
Verification of Variable Software:
An Experience Report ?

Richard Bubel, Crystal Din and Reiner Hähnle

Department of Computer Science and Engineering
Chalmers University of Technology

bubel@chalmers.se, crystal@student.chalmers.se, reiner@chalmers.se

Abstract. We report on our experiences with formal specification and
verification of variable and customizable software realized in a software
product family architecture using the Java Modeling Language (JML)
and the KeY verification system. Software product families can be adapted
to different deployment scenarios and provide instantiable feature sets
as requested by the customer. Along a small case study we explore how
to generate JML specifications for/from a given feature configuration
and report on verification attempts of selected methods of the derived
product. We identify challenges that need to be solved to allow scalable
specification and verification of variable software.

1 Introduction

One of the biggest saving potentials for increasing the efficiency of software de-
velopment lies in the reusability of software artefacts. In order to make software
artefacts reusable, two essential qualities must be achieved: flexibility and ab-
straction. The first is needed, because reusable software is supposed to work
in a variety of different contexts and requirements. The second is important to
achieve a separation between the level of design and that of executable products.
There is a large number of suggestions on how to achieve reusability. Among the
most systematic approaches are model-driven engineering (MDE) and software
product families (SWPF).1 Of these, software product families are arguably the
more successful method in practice and are very widely used in industry.2

The core idea of software product families is to split software development
into two separate streams called Family Engineering and Application Engineer-
ing, see Fig 1. In the former, the commonalities of all anticipated products are
specified in a structured manner centered around the notion of a feature. The
resulting interfaces, libraries, and partial implementations are collected in an
Artifact Base. Concrete products are obtained by feature selection and feature
instantiation.
? This work has been supported by the EU project FP7-ICT-2007-3 HATS Highly

Adaptable and Trustworthy Software using Formal Methods.
1 Both terms “Software Product Families” and “Software Product Lines” are in use

and can be considered to be equivalent within the scope of the present paper.
2 See the Software Product Line Hall of Fame at http://www.splc.net/fame.html.

Fig. 1. Sketch of life cycle in Software Product Family development

Software product family-based development is increasingly used in safety-
critical applications, for example, in health care products or in automotive soft-
ware. In addition, the designs of product families reach complexity limitations,
because different features may interact in unanticipated ways. It is fairly stan-
dard to automatically check the compatibility of features [5], but this is done
with structural descriptions, not based on a precise behavioral model of feature
functionality. For these reasons it is highly interesting to investigate formal ver-
ification of functional properties in software product families. To the best of our
knowledge this has not been attempted before. The present paper is a first case
study where we seek to verify certain functional properties of a small product
family. We report on our experiences, discuss different design choices, and list a
number of encountered problems. We also state a number of requirements for the
design of verification methods and tools to scale up to industrial-size software
with high variability.

It is clear start that—unless verification and specification is compositional
and incremental—full functional verification at the family engineering level is
doomed to fail, because of the targeted variability. Already small product families
give rise to an infeasibly large number of products with different properties.
Suitably compositional and incremental verification methods are the subject of
future research, therefore, in our case study we aimed at verification at the
level of a single derived product in the implementation language Java. At first
sight this seems to be merely a standard verification problem. Depending on the
implementation of feature selection, however, it becomes much harder: the reason
for this is that we chose an implementation that resolves variability points only
at run-time, not statically at compile-time. The reason for this choice is that it
allows for a more flexible architecture and is, therefore, favored in practice.

The case study in our paper has been done with the verification system KeY
[4]. The software product family was implemented in Java and we used the Java
Modeling Language (JML) to specify properties.

The paper is organized as follows: in Sect. 2 we describe our case study and
provide some background on feature modeling. In Sect. 3 we present the Java
implementation of our case study. The formal specification of properties for our
case study is explained in Sect. 4, specifically, how we translate FDL into JML.
The results of the verification experiments are presented in Sect. 5. We discuss
related and future work in Sect. 6.

2 Background

2.1 The Common Component Modeling Example

The Common Component Modeling Example (CoCoMe) [11] is an academic case
study and has been widely used as a benchmark for the evaluation of modeling
formalisms in the context of software product families (SWPF).

