game 4 we change the calculations done

to determine if H is accepted by C or not. The
steps (C1), (C1.2), (C3) and (C4) in game 3

are substituted by the new (C3) in game 4:

(C3) For all challenge-word-response triples

(c1,s1,r1),. . . ,(cm,sm,,rm): IfRg,δ(ξ, sj)

= 0, C checks if rj := cj · x, else C checks
if rj := 1 − cj · x. If any rj is wrong, C
rejects.

For readability, the step (C1.1) is renamed

to (C1) and the steps (C2) and (C2.1) are com-

bined to the new step (C2).

Step (C3) in game 4 takes advantage of the

fact, that the human behaves deterministically.

While in the original HB protocol the com-

puter has to check the distribution of all an-

swers, now C can calculate for every answer

separately if it should be cj · x or 1 − cj · x.

Lemma 3. In game 4, the advantage of the

passive adversary A in performing an imper-

sonification attack is:

Advimp
game 4,A = Advimp

game 3,A .
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Proof. Sine the changes done in game 4 nei-

ther affect the correctness of the protocol nor

any exchanged messages between C and H, the
advantage of adversaryA does not change.

Proof of theorem 3. The correctness of theo-

rem 3 directly follows from the lemmata 1, 2

and 3.

Informally speaking, the adversary doesn’t

gain a significant advantage compared to the

original HB protocol, because the noise has a

similar distribution in both protocols and the

additionally send words sj ∈ S don’t yield to

any advantage for the adversary.

4 Conclusion

In this paper we have extended the threat

model for human identification protocols by

assuming a stronger attacker who can predict

random decisions made by the human. We

have stated why this model is reasonable in

the real-world setting. The extension becomes

particularly important considering recent ad-

vances on machine learning algorithms [6].

We have introduced a novel function based

on human linguistic abilities. This function

about the relation of words in a natural lan-

guage has the benefit, that the evaluation of it

is a natural task for most humans and doesn’t

have to be learned.

In the context of the extended threat model,

the HB protocol has been improved by apply-

ing the function about related words. We have

given a proof for the security of the resulting

protocol in the new threat model.

4.1 Open questions

Our function about the relation of words is

based on assumptions. It remains an open

question to find more evidence that this func-

tion fulfils the believed properties.

The function, as defined and used in this

paper, leads to the exchange of one bit of in-

formation. It is an open question if it is possi-

ble to increase the amount of information ex-

changed without noticeably reducing the us-

ability of the function.

Another questions is whether our improved

HB protocol leads to either innovative attacks,

or gives the possibility of better security guar-

antees.
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