
A New Invariant Rule for the Analysis of Loops
with Non-standard Control Flows

Dominic Steinhöfel and Nathan Wasser

TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany
steinhoefel@cs.tu-darmstadt.de, nate@sharpmind.de

Abstract. Invariants are a standard concept for reasoning about un-
bounded loops since Floyd-Hoare logic in the late 1960s. For real-world
languages like Java, loop invariant rules tend to become extremely com-
plex. The main reason is non-standard control flow induced by return,
throw, break, and continue statements, possibly combined and nested
inside inner loops and try blocks. We propose the concept of a loop scope
which gives rise to a new approach for the design of invariant rules. This
permits “sandboxed” deduction-based symbolic execution of loop bodies
which in turn allows a modular analysis even of complex loops. Based on
the new concept we designed a loop invariant rule for Java that has full
language coverage and implemented it in the program verification sys-
tem KeY. Its main advantages are (1) much increased comprehensibility,
which made it considerably easier to argue for its soundness, (2) simpler
and easier to understand proof obligations, (3) a substantially decreased
number of symbolic execution steps and sizes of resulting proofs in a
representative set of experiments. We also show that the new rule, in
combination with fully automatic symbolic state merging, realizes even
greater proof size reduction and helps to address the state explosion
problem of symbolic execution.

1 Introduction

In the past decades, deductive software verification [12] techniques evolved from
theoretical approaches reasoning about simple while languages [15,19] to systems
such as Spec# [2], Frama-C [9], OpenJML [8] and KeY [1] which are capable of
proving complex properties about programs in industrial programming languages
such as C, C# and Java [10,26,17]. Naturally, the complexity of the languages is
reflected in the complexity of the verification, raising the question: How can we
adequately handle language complexity, while restraining the negative impact of
overly complex verification procedures on comprehensibility and performance?

Prominent deductive verification techniques comprise verification condition
generation and Symbolic Execution (SE). The scope of this work is the latter.
As opposed to concrete execution, SE [5,22,11] treats inputs to a program as ab-
stract symbols as long as they are not assigned a concrete value; thus, programs
can be analyzed for all possible input values. Whenever the execution depends on

2 Dominic Steinhöfel and Nathan Wasser

the concrete value of a symbolic variable, it makes a case distinction, following
each possible branch independently. The outcome of SE is a Symbolic Execution
Tree (SET). We distinguish two types of SE approaches: (1) Lightweight SE has
its applications in bug finding or, for instance, concolic testing [21]. Programs
are instrumented by replacing data types with symbolic representations or by
the addition of function calls to the SE engine, which is in turn backed by an
external SMT solver. Lightweight SE has been employed in the analysis of whole
software libraries [6]. Example systems include KLEE [6] and Java PathFinder
[27]. (2) Heavyweight SE can be used to prove complex functional properties
about programs which are executed by a symbolic interpreter. A strong focus is
put on modularity : e.g., single methods may be thoroughly analyzed indepen-
dently from the concrete code of others. To achieve this, the analysis depends
on specifications such as method contracts and loop invariants. Heavyweight SE
systems can rely on an external solver, or be integrated with an internal theo-
rem proving engine. Due to high computation time and the effort required for
creating specifications, they do not scale to complete libraries, and are instead
employed to assert strong guarantees about critical routines [17] or to build pow-
erful tools like symbolic debuggers [18]. Example systems encompass KeY [1],
VeriFast [30] and KIV [29]. In this paper, we consider heavyweight SE.

Heavyweight SE is strongly affected by both the performance and comprehen-
sibility aspects phrased in the question at the beginning: The number of branches
in an SET grows exponentially in the number of static branching points in the
analyzed program, which is referred to as the path explosion problem in liter-
ature [7]. Additionally, proving the validity of complex properties may require
interaction with the prover, for which it is essential that the proof is transparent
and understandable to the user.

For reasoning about unbounded loops, invariants are standard since Floyd-
Hoare logic [15,19] and play a central role in heavyweight SE systems. This paper
pushes forward a new kind of loop invariant rule tackling the aforementioned
problems by integrating a novel program abstraction, which we refer to as loop
scopes, and an automatic predicate abstraction-based state merging technique
exploiting existing specification elements for infering predicates while maintain-
ing precision.

Standard loop invariant rules require certain contorted maneuvers to deal
with abnormal control flow induced, e.g., by breaks and exceptional behavior;
these measures include non-trivial code transformation or a regime based on a
multitude of artificial flags. Our approach avoids this by realizing a “sandboxing”
technique: Loop bodies are encapsulated inside loop scopes, the semantics of
which allow for a graceful and modular handling of nested loops and complex,
irregular control flow. The loop bodies themselves do not have to be changed. Our
implementation and evaluation for the heavyweight SE system KeY demonstrates
that the loop scope invariant rule contributes to significantly shorter SETs that
are moreover better understandable for a human observer. The integration of
state merging helps to reduce proof sizes even further.

A New Invariant Rule 3

The idea of loop scopes appeared first in [31] and is not yet published. Our
additional contributions are (1) a definition of the semantics of loop scopes and
an outline of a soundness proof for the invariant rule (Sect. 3), (2) the imple-
mentation and experimental evaluation of the rule (Sect. 4), and (3) a predicate
abstraction-based approach for merging SE states arising from the execution of
loops with non-standard control flow (Sect. 5).

2 Program Logic for Symbolic Execution

One convenient approach to concisely describe heavyweight SE is the formaliza-
tion of SE steps as rules in a formal calculus. For expressing our concepts, we
chose Java Dynamic Logic (JavaDL) [1], a program logic for Java (the main con-
cepts of which can be straightforwardly extended to other sequential languages
like C#). JavaDL is an extension of first-order logic for formulating assertions
about program behavior; programs and formulas are integrated within the same
language. To this end, JavaDL contains modalities for expressing partial and
total correctness, where the latter also includes proving that the program ter-
minates. For simplicity, we restrict ourselves to the former in this paper: [p]ϕ
expresses that if the program p terminates, then the formula ϕ holds.

The JavaDL calculus is a sequent calculus in which, as usual, rules consist
of one conclusion and at least one premise, and are applied bottom-up. The SE
rules of the calculus operate on the first active statement stmt in a modality
[π stmt ω]. The nonactive prefix π consists of sequences of opening braces, be-
ginnings “try {” of try-catch-finally blocks, or special constructs like the loop
scopes introduced in this paper. The postfix ω denotes the “rest” of the program;
in particular, it contains closing braces corresponding to the opening braces in π.