The CoCoMe scenario describes a trading system as it may be used in a
supermarket. The basic components of the trading system are cash desks (see
Fig. 2) and a store server. A cash desk is responsible to register the products
a customer is going to buy. Each product is uniquely identified by a product
identification number (productID). During product registration, the cash desk
queries the store server for the product name and price tag associated to the en-
tered productID. After all productIDs of the customer’s purchase are registered,
the customer is accounted for the purchase. Finally, if the payment transaction
is successful the store server records the purchase and updates its inventory list
accordingly.

!"#$%

&'()*+%(,*-./%

&'()*+%(,

&'()*0#1

&'$2*3%'2%$

4$./"%$

-.5)"*+.(67'8

0'$*%*

!9'//%$

&'()*+%(,*4&

&'()*+%(,

&'()*+%(,

&'()*+%(,

&'()*+%(,

!"#$%*!%$:%$

0'/,

!"#$%*&7.%/"

Fig. 1. The hardware components of a single Cash Desk.

!"#$%&'(

!")*%+,"*,)

-)./0,)

1.2$0%3.#45"6

&")%!'*,%

78"//,)

!"#$%3,#9%-!

!"#$%3,#9

!"#$%3,#9

!"#$%3,#9

!"#$%3,#9

70'),%7,):,)

70'),%!5.,/0

Fig. 2. An overview of entities in a store which are relevant for the Trading System.

!"#$%

!"#$%

!"#$%

!"#$%

&'"%$($)*%+

!%$,%$

&'"%$($)*%+-.)%'"

Fig. 3. The enterprise consists of several stores, an enterprise server and an enterprise
client.

Fig. 2. The hardware components of a single cash desk. Image taken from [11].

The CoCoMe challenge comprises not only to model a cash desk system that
is able to handle the above scenario, but the modeled trade system should also

be adaptable to different environments. For instance, shops may have barcodes
encoding the product id and want to be able to read them automatically using a
scanner rather than having to enter them manually. Businesses may accept only
cash or card or both payment kinds. In case of card payments the supported
type of cards (prepaid card or credit card) should also be customizable.

2.2 Feature Modeling

In this section we present the specific feature model used for the case study and
explain the necessary elements of the feature modeling language. As a basis for
our case study we used the feature model in [12] which we also took as a starting
point for our implementation.

Different modeling formalisms have been developed to capture the require-
ments as sketched in Sect. 2.1 in a structured manner. Best known are perhaps
decision diagrams [3] and feature-based models [8, 1]. For our case study we
use the feature modeling approach first introduced in Feature Oriented Domain
Analysis (FODA) [8] and extended in subsequent work.

A software family can be seen as a set of features, while a concrete software
product is then derived by selecting a subset of the features; such a feature selec-
tion is called a feature configuration. Not each combination of features represents
a valid feature configuration, as for example, certain features may require the
presence or absence of others. Feature diagrams and a feature description lan-
guage (FDL) provide structured means to describe valid feature configurations.
We restrict ourselves to tree like structures for representing valid feature config-
urations. The feature diagram representing all valid configurations of the feature
CashDesk is shown in Fig. 3.

Fig. 3. Feature diagram of the CoCoME cash desk feature

The root of a feature diagram represents the top-level feature whose valid
configurations are modeled (here, the cash desk component). A feature can then
be composed of subfeatures represented as children of the root node (e.g., the
Cash Desk has two subfeatures, namely Payment Method and Product Input De-
vices). There are different types of edges (see Fig. 4) that can be used to connect
the children to its parent. Depending on the type of edge certain restrictions
apply. An edge with a filled circle at the end represents a mandatory feature,
i.e., the feature must be selected when its parent is selected, while an empty
circle represents an optional feature. To express that at least one of a group of
sibling features has to be selected, the edges to these siblings are connected by a
filled triangle. An empty triangle means that exactly one of the grouped siblings
has to be selected, but not more.

Fig. 4. Feature Diagram Notations: All: all subfeatures must be selected; Alternative:
exactly one subfeature must be selected; Or: at least one subfeature must be selected;
Mandatory: required feature; Optional: optional feature

In our case a valid configuration of a CashDesk must include the direct subfea-
tures Payment Methods and Product Input Devices. The feature Payment Methods
requires at least one of the features Cash or Noncash to be present.

The most basic product that can be derived from a feature configuration that
is valid under the model given in Fig. 3 is the one that allows only keyboards as
product input devices and accepts only cash payment.

Alternative to the graphical notation, equivalent textual notations can be
used to encode valid feature configurations. We presented only those notions
required for the understanding of the paper: there exist several others that allow
to express further dependencies and restrictions of features.

3 Implementation

In this section we describe the Java implementation of the cash desk component.
We explain how the variability of the cash desk component is achieved so that
for all feature configurations described in Fig. 3 a corresponding product can be
derived.

The implementation follows closely the feature diagram shown in Fig. 3.
For each node there is a similarly named interface or class that represents or
implements the feature. The class CashDesk shown in Fig. 5 implements the

behavior common to all possible cash desk configurations. A cash desk can be
equipped with an arbitrary number of input devices and payment processes. It
provides, therefore, methods to add input devices addInputDevice(IDevices)

and payment methods addPaymentMethod(IPayments).

CashDesk

devices : IDevices[]
payments : IPayments[]
...

CashDesk()
addInputDevice(dev:IDevices)
addPaymentMethod(pm:IPaymentMethods)
...

Configurator

realFeatures : boolean[]
...

Configurator()
plugin(cashDesk : CashDesk)
setFeatureVector(f:boolean[])
start()
...

FeatureSelection

Fig. 5. Class diagram of CashDesk controller

Each input device has to implement the interface IDevices. The interface
IDevices defines the protocol for entering product identification numbers by
declaring a common set of methods initiating and finalising the product in-
put process. In our scenario, the supported input devices are keyboards (class
KeyboardProductInput) and barcode scanners (class ScannerDevice) as shown
in Fig. 6. Supported payment methods need to implement the IPayments inter-
face which defines the common protocol for financial transactions. It provides
the CashDesk class to implement billing of the customer in a transparent way
with respect to the underlying low-level payment protocol.

Our implementation of variability points is substantially different to the Co-
CoMe implementation in [12] and is an almost complete rewrite of it except for
the graphical user interface. In principle, our implementation admits to change
the feature configuration of an already deployed system at run-time. This means
that resolution of variability points happens dynamically rather than statically.
In our case study, however, dynamic variability point resolution is not exploited,
but restricted to simulate static resolution. Thus, once the system has been
setup, its configuration is considered to be fixed. The dynamic evolution of fea-
tures after system initialisation are beyond the scope of this paper and subject
of future work.

We explain now how feature selection and the initialisation of the cash desk
system are implemented. At start of the configuration phase the user is asked to

<<interface>>
IDevices

startProductInputProcess()

ScannerDevice
. . .

KeyboardProductInput
. . .

<<interface>>
IPayments

getPaymentID()
resetPaymentSelection()
...

CashPayment
. . .

CreditcardPayment
. . .

PrepaidPayment
. . .

Fig. 6. The feature hierarchy as implemented in Java

customize the system by selecting a feature combination with help of a graphical
user interface (see Fig. 7). When the user finished feature selection the chosen

Fig. 7. Feature Selection Interface

configuration is passed to an instance of the Configurator class which is re-
sponsible for the cash desk system deployment phase (see Fig. 5).

The feature configuration is passed as a bitvector (represented as boolean ar-
ray) to the method setFeatureVector(boolean[] f). The encoding of feature
configurations as bitvectors is canonical: the length of the vector is the same as
the number of available features and each bitvector element represents exactly
one feature (feature fi is selected iff f[i]==true). If the selected feature con-
figuration is invalid, then the configuration phase is aborted and an exception
of type FeatureException thrown. Otherwise the feature array is assigned to
the field realFeatures. Subsequent invocation of the start() method triggers
creation and initialisation of the cash desk system.