Example 1. Consider the following modality, where the active statement i=0;
is wrapped in a labeled try-finally block, and the nonactive prefix π and the
“rest” ω are the indicated parts of the program:

[l:{try {︸ ︷︷ ︸
π

i = 0;︸ ︷︷ ︸
stmt

j = 0;} finally {k = 0;}}︸ ︷︷ ︸
ω

]

The sequent i < 0 ` [π i=0; ω](i .
= 0), embedding this modality, intuitively

expresses “when started in a state where i is negative, ‘π i=0; ω’ either does
not terminate, or terminates in a state where i is zero (since Java is determin-
istic)”. The SE rule applicable to the sequent, assignment, transforms the active
statement into a state-changing update. Below, we show the definition of this
rule on the right and its application on the sequent on the left (Γ and ∆ are
placeholders for sets of formulas):

i < 0 ` {i := 0}[π ω](i .
= 0)

i < 0 ` [π i=0; ω](i .
= 0)

assignment

Γ ` {x := expr}[π ω]ϕ,∆
Γ ` [π x=expr; ω]ϕ,∆


The above example employed another syntactical category of JavaDL called

updates, which denote state changes. Elementary updates x := t syntactically

4 Dominic Steinhöfel and Nathan Wasser

represent the states where the program variable x attains the value of the term t.
Updates can be combined to parallel updates x := t1 || y := t2, and can be applied
to terms and formulas, where we write {U}ϕ for applying the update U to the
formula ϕ. Semantically, ϕ is then evaluated in the state represented by U . For
a full account of JavaDL, we refer the reader to [1].

3 The Loop Invariant Rules

In the verification of sequential programs, and also in SE, the treatment of loops
is one of the most crucial issues. Loops with a fixed upper bound on the number
of iterations can be handled by unwinding. Whenever this bound is not known a
priori, often loop invariant rules are employed. The “classic” loop invariant rule
has the following shape [1,11], where Inv is a supplied loop invariant:1

loopInvariant
Γ ` {U} Inv ,∆ (initially valid)
Γ ` {U} {Uhavoc}((Inv ∧ se

.
= TRUE) → [body]Inv),∆ (preserved)

Γ ` {U} {Uhavoc}((Inv ∧ se
.
= FALSE) → [π ω]ϕ),∆ (use case)

Γ ` {U} [π while(se) body ω]ϕ,∆

Loop invariant rules are based on an inductive argument: We have to prove that
the invariant is initially valid and to show that it is preserved by an arbitrary
iteration. Afterward, we may assume it for the execution of the remaining pro-
gram [π ω] (use case). Since preserved and use case are to be proven in symbolic
states where an arbitrary number of loop iterations has already been executed,
potentially invalidating all information in the context, the context has to be
masked. To this end, an “anonymizing” update Uhavoc is added, which overwrites
all variables/heap locations that are modified in the loop body with fresh sym-
bols (cf. to havoc statements in languages like Boogie [2]). In the context of
simplistic programming languages, where only side-effect free expressions se are
allowed for loop guards and there is no way of abruptly escaping the loop, this
rule is already sufficient. For a language like Java, we need to take into account
that loop guards might be complex expressions with side effects and exceptional
behavior, and the execution might escape the loop in consequence of returns,
continues, breaks, or thrown exceptions.

In the basic invariant rule loopInvariant, the loop body is executed outside its
context [π ω]. Consequently, information about how to handle break, continue
and return statements is no longer present, and a direct extension of the rule
that takes abrupt termination into account has to apply suitable program trans-
formations to the loop body adding an encoding of this information. A funda-
mentally different approach based on four additional labeled modalities is dis-
cussed in detail in [31]; it requires five branches and is inherently incomplete.
The approach implemented in the KeY system and described in [1] wraps the
loop body in a labeled try-catch statement; breaks, returns and continues
are transformed into labeled breaks before which corresponding flags are set
1 This also conforms to Hoare logic [19] when combined with the rule of composition.

A New Invariant Rule 5

that describe the respective nature of the loop termination. Thrown exceptions
are caught in the catch block and assigned to a new variable which makes the
exception available in the post condition of the preserved branch. An example
for this transformation is given later in Example 3. The resulting invariant rule
has the following form (the loop guard is executed twice in the preserved and
use case branches since it may have side effects):

loopInvTransform
Γ ` {U} Inv ,∆ (initially valid)
Γ ` {U} {Uhavoc}((Inv ∧ [b=nse]b .

= TRUE) → [b=nse; body
∧

]Inv
∧

),∆ (preserved)
Γ ` {U} {Uhavoc}((Inv ∧ [b=nse]b .

= FALSE) → [π b=nse; ω]ϕ),∆ (use case)
Γ ` {U} [π while(nse) { body } ω]ϕ,∆

Here, b=nse; body
∧

is the result of the mentioned program transformation, where
Boolean flags brk and rtrn indicate that the loop has been left by a break or
return statement, and the exception variable exc stores a thrown exception.
The post condition Inv

∧
of the preserved case has the following shape:

(exc 6 .= null → [π throw exc; ω]ϕ)
∧ (brk .

= TRUE → [π ω]ϕ)

∧ (rtrn .
= TRUE → [π return result; ω]ϕ)

∧ (normal → Inv)

where normal is equivalent to brk
.
= FALSE ∧ rtrn

.
= FALSE ∧ exc

.
= null .

The special variable result is assigned the returned values in the transformed
loop body. Other works propose similar solutions; in [25], an axiomatic system
with different post conditions for normal, abrupt and exceptional termination is
presented. Their try-finally rule also relies on temporary variables, although
the transformation is not made explicit; the three post conditions can also be
seen as a conjunction of three guarded formulas. These approaches have several
drawbacks:

Exceptions in guards While loopInvTransform allows the loop guard nse to
have side effects, it may not terminate abruptly. Relaxing this restriction
introduces additional complexity.

Multiple reasons for loop termination In practice, there might be multiple
reasons for abrupt loop termination. For instance, while attempting to return
an expression including a division by zero, an exception will be thrown which
ultimately causes the loop termination. In Java, the “return attempt” as a
reason for the loop termination will be completely forgotten; when using the
above invariant rule, however, two of the conjuncts in Inv

∧
apply.