First an instance of the class CashDesk is created. Then the plugIn() method
of the Configurator is called which equips the created CashDesk instance with

the chosen features and accessories like keyboards or scanners by creating the
respective instances and registering them at the CashDesk instance. The presence
of this plug-in mechanism makes dynamic feature selection principally possible.

4 Specification

Feature model diagrams provide a high-level, structural specification of valid
feature configurations, but do not relate to a concrete implementation, that is,
the actual behavior of a software product family. As we want to verify that the
Java implementation described in Sect. 3 permits only valid configurations to
be deployed, we need to connect the feature model specification and the actual
Java implementation.

4.1 The Java Modeling Language

For Java programs the Java Modeling Language (JML) [9] is widely used as
specification language. JML follows the design-by-contract paradigm and is sup-
ported by numerous tools like the Java verification system KeY [4] used here.

JML specifications are added as comments to Java source code. They start
either with //@ or are enclosed in /*@ ... @*/. Among other things, JML
allows to specify invariants

//@ public invariant bExp;

method contracts for the normal behavior case

/*@ public normal_behavior

@ requires 〈bExpreq〉;
@ ensures 〈bExpens〉;
@ assignable 〈store ref list〉;
@*/

and for the exceptional behavior case

/*@ public exceptional_behavior

@ requires 〈bExpreq〉;
@ signals (Exception e) 〈bExpens(e)〉;
@ assignable 〈store ref list〉;
@*/

where

– the requires/ensures keywords followed by a boolean JML expression
〈bExpreq|ens〉 represent the method’s pre-/postconditions

– the assignable keyword followed by a list of store references (fields, array
components) specifies the locations that might be at most changed by the
method

– the signals keyword specifying the postcondition in case that an exception
of the indicated type has been thrown.

JML expressions are a superset of Java expressions with a number of addi-
tional operators including

– the boolean operator ==> denoting logical implication
– universal and existential quantifiers

(\forall T i; 〈bExp(i)guard〉; 〈bExp(i)〉);
(\exists T i; 〈bExp(i)guard〉; 〈bExp(i)〉);
where the second semicolon means implication in the universal case and
conjunction in the existential case.

Finally, we mention ghost and model fields, declared similar to standard Java
fields. A ghost field declaration such as //@ public ghost int i = 5; declares
an integer typed field named i and initialises it with the value 5. Ghost fields have
nearly the same meaning as standard fields and can be assigned values within
method body statements using the JML set-primitive //@ set i = 10;.

Model fields can be referred to like standard fields in JML specifications, but
it is not possible to assign them a value directly as is the case for ghost fields.
Typically, they are used in interfaces where they are related to an (abstract)
datatype and used to specify interface methods in terms of model fields and the
operations its type provides. Implementing classes of the interface express then
how their implementation relates to the model field by providing a represents

clause mapping their internals to the model field. For more details see [9].

4.2 JML Representation of the Feature Model

We describe how a feature model is translated into an equivalent JML specifica-
tion. The obtained JML specification will be self-contained and independent of
a concrete implementation. Our translation of feature models into JML follows
the approach presented in [7] for propositional logic.

Let FM denote the feature model to be translated and F = {f0, . . . , fn} the
set of all its features. The translation tr(FM) of the feature model consists of:

– A model field declaration

//@ model public nullable boolean[] feature;

including an invariant stating that the length of the feature array is equal
to the number of features declared in FM.

– A sequence of ghost field declarations

//@ ghost public final static int f_0 = 0;
...

//@ ghost public final static int f_n = n;

Each ghost field declaration f i defines a compile-time constant associat-
ing the corresponding feature fi uniquely with an array component of the
previously declared model field feature such that feature fi is selected iff
feature[f_i]==true.

– A set of conjunctively connected boolean JML expressions Inv = {e0, . . . , en}
such that each expression encodes the relationship between a feature and its
immediate subfeatures.