Understandability Due to the applied program transformation, the generated
proof sequents are harder to understand for a human user, and also harder
to describe in theory. Furthermore, the preserved case may also include the
necessity to show the post condition ϕ. This may be considered as counter-
intuitive since it is, theoretically, in the responsibility of the use case.

Repeated evaluation of loop guard The loop guard has to be evaluated
four times according to the rule. This may constitute a performance problem

6 Dominic Steinhöfel and Nathan Wasser

in the verification process, since the guard might be a complex expression
including, for instance, method calls and array accesses.

Moreover, program transformation of Java code is generally an intricate and
error-prone task. Subsequently, we introduce a new syntactical entity called loop
scope. Loop scopes constitute a program abstraction which “sandboxes” loop
bodies, thus facilitating a modular analysis of loops requiring very little program
transformation. This new concept gives rise to a new kind of loop invariant rule.

3.1 Loop Scope Statements and the Loop Scope Invariant Rule

Our proposed invariant rule is based on (indexed) loop scopes [31]. Definition 1
establishes loop scope statements as an extension to Java. We loosen the usual
restriction that the label of a continue statement has to directly refer to a loop
[16] to allow for pushing leading loop labels inside loop scopes.

Definition 1 (Loop Scope Statements). Let x be a program variable of type
boolean, and p be a Java program. A loop scope statement is a Java statement
of the form �x p 	. We call x the index variable of the loop scope and p its body.
Inside p, we allow labeled continue statements referring to arbitrary Java blocks.

The symbols �x, 	 are syntactical extensions of the Java language; in KeY,
there exist a plain-text version loop-scope(x){...}. Definition 2 provides a
scoping notion for continues in loop scopes, which is needed for defining the
semantics in Definition 3.

Definition 2 (Scope of Loop Scope Statements). Let p be the body of a
loop scope statement lst . A continue statement inside p is in the scope of lst
iff it occurs on the top level, i.e., not nested inside a loop or loop scope in p. A
labeled continue statement continue l is in the scope of lst iff the label l (1) is
declared inside p and (2) refers to a top-level block in p.

Definition 3 (Semantics of Loop Scope Statements). Let lst be a loop
scope statement with index x and body p. lst is exited by throw and (labeled)
continue and break statements that are not caught by an inner catch or loop
(scope) statement, or if there is no remaining statement to execute. Its semantics
coincides with the semantics of p, except that upon exiting the loop scope, x is
updated to (1) false if the exit point is a labeled or unlabeled continue statement
in the scope of lst , and to (2) true for all other exit points. Furthermore, exiting
the loop scope with x == false also leads to exiting the whole program.

Example 2. Consider the program
try { �x l:{ y+=2; continue l; f(); } 	 } finally {y=0;}

Following Definition 3, it is semantically equivalent to “y+=2; x=false;”, since
y+=2; does not exit the loop scope and the continue statement is in its scope.

We use the semantics of loop scopes (i.e., x is false, or FALSE in JavaDL, iff
the loop continues with another iteration) to distinguish the preserved and the

A New Invariant Rule 7

loopScopeInvariant
Γ ` {U}Inv ,∆ (initially valid)
Γ, {U} {Uhavoc}Inv ` ∆, {U} {Uhavoc}[π �x (preserved & use case)

if (nse)
l1 : . . . ln : {

body
continue;

} 	 ω]((x .
= TRUE → ϕ) ∧ (x .

= FALSE → Inv))

Γ ` {U}[π l1 : . . . ln : while (nse) { body } ω]ϕ,∆

Fig. 1: The Loop Scope Invariant Rule

use case part in the second branch of our rule loopScopeInvariant (Fig. 1), which
subsumes the respective branches of loopInvTransform. The rule can be extended
to a version for total correctness by reasoning about a well-founded relation [1].
Here, x is a fresh program variable, Uhavoc an anonymizing update, and n ≥ 0 is
the number of labels in front of the loop. The program transformation performed
by the rule is minimal. We merely (1) transform the while to an if, (2) push
any labels inside, (3) add a trailing continue after the loop body, and (4) wrap
the resulting if statement in an indexed loop scope. Appending the continue
statement ensures that the active statement of all final states arising after the
execution of body is either a (labeled) break or continue, or a throw or return
statement. The typical case where the loop scope has an empty body is the one
that never entered the if statement, which corresponds to the case of regular
loop termination due to an unsatisfied loop guard – the classic “use case” (the
only other case is a labeled break referring to a label pointing to the loop). The
following theorem states the validity of the rule loopScopeInvariant.

Theorem 1. The rule loopScopeInvariant is sound, i.e., if the “initially valid”
and “preserved & use case” premises are valid, then also the conclusion is valid.

Proof sketch. The proof follows the usual inductive argument: The invariant has
to hold upon entering the loop (ensured by the validity of the “initially valid”
case) and after an arbitrary loop iteration. The latter is asserted by the semantics
of the loop scope along with the addition of the continue statement and the
post condition conjunct x .

= FALSE → Inv : Since the second premise of the
rule is valid, we know that whenever the loop is resuming with another iteration
(and x .

= FALSE), the invariant is preserved. Furthermore, for the cases that
the loop is exited, it holds that x .

= TRUE and thus that the conclusion ϕ of
x .
= TRUE → ϕ, the post condition of the method, is true. Therefore, we can

conclude the validity of the rule’s conclusion.

Example 3. Fig. 2 depicts a synthetic example of a while loop with non-standard
control flow taken from [1], as well as the “preserved” branch for the invariant rule
loopInvTransform and the “preserved & used” branch for loopScopeInvariant, ap-
plied on the sequent Γ ` {U} [while (x>=0) {...}], ∆. Not only is the outcome
for loopScopeInvariant already shorter and easier to read, but it also subsumes
the “use case” branch of loopInvTransform which is not contained in Fig. 2. Also,

8 Dominic Steinhöfel and Nathan Wasser

while (x >= 0) {
if(x == 0) break;
if(x == 1) return 42;
if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

}

(a) Loop with non-standard control flow.

Γ, {U ′}Inv ` {U} {Uhavoc}(
[π boolean ls; �ls

if (x >= 0) {
if(x == 0) {

break;
} if(x == 1) {

return 42;
} if(x == 2) {

continue;
} if(x == 3) {

throw e;
} if(x == 4) { x = -1; }
continue;

} 	 ω] ((ls .
= TRUE → ϕ) ∧

(ls .
= FALSE → Inv))),∆

(b) “preserved & used” branch of an
application of loopScopeInvariant.

Γ ` {U} {Uhavoc} (Inv ∧ [b=x>=0]b .
= TRUE →

[b=x>=0;
loopBody: {

try {
boolean brk=false, rtrn=false;
Throwable exc=null;
if(x == 0) {

brk=true; break loopBody;
} if(x == 1) {

result=42; rtrn=true;
break loopBody;

} if(x == 2) {
break loopBody;

} if(x == 3) {
throw e;

} if(x == 4) { x = -1; }
} catch(Throwable e) {

exc = e;
}
] (exc 6 .= null → [π throw exc; ω]ϕ)

∧ (brk .
= TRUE → [π ω]ϕ)

∧ (rtrn .
= TRUE → [π return result; ω]ϕ)

∧ (exc .
= null ∧ brk .

= FALSE∧
rtrn .

= FALSE → Inv)
),∆

(c) “preserved” branch of an application of
loopInvTransform.

Fig. 2: While loop with non-standard control flow and resulting sequents after
an application of loopInvTransform and loopScopeInvariant on it.

the context π ω can constitute a Java program of arbitrary length. Since it occurs
inside the additional modalities of the post condition in the “preserves” branch of
loopInvTransform, this can significantly blow up the resulting sequent and there-
fore render the sequent even harder to understand. We additionally emphasize
that loopScopeInvariant is easier to realize in systems like Hoare logic that do
not allow more than one modality, which is required by loopInvTransform.

Of course, we need to treat loop scope statements in a sound manner accord-
ing to their semantics (Definition 3). In the subsequent section, we present our
simple rules for removing loop scopes depending on the active statement.

3.2 Rules for Handling Loop Scopes

There are eight cases which we have to consider; those are distinguished by the
currently active statement inside the loop scope, which can be: (1) empty, (2) an
unlabeled continue, (3) a labeled continue, (4) an unlabeled break, (5) a la-
beled break, (6) a return for a void method, (7) a return for a non-void method,
or (8) a throw statement. Fig. 3 shows those new calculus rules; additionally rel-
evant calculus rules are included in the appendix. The rules for throws and
returns (throwIndexedLoopScope, emptyReturnIndexedLoopScope and returnIn-
dexedLoopScope) are straightforward; the loop scope as well as the remaining

A New Invariant Rule 9

throwIndexedLoopScope
Γ ` {U}[π x = true; throw se; ω]ϕ,∆

Γ ` {U}[π �x throw se; p 	 ω]ϕ,∆

emptyReturnIndexedLoopScope
Γ ` {U}[π x = true; return; ω]ϕ,∆

Γ ` {U}[π �x return; p 	 ω]ϕ,∆

returnIndexedLoopScope
Γ ` {U}[π x = true; return se; ω]ϕ,∆

Γ ` {U}[π �x return se; p 	 ω]ϕ,∆

labeledBreakIndexedLoopScope
Γ ` {U}[π x = true; break li; ω]ϕ,∆

Γ ` {U}[π �x break li; p 	 ω]ϕ,∆

labeledContinueIndexedLoopScope
Γ ` {U}[π x = true; continue li; ω]ϕ,∆

Γ ` {U}[π �x continue li; p 	 ω]ϕ,∆

emptyIndexedLoopScope
Γ ` {U}[π x = true; ω]ϕ,∆

Γ ` {U}[π �x 	 ω]ϕ,∆

unlabeledBreakIndexedLoopScope
Γ ` {U}[π x = true; ω]ϕ,∆

Γ ` {U}[π �x break; p 	 ω]ϕ,∆

continueIndexedLoopScope
Γ ` {U}[x = false;]ϕ,∆

Γ ` {U}[π �x continue; p 	 ω]ϕ,∆

Fig. 3: Calculus rules for loop scope removal

program p of the loop is removed and the index x set to true, while the active
statement itself is not touched.

The rules labeledBreakIndexedLoopScope and labeledContinueIndexedLoopScope
address the cases where a labeled break or continue reaches the loop scope. This
only ever happens if the label is not addressing the current loop (or, for that
matter, any block or inner loop inside the current loop): Otherwise, the already
existing calculus rules of KeY will eventually transform the labeled to an unla-
beled statement. If one of the two rules is applicable, the loop is definitely exited
(and thus, the loop scope removed and x set to true), and the labeled break or
continue statement is left for further processing outside this loop scope.

The rule emptyIndexedLoopScope will be applied on sequents resulting from
two different types of control flow: Either the loop was not entered due to
the loop guard evaluating to FALSE , or the loop was exited abruptly via a
labeled break statement referencing the current loop. In both of these cases
the loop is exited and no further steps need to be applied before continuing
with the surrounding program. Furthermore, this result is mirrored in the rule
unlabeledBreakIndexedLoopScope, such that a labeled break referencing the cur-
rent loop and an unlabeled break result in the same behavior.

Due to the loop scope semantics (Definition 3), an unlabeled active continue
statement has to trigger a leaving of the loop scope (removing the execution
context π ω) and the setting of the index variable to false. This is realized
by the rule continueIndexedLoopScope, which distinguishes it from all the others
that keep the context and set the index to true. It is applied either when the
additional continue statement added after the loop body is reached, i.e. in the
case of normal control flow, or in the case of an (unlabeled, or labeled and
referring to the current loop) continue statement within the loop body.

10 Dominic Steinhöfel and Nathan Wasser

4 Evaluation

We implemented the loop scope invariant rule for KeY, a deductive program
verification system for JavaDL based on heavyweight symbolic execution. Its
calculus rules for the SE of Java programs cover most sequential Java features,
such as inheritance, dynamic dispatch, reference types, recursive methods, ex-
ceptions, and strings (we refer the reader to [1] for a full account). Prior to that,
the system was based on the loop invariant rule loopInvTransform (see Sect. 3).
In the remainder of this section, we refer to the previous rule implemented in
KeY as the “old” rule and to our implementation of the loop scope invariant
rule as the “new” rule. Our experimental evaluation is based upon a sample
of 54 Java programs (containing loops) of varying size which are shipped with
KeY as examples. Each of these examples can be solved fully automatically by
KeY. For the evaluation, we created two proof versions: One with the old, and
one with the new rule. We then compared the numbers of proof nodes and SE
steps for each example. Table 1 depicts the results for 44 of the examples. Neg-
ative numbers indicate a better performance of the new rule. We left out some
small examples for space reasons; the complete table is included in the appendix.
Furthermore, the table and the KeY proof files can be found on our web page
key-project.org/papers/loopscopes.