The conjunction of the JML expressions in Inv encodes the FM diagram
(recall that we only consider FM models being trees). Wlog. we describe now the
construction of the JML expression e0 ∈ Inv encoding the relationship between
the parent feature f0 and its children f1, . . . , fm: e0 is the conjunction of

1. feature[f_i]==>feature[f_0] (for all 0 ≤ i ≤ m) encoding the ancestor
link

2. feature[f_0]==>feature[f_i] for each mandatory feature fi

3. feature[f_0] ==>

(feature[f_l] &&!feature[f_2] && ... && !feature[f_k])

|| ... ||

(!feature[f_l] && ... && !feature[f_(k-1)] && feature[f_k])

for each alternative relationship between parent and a subgroup of its chil-
dren fl, . . . , fk where 1 ≤ l < k ≤ n)

4. Analogous expressions for the remaining parent-child relationships.

Based on this definition, we implemented an automatic translation from fea-
ture models to a JML specification fragment to be used as part of JML invariants
and method specifications.

4.3 Connecting Specification and Implementation

While the specification generated in Sect. 4.2 describes all valid feature config-
urations, it is not yet connected to the actual implementation of the cash desk
system. In this section we explain how to relate the feature vector used in the
specification to the implementation. The generated feature specification is used
to ensure that

1. the Configurator accepts only valid feature configurations;
2. the CashDesk system built by the Configurator has all components required

by the selected feature configuration.

We start with item 1. In a first step the model and ghost field declarations from
above are inserted into the Configurator class. In addition, we need to add the
invariant Inv, however, since the invariant can only be expected to hold after
the feature vector is determined and initialized we add a guard that ensures it:

//@ public invariant !feature == null ==> Inv

Next, the model field feature is related to the actual implementation by
adding a JML represents clause defining how the model field can be mapped to
concrete Java constructs. This mapping is trivial and simply states that feature
is represented by the field realFeatures of class Configurator.

The JML semantics says that each non-helper method preserves all invari-
ants, so our specification expresses already that setFeatureVector(boolean[])
may only accept valid feature configurations. It is straightforward to construct
a normal behavior method specification for setFeatureVector(boolean[] f):
simply rename feature in e with the method parameter f and use feature == f

as postcondition, the only a valid configuration is actually accepted.

Moving to item 2. above, the feature array needs to be more closely related
to the underlying Java implementation. This can be done in a systematic man-
ner by annotating the Java feature model FM with a mapping that maps each
feature fi to a JML expression φ(fi) to be used as an additional invariant to
be established after deployment of the product and preserved thereafter. For ex-
ample, an annotation ensuring that the created cash desk cashDesk is equipped
with a properly registered keyboard is:

feature != null && feature[_keyboard] ==>

(\exists KeyboardProductInput kpi;

(\exists int i; 0<=i && i < cashDesk.stateChangeListenerSize;

cashDesk.stateChangeListener[i]==kpi) &&

(\exists int j; 0 <= j && j < cashDesk.devicesSize;

cashDesk.devices[j] == kpi))

5 Verification

We used the KeY verification system [4] to prove that the feature configura-
tion validity check and the cash desk system setup procedure are implemented
faithfully with respect to the specification given in Sect. 4.

We were in particular interested how well a current state-of-the-art verifi-
cation tool scales when verifying highly adaptable software as developed in the
context of software product families.

public void plugIn(CashDesk cashDesk) {

if (realFeatures[SCANNER]) {

final ScannerDevice scanner = new ScannerDevice(cashDesk);

cashDesk.addInputDevice(scanner);

cashDesk.addStateChangeListener(scanner);

}

if (realFeatures[NONCASH] && realFeatures[CREDITCARDREADER]) {

...

}

...

}

Fig. 8. If-cascade implementing the cash desk initialisation logic

Before we could start the verification of our CoCoMe subsystem, we had
to adapt the derived JML specification slightly. The reason is that KeY’s sup-
port for model fields is somewhat rudimentary. Thus we decided to replace the
feature model field by a ghost field of the same name. As the semantics of
model fields is much more complex than that of ghost fields, we had also to
change and extend JML specifications referring to the model field to achieve an
equivalent and correct specification. Such a replacement is not possible in general
but worked here well in our context due to the simple represents clause and by
assuming a closed system, i.e., that all classes implementing input devices and
payment methods are known in advance.