Fig. 4 contains box plots for the percentage difference of the numbers of proof
nodes and SE steps between the old and the new rule. The bars in the middle
of the box represent the median, the box itself the midspread (the middle 50%),
and the whiskers point to the last items that are still within 1.5 of the inter
quartile range of the lower/upper quartile. The examples which are not covered
by the whiskers, the outliers, are signified as points.

Overall, we saved between 3% and 63% of SE steps, the median is 27. Of all
examples, 50% are in the range of 17% and 32% of saved steps. This is mostly
due to the overhead of the fourfold evaluation of loop guards in the old rule.
Considering the total number of saved proof steps, the situation is more complex.
While for 50% of all examples, the number of proof steps can be reduced by 7% to
16% when using the new rule, we have seven outliers, and in total four examples
where the number of nodes is higher in the proof with the new rule.

Of those, the “coincidence_count” example with an increase of 258.88% is
most surprising. The reason is not the SE, since even in this example we saved
27.14% of SE steps. We discovered that the increased number of proof nodes
is due to disadvantageous decisions of KeY’s strategies: From situations in the
compared proofs where the sequents were equal up to renaming of constants
and ordering of formulas, the strategies made significantly worse decisions in the
proof with the new rule. We made similar observations for the remaining three
negative examples as well as for the positive outlier “jml-information-flow”. Ex-
emplarily for “coincidence_count” and “jml-information-flow”, we were able to
underpin the assumption that the extreme loss/gain in performance is due to
(fixable) disadvantageous strategy decisions by pruning the longer proofs at the
interesting positions, performing a few simple steps manually and starting the

http://www.key-project.org/papers/loopscopes

A New Invariant Rule 11

strategies again. The resulting proof size savings fit the expectations. We re-
ported those examples to the KeY team as benchmarks for tuning the strategies.

Some of the positive outliers are more interesting: In the “lcp” example, the
loop condition is extremely complex, which is why the new rule performs much
better. The “ArrayList.remove.0” example contains two nested loops. The ap-
plication of an invariant rule to the inner loop is superfluous, since the specific
method contract constituting the proof goal already facilitates closing the proof
without considering the inner loop. Still, the strategies choose to apply an in-
variant rule. While in the case of the new rule, this is not very costly and the
proof can be closed without any further branching, the proof with the old rule
spends a lot of proof steps for the use case of the inner loop.

Note that so far, we did not encounter any examples where a proof was not
automatically feasible with the old rule, but could be finished with the new
one. In principle, both loop invariant rules do not interfere with the relative
completeness of KeY. However, in the presence of thresholds on the maximum
number of proof steps, an automatic proof can stop early, which is why the
performance improvement gained by using the loop scope invariant rule can be
expected to positively contribute to the result of automatic proof attempts.

5 Exploiting Invariants: Integration of State Merging

As mentioned in the introduction, one of the main bottlenecks of symbolic exe-
cution is the path explosion problem [7]. As it will be discussed in Sect. 6, this
also applies, at least to a certain extent, to other program verification techniques
such as verification condition generation. In [28], a general lattice-based frame-
work for merging states in SE is proposed and implemented for KeY. SE states
sharing the same program counter (the same remaining program to execute) can
be merged together using one of the state merging techniques conforming with
the framework. The most common techniques are if-then-else merging, where the
precise values of differing program variables in the merged states are remembered
and distinguished by the respective path conditions, and predicate abstraction.

The easiest (and automatic) state merging technique is the if-then-else method,
which though only partially improves the situation, since at the end, if-then-else
expressions will be split up again. Conversely, predicate abstraction is a strong
technique, which though requires the user to supply abstraction predicates by
JML annotations; the automatic generation of those predicates is, similar to loop
invariant inference, a difficult task, and not yet implemented for KeY. However,
when merging states resulting from the execution of loops with abrupt termina-
tion (and not arbitrary states, e.g., resulting from a split after an if statement),
we can automatically exploit the loop invariant as well as the post condition for
the method to generate suitable abstraction predicates that can be employed
for predicate abstraction. Based on [28], we implemented this approach for KeY
(available at key-project.org/papers/loopscopes). When applying our loop
invariant rule, the appropriate merge points and inferred abstraction predicates
are registered and taken into account by the automatic strategies. Once all ex-

http://www.key-project.org/papers/loopscopes

12 Dominic Steinhöfel and Nathan Wasser

−100−50050100150200250300

(a) Proof nodes (including outliers)

−30−25−20−15−10−50510

(b) Proof nodes (without outliers)

−70−60−50−40−30−20−100

(c) Symbolic execution steps

Fig. 4: Box plots visualizing the percentage difference in the number of proof
nodes / SE steps between the old and the new rule.

Problem Proof Nodes % Difference Symb.Ex.Steps % Difference
Old Rule New Rule # Nodes Old Rule New Rule # Symb.Ex.Steps

coincidence_count 14.199 50.957 258.88% 210 153 -27.14%
ArrayList.remove.1 12.269 14.575 18.80% 258 191 -25.97%
saddleback_search 30.119 32.203 6.92% 235 181 -22.98%
list_recursiveSpec 5.243 5.557 5.99% 184 170 -7.61%
removeDups 19.891 19.736 -0.78% 373 308 -17.43%
ArrayList_add 6.451 6.380 -1.10% 458 444 -3.06%
polishFlagSort 4.299 4.242 -1.33% 93 83 -10.75%
ArrayList_concatenate 23.205 22.585 -2.67% 641 564 -12.01%
list_recursiveSpec 6.131 5.937 -3.16% 216 184 -14.81%
BinarySearch_search 4.462 4.269 -4.33% 182 149 -18.13%
MemoryAllocator_alloc 1.067 1.003 -6.00% 90 77 -14.44%
reverseArray 5.348 4.997 -6.56% 151 139 -7.95%
Node_search 7.768 7.256 -6.59% 97 57 -41.24%
gcdHelp-post 2.634 2.456 -6.76% 39 28 -28.21%
Queens_isConsistent 3.677 3.420 -6.99% 167 135 -19.16%
ArrayList.enlarge 3.051 2.824 -7.44% 106 79 -25.47%
ArrayList.contains 2.414 2.225 -7.83% 98 60 -38.78%
UpdateAbstraction_ex9_secure 1.457 1.319 -9.47% 183 162 -11.48%
MemoryAllocator_alloc_unsigned 1.362 1.232 -9.54% 91 78 -14.29%
ArrayList_enlarge 2.764 2.499 -9.59% 152 125 -17.76%
arrayMax 1.921 1.734 -9.73% 97 72 -25.77%
arrayFillNonAtomic 5.376 4.852 -9.75% 294 268 -8.84%
ArrayList_enlarge 3.195 2.871 -10.14% 157 130 -17.20%
SumAndMax_sumAndMax 4.101 3.676 -10.36% 140 114 -18.57%
ArrayList.add 2.302 2.060 -10.51% 144 131 -9.03%
LinkedList_get_normal 6.889 6.160 -10.58% 184 159 -13.59%
removeDups_arrayPart 1.735 1.533 -11.64% 102 89 -12.75%
reverseArray2 2.224 1.964 -11.69% 134 110 -17.91%
selection_sort 5.512 4.829 -12.39% 278 205 -26.26%
ArrayList.remFirst 2.485 2.175 -12.47% 168 133 -20.83%
loop2 1.032 892 -13.57% 83 57 -31.33%
AddAndMultiply_add 1.351 1.165 -13.77% 109 83 -23.85%
permissions_method3 1.656 1.401 -15.40% 91 57 -37.36%
contains 1.021 863 -15.48% 73 49 -32.88%
project 6.137 5.088 -17.09% 433 293 -32.33%
for_Array 827 684 -17.29% 95 68 -28.42%
ArrayList_get 1.830 1.496 -18.25% 157 121 -22.93%
sum1 939 753 -19.81% 85 58 -31.76%
sum3 820 646 -21.22% 100 58 -42.00%
ArrayList_contains_dep 6.069 4.393 -27.62% 396 213 -46.21%
ArrayList.remove.0 3.689 2.473 -32.96% 186 69 -62.90%
jml-information-flow 48.215 31.659 -34.34% 474 369 -22.15%
lcp 3.132 1.927 -38.47% 235 104 -55.74%
for_Iterable 622 300 -51.77% 130 58 -55.38%

Table 1: 44 out of 54 experimental results (including all negative results), ordered
by the percentage of proof nodes saved. The outliers are discussed in Sect. 4.

A New Invariant Rule 13

/∗@ public normal_behavior
@ requires arr != null ;
@ ensures \result ==−1 | |
@ arr [\result] == elem;
@∗/

public int partiallyUnrolledFindBrk(
int [] arr , int elem) {

int i = −1, res = −1;
/∗@ loop_invariant

@ (\forall int k; k <= i && k >= 0;
@ arr [k] != elem) &&
@ i >=−1 && i <= arr . length &&
@ (res ==−1 | | arr [res] == elem);
@ decreases arr . length − i + 1;
@∗/

while (++i < arr . length) {
i f (i + 3 < arr . length) {

i f (arr [i] == elem) {
res = i ; break;

} else if (arr [i + 1] == elem) {
res = i + 1; break;

} else if (arr [i + 2] == elem) {
res = i + 2; break;

} else if (arr [i + 3] == elem) {
res = i + 3; break;

} else {
i += 3; continue;

}
}

i f (arr [i] == elem)
res = i ; break;

}

return res ;
}

Listing 1: Find method using break
statements to escape the loop

/∗@ public normal_behavior
@ requires arr != null ;
@ ensures \result ==−1 | |
@ arr [\result] == elem;
@∗/

public int partiallyUnrolledFindRtrn(
int [] arr , int elem) {

int i = −1;
/∗@ loop_invariant

@ (\forall int k; k <= i && k >= 0;
@ arr [k] != elem) &&
@ i >=−1 && i <= arr . length ;
@
@ decreases arr . length − i + 1;
@∗/

while (++i < arr . length) {
i f (i + 3 < arr . length) {

i f (arr [i] == elem) {
return i ;

} else if (arr [i + 1] == elem) {
return i + 1;

} else if (arr [i + 2] == elem) {
return i + 2;

} else if (arr [i + 3] == elem) {
return i + 3;

} else {
i += 3; continue;

}
}

i f (arr [i] == elem)
return i ;

}

return −1;
}

Listing 2: Find method using return
statements to directly return the result

ecution paths until a merge point are explored, they are merged based on this
information. We describe how to infer the predicates along an example.

Listings 1 and 2 contain similar, “partially unrolled” methods for finding an
element in an integer array. The methods are fully specified in JML and can be
proven by KeY. As long as possible, they search the next three array positions
for the sought-after element. In Listing 1, the control flow breaks out of the loop
once that the element is found; in Listing 2, the element is directly returned. SE
produces proof goals for each break/return statement, which can be merged.

In Listing 1, the states after each break only differ in the value of the variable
res, since i is not needed anymore after the loop and is removed. For each state,
the part of the invariant talking about res has to hold: res == -1 || arr[res]
== elem. From this formula, we create a unary abstraction predicate Pbreak (v) ≡
v
.
= −1 ∨ arr[v] .= elem. KeY is able to show in a background proof that this

predicate holds for res in each state and uses it to abstract away from the
concrete values in the merged state. Thus, we save 194 proof nodes (6.3%) and
23 symbolic execution steps (11.6%). The saved number of proof nodes and
execution steps would be even higher if there was more code to execute after the

14 Dominic Steinhöfel and Nathan Wasser

loop. Compared to using the old invariant rule, we save 21.0% / 45.8% of proof
nodes / symbolic execution steps.

For Listing 2, we can do something similar based on the post condition of
the method. The states after the return statements differ in the returned value.
We generate an abstraction predicate from the post condition of the method
by substituting the JML expression \result by the parameter of the predicate:
Preturn(v) ≡ v

.
= −1 ∨ arr[v] .= elem. The obvious equivalence of Pbreak and

Preturn is due to fact that (almost) the method’s whole behavior is realized in
the loop. KeY proves this property true for each returned value in the return
states and merges the states based on the abstraction predicate. We obtain a
reduction of 164 proof nodes (6.2%) and 20 symbolic execution steps (10.0%);
and 10.5% / 31.7% compared to the old invariant rule.