We were able to verify the correctness of the validity check and most parts
of the actual cash desk creation and initialisation. In its original version the lat-
ter had been a monolithic method (plugIn() of class Configurator) consisting
of if-cascades as shown in Fig. 8. Verification of this method was infeasible as
the proof size exploded. We modularised the monolithic method and separated
each if-cascade representing the creation and registration of a device or pay-
ment method into different methods. The specification of one of these methods
checkScanner(CashDesk) is given in Fig. 9.

/*@

@ public normal_behavior

@ requires feature!=null;

@ requires feature[_scanner];

@ ensures

@ (\exists ScannerDevice sd; \fresh(sd);

@ (\exists int i; 0<=i && i< cashDesk.stateChangeListenerSize;

@ cashDesk.stateChangeListener[i]==sd) &&

@ (\exists int j; 0<=j && j< cashDesk.devicesSize;

@ cashDesk.devices[j]==sd));

@ assignable

@ \object_creation(ScannerDevice),\object_creation(Scanner),

@ cashDesk.stateChangeListenerSize, cashDesk.stateChangeListener,

@ cashDesk.stateChangeListener[cashDesk.stateChangeListenerSize],

@ cashDesk.devicesSize, cashDesk.devices,

@ cashDesk.devices[cashDesk.devicesSize];

@*/

Fig. 9. Specification of the checkScanner method

Afterwards we were able to verify most of the individual methods in isolation.
Fig. 10 shows statistics about the performed proofs (all fully automatic) and their
size. For two methods, checkCreditCard and checkPrepaidCard we could not
yet obtain proofs. We are currently analyzing the problems and we are confident
that we can present proofs in the final version of this paper.

Method Nodes Branches

checkScanner 22032 107
checkCash 14150 77
checkKeyboard 15755 64

(a) Ensure Postcondition

Method Nodes Branches

checkScanners 40439 429
checkCash 20265 161
checkKeyboard 46392 664

(b) Correct Assignable Clause

Method Nodes Branches

checkScanners 89492 703
checkCash 49421 327
checkKeyboard 70962 485

(c) Preserve Invariant

Fig. 10. Proof Statistics

6 Related & Future Work

Related Work. In [6] the authors describe an approach to open system verifica-
tion of software product lines by parametrised interfaces. The verification tech-
nology is (3-valued) model checking. Features and the core product are equipped
with interfaces externalising certain states as input and output states. Features
can be composed to complex features or to whole products by connecting to the
core product using these interfaces.

The authors aim to allow compositional (contract-based) reasoning using
model checking by computing subcontracts for the interfaces. When composing
the features to a complete product only the subcontracts have to be discharged.
Specifically, for a given global property of a product, constraints to be posed onto
the exposed input and output states are computed independently for each fea-
ture. At composition time one has then only to ensure that these constraints are
satisfied by the preceding/succeeding features. The constraints for the preced-
ing features are propositional formulas restricting the values of the input values,
while those of the succeeding features are temporal logic formulas ensuring that
certain properties are adhered to in the future. The presented approach allows to
compose products arbitrarily and eases verification by having only to discharge
the computed constraints for the derived product, but is limited to incremental
features.

The authors of [2] describe an approach to verification of a software product
lines based on ASMs and the AHEAD methodology. Their case study is built
upon the Jbook [14], where a complete virtual machine for Java 1.0 has been
modelled including an interpreter and compiler. The compiler was proven correct
wrt. the interpreter.

The authors restructured the Jbook case study to fit into the feature mod-
elling approach as enforced by the feature-oriented programming (FOP) design

methodology which provides a technology for compositional program assembly.
The so obtained structure has a base layer or core representing only a subset
of Java expressions (imperative expressions). This core is stepwise extended by
adding new features (layers) such as imperative statements, class and object
features until complete coverage of the Java 1.0 language is reached.

In this framework a strong structural connection exists between model exten-
sion and the correctness proof of the compiler. This allows to alter the existing
correctness proof by adding new independent cases (e.g., for new supported
language constructs) or to refine existing cases by an additional invariant to be
proven. Features having a non-compositional or destructive influence for existing
cases occurred either rarely or not at all. Correctness has been proven (mostly)
by hand without any automation or even machine-checked proof support.