6 Related Work

It is natural to compare our work with other heavyweight SE systems like Veri-
Fast and KIV. For VeriFast, an SE system for C, we unfortunately could not find
any work formally explaining the handling of irregular control flow in loops; the
most formal paper we encountered [30] is based on a reduced language without
throws, breaks and continues. KIV is a deductive verification system which has
been extended by an SE calculus covering Java Card in a PhD thesis by Sten-
zel [29]. Their calculus is also a variant of Dynamic Logic. Its most significant
difference to JavaDL is the flattening (sequential decomposition) of statements.
This implies that the system cannot use inactive prefixes, but instead includes
mode information in a store shared by multiple modalities, and multiple artificial
statements dealing with method returns and abrupt termination. Interestingly,
their loop invariant rule bears a strong resemblance to the one proposed by us.
Where we decide whether to prove the invariant or the “use case” based on the
loop scope index, they decide based on the evaluation of the loop guard and on
the mode information. But there are some relevant aspects which distinguish
this work from ours: (1) The rule in KIV requires substantially more program
transformation due to the flattening. Moreover, we can directly treat continue
statements, whereas they are transformed to labeled breaks in KIV. One of
their arguments is that continues are problematic for loop unwinding; however,
as discussed in [31], loop scopes can also be employed in that context, making
the transformation superfluous. (2) In [29], the rule circumvents the need for
anonymization by dropping the preconditions Γ , which makes it necessary to
also encode information about the initial state in the invariant, thus bloating
it more than necessary. (3) After an abrupt termination, KIV has to process
all subsequent modalities until an appropriate “catcher” statement appears. Our
approach simply exits the loop scope, which emphasizes the advantages of the
“sandboxing” technique. (4) Our work is, to the best of our knowledge, the only
one comparing the performance of a “classic” invariant rule to one of this style,
and the only one integrating an invariant rule with symbolic state merging. Cur-

A New Invariant Rule 15

rent versions of KIV can no longer parse Java programs, hence it was not possible
to practically examine the implemented rule.

A lot of work on the verification of sequential programs is based on Verifi-
cation Condition Generation (VCG). ESC/Java(2) [14,13,23] and its successor
OpenJML [8] generate verification conditions for annotated Java programs. The
Frama-C plugins Jessie and Krakatoa [24] translate annotated C and Java pro-
grams into the Why [4] language. Boogie [3,2] generates verification conditions
for Spec#. In these approaches, the verification works via a translation to an
intermediate language. The way loops are commonly translated (“loop framing”,
[2]) is structurally similar to our approach: The invariant is asserted initially, ac-
cessed locations are anonymized and the invariant is assumed for the anonymized
state; finally, the invariant is asserted after executing the loop body. The han-
dling of abnormal control flow depends on the translation into the intermediate
language; usually, this remains rather underspecified in the literature. Some lan-
guages include dedicated statements for raising and catching exceptions [14,23].
According to a personal communication with David R. Cok, exceptions in Open-
JML result in gotos to basic blocks for catch statements or exceptional exit
from the procedure; breaks and continues likewise branch to dedicated blocks.
Generally, verification conditions consist of one huge implication per method,
including one conjunct for each program block ending in a goto [3]. While prob-
ably being beneficial for the performance of VCG approaches, this impedes the
traceability of problems. Conversely, Symbolic Execution (SE) produces many
small proof obligations. Our approach targets a middle course. It is based on SE,
but reduces the number of proof goals through abstraction-based state merging,
while increasing understandability by using a loop invariant rule with a sim-
ple semantics. Additionally, we require very little program transformation. The
translation into an intermediate language may mitigate language complexity;
however, it can require compromises concerning soundness [14] and, in any case,
is a non-trivial and error-prone task [24] which is difficult to prove sound.

Huisman and Jacobs [20] propose an extension to Hoare logic for Java-like
languages which facilitates reasoning about abnormal control flow. They for-
malize the semantics of Java in type theory; in the theory, there are special
constructs for explicitly catching breaks, continues etc., thus transforming the
induced “abnormal” states back to normal. In the translation of loop statements,
the loops are wrapped into the construct for catching breaks, which resembles
our loop scope approach. On the other hand, their framework is based on sep-
arate “correctness notions” for all the cases of abrupt loop termination, which
is closer to the invariant rule of [1]. In our approach, the decision about which
property to prove after loop termination is handled in a more “natural” way: By
very simple rules that are applied at positions in the proof where the reason for
the loop termination can be easily identified.

7 Future Work and Conclusion
We have introduced the concept of a loop scope for the deduction-based symbolic
execution of loops in industrial sequential programming languages. Building on

16 Dominic Steinhöfel and Nathan Wasser

this, we have presented a loop invariant rule which we implemented for the pro-
gram verification system KeY. Our rule is sound, efficient, and produces under-
standable proof obligations. We integrated the new rule with a novel, fully auto-
matic abstraction-based state merging technique based on abstraction predicates
inferred from existing loop invariants and method post conditions. The perfor-
mance improvement is beneficial for automatic proof attempts, where thresholds
on time or number of proof steps may otherwise lead to early termination.

The loop scope invariant rule is scheduled to replace the existing rule in KeY
in the next public release. We are planning to also release our state merging
approach to the public after having performed a more extensive case study.

References

1. Ahrendt, W., Beckert, B., et al. (eds.): Deductive Software Verification – The KeY
Book, LNCS, vol. 10001. Springer International Publishing (2016)

2. Barnett, M., Chang, B.Y.E., et al.: Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In: Intern. Symp. on FMCO. pp. 364–387. Springer (2005)

3. Barnett, M., Leino, K.R.M.: Weakest-Precondition of Unstructured Programs. In:
ACM SIGSOFT Software Engineering Notes. vol. 31, pp. 82–87. ACM (2005)

4. Bobot, F., Filliâtre, J.C., et al.: Why3: Shepherd Your Herd of Provers. In: Boogie
2011: First International Workshop on IVL. pp. 53–64 (2011)

5. Burstall, R.M.: Program Proving as Hand Simulation with a Little Induction. In:
Information Processing, pp. 308–312. Elsevier (1974)

6. Cadar, C., Dunbar, D., et al.: KLEE: Unassisted and Automatic Generation of
High-coverage Tests for Complex Systems Programs. In: 8th USENIX Conference
on OSDI. pp. 209–224. USENIX Association, Berkeley, CA, USA (2008)