Future Work. We differ substantially in our objectives and the underlying tech-
nology from the work discussed above: we aim at a highly automatised com-
positional design and verification system that is applicable to adaptive systems
in general and specifically to software product line engineering. In basing our
work on an expressive program logic and specification framework realized in a
verification system with a high degree of automation we overcome some princi-
pal limitations, however, we are fully aware that there are considerable research
challenges ahead:

– We believe that it is not sufficient to achieve compositionality by manually
adding case distinctions or refining existing ones. The verification system
and methodology must inherently construct proofs that are accessible to
compositional reasoning and—where this is not possible—apply proof reuse
techniques.

– Support for destructive features is essential: the restriction to mostly incre-
mental features and consequently conservative extensions is not sufficient
for our purposes. Adding new features may easily render existing proof cases
invalid and require a completely new proof. Again, proof reuse is of essence.

– Independence of new features and existing proofs: even if a new feature has
no influence on, say, a certain class invariant, this needs to be proven (or
enforced) explicitly. In case of real-world languages like Java with aliasing
this is still an area of active research [10, 13].

Our case study showed that formal specification and verification of software
product families is, in principle, possible with current technology and can actu-
ally be achieved for small examples. Nevertheless, the results of our case study
are not satisfactory from our point of view. Specific problems, such as missing
support for model fields which are crucial for verification of open systems, are
specific shortcomings of the used verification tool KeY and will be resolved in
the near future. Others issues, however, such as proof-size explosion due to the
resolution of variability points needs to be solved on a methodological level. Re-
search regarding this issue is under way. It would also be interesting to explore

how separation-logic based approaches perform in the context of software fami-
lies and if they can overcome some of the problems we faced because of framing
issues.

References

1. D. Batory. Feature models, grammars, and propositional formulas. In Software
Product Lines, pages 7–20. Springer-Verlag, 2005.

2. D. S. Batory and E. Börger. Modularizing theorems for software product lines:
The jbook case study. J. UCS, 14(12):2059–2082, 2008.

3. J. Bayer, C. Gacek, D. Muthig, and T. Widen. Pulse-i: Deriving instances from
a product line infrastructure. Engineering of Computer-Based Systems, IEEE In-
ternational Conference on the, 0:237, 2000.

4. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

5. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models
20 years later: a literature review. Information Systems, 2010.

6. C. Blundell, K. Fisler, S. Krishnamurthi, and P. V. Hentenryck. Parameterized
interfaces for open system verification of product lines. In ASE ’04: Proceedings of
the 19th IEEE international conference on Automated software engineering, pages
258–267. IEEE Computer Society, 2004.

7. K. Czarnecki and A. Wasowski. Feature diagrams and logics: There and back again.
In Software Product Line Conference, 2007. SPLC 2007. 11th International, pages
23–34, 2007.

8. K. C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-
021, Carnegie Mellon University Software Engineering Institute, 1990.

9. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, and D. M. Zimmerman. JML Reference Manual, Sept. 2009. Draft
revision 1.235.

10. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Computer Science. Springer, 2002.

11. A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, editors. The Com-
mon Component Modeling Example: Comparing Software Component Models
[result from the Dagstuhl research seminar for CoCoME, August 1-3, 2007],
volume 5153 of LNCS. Springer, 2008. Preliminary version of the chapter
describing the Trading System is available at: http://agrausch.informatik.uni-
kl.de/CoCoME/downloads/documentation/cocome.pdf.

12. I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A Model-Based Framework for
Automated Product Derivation. In Proc. of Workshop in Model-based Approaches
for Product Line Engineering (MAPLE 2009), 2009.

13. J. Schäfer, M. Reitz, J.-M. Gaillourdet, and A. Poetzsch-Heffter. Linking programs
to architectures: An object-oriented hierarchical software model based on boxes.
In CoCoME, pages 238–266, 2007.

14. R. F. Stark, E. Börger, and J. Schmid. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation with Cdrom. Springer, 2001.