7. Cadar, C., Sen, K.: Symbolic Execution for Software Testing: Three Decades Later.
Communications of the ACM 56(2), 82–90 (2013)

8. Cok, D.R.: OpenJML: Software Verification for Java 7 Using JML, OpenJDK, and
Eclipse. In: Proceedings 1st Workshop on FIDE. pp. 79–92 (2014)

9. Cuoq, P., Kirchner, F., et al.: Frama-C. In: SEFM’12. pp. 233–247. Springer (2012)
10. Dahlweid, M., Moskal, M., et al.: VCC: Contract-Based Modular Verification of

Concurrent C. In: 31st Intern. Conf. on SE-Companion. pp. 429–430. IEEE (2009)
11. Dannenberg, R., Ernst, G.: Formal Program Verification Using Symbolic Execu-

tion. IEEE Transactions on Software Engineering SE-8(1), 43–52 (1982)
12. Filliâtre, J.C.: Deductive Software Verification. International Journal on Software

Tools for Technology Transfer (STTT) 13(5), 397–403 (2011)
13. Flanagan, C., Leino, K.R.M., et al.: Extended Static Checking for Java. SIGPLAN

Not. 37(5), 234–245 (May 2002)
14. Flanagan, C., Saxe, J.B.: Avoiding Exponential Explosion: Generating Compact

Verification Conditions. SIGPLAN Not. 36(3), 193–205 (Jan 2001)
15. Floyd, R.W.: Assigning Meanings to Programs. Mathematical aspects of computer

science 19(19-32), 1 (1967)
16. Gosling, J., Joy, B., et al.: The Java (TM) Language Specification. Addison-Wesley

Professional, 3rd edn. (2005)
17. Gouw, S.d., Rot, J., et al.: OpenJDK’s java.utils.Collection.sort() is broken: The

good, the bad and the worst case. In: Kroening, D., Pasareanu, C.S. (eds.) Proc. of
the 27th Intl. Conf. on Computer Aided Verification. Springer (2015)

A New Invariant Rule 17

18. Hentschel, M., Hähnle, R., et al.: Visualizing Unbounded Symbolic Execution. In:
Seidl, M., Tillmann, N. (eds.) Tests and Proofs, pp. 82–98. LNCS, Springer (2014)

19. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications
of the ACM 12(10), 576–580 (1969)

20. Huisman, M., Jacobs, B.: Java Program Verification via a Hoare Logic with Abrupt
Termination. In: International Conference on Fundamental Approaches to Software
Engineering. pp. 284–303. Springer (2000)

21. Jaffar, J., Murali, V., et al.: Boosting Concolic Testing via Interpolation. In: Pro-
ceedings of 9th Joint Meeting on FSE. pp. 48–58. ACM, New York, USA (2013)

22. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7), 385–394 (1976)

23. Leino, K.R.M.: Efficient Weakest Preconditions. Information Processing Letters
93(6), 281–288 (2005)

24. Marché, C., Paulin-Mohring, C., et al.: The KRAKATOA Tool for Certification
of JAVA/JAVACARD Programs Annotated in JML. The Journal of Logic and
Algebraic Programming 58(1–2), 89 – 106 (2004)

25. Müller, P., Nordio, M.: Proof-Transforming Compilation of Programs with Abrupt
Termination. In: Proceedings of the 6th Joint Meeting on FSE. pp. 39–46. ACM
(2007)

26. Pariente, D., Ledinot, E.: Formal Verification of Industrial C Code using Frama-C:
A Case Study. Proc. of the 1st Intl. Conf. on FoVeOOS p. 205 (2010)

27. Păsăreanu, C.S., Visser, W.: Verification of Java Programs Using Symbolic Exe-
cution and Invariant Generation. In: Graf, S., Mounier, L. (eds.) Model Checking
Software, pp. 164–181. Springer Berlin Heidelberg (2004)

28. Scheurer, D., Hähnle, R., et al.: A General Lattice Model for Merging Symbolic
Execution Branches. In: Ogata, K., Lawford, M., et al. (eds.) ICFEM 2016, Pro-
ceedings. pp. 57–73. Springer International Publishing (2016)

29. Stenzel, K.: Verification of Java Card Programs. Ph.D. thesis, University of Augs-
burg, Germany (2005)

30. Vogels, F., Jacobs, B., et al.: Featherweight VeriFast. LMCS 11(3) (2015)
31. Wasser, N.: Automatic Generation of Specifications using Verification Tools. Ph.D.

thesis, Technische Universität Darmstadt, Darmstadt (January 2016)

18 Dominic Steinhöfel and Nathan Wasser

Appendix

Problem Proof Nodes % Difference Symb.Ex.Steps % Difference
Old Rule Loop Scope Rule # Nodes Old Rule New Rule # Symb.Ex.Steps

coincidence_count 14.199 50.957 258.88% 210 153 -27.14%
ArrayList.remove.1 12.269 14.575 18.80% 258 191 -25.97%
saddleback_search 30.119 32.203 6.92% 235 181 -22.98%
list_recursiveSpec 5.243 5.557 5.99% 184 170 -7.61%
removeDups 19.891 19.736 -0.78% 373 308 -17.43%
ArrayList_add 6.451 6.380 -1.10% 458 444 -3.06%
polishFlagSort 4.299 4.242 -1.33% 93 83 -10.75%
ArrayList_concatenate 23.205 22.585 -2.67% 641 564 -12.01%
list_recursiveSpec 6.131 5.937 -3.16% 216 184 -14.81%
BinarySearch_search 4.462 4.269 -4.33% 182 149 -18.13%
Simple_square 840 794 -5.48% 53 42 -20.75%
MemoryAllocator_alloc 1.067 1.003 -6.00% 90 77 -14.44%
reverseArray 5.348 4.997 -6.56% 151 139 -7.95%
Node_search 7.768 7.256 -6.59% 97 57 -41.24%
gcdHelp-post 2.634 2.456 -6.76% 39 28 -28.21%
ExampleSubject_addObserver 4.557 4.241 -6.93% 168 133 -20.83%
Queens_isConsistent 3.677 3.420 -6.99% 167 135 -19.16%
ArrayList.enlarge 3.051 2.824 -7.44% 106 79 -25.47%
ArrayList.contains 2.414 2.225 -7.83% 98 60 -38.78%
UpdateAbstraction_ex9_secure 1.457 1.319 -9.47% 183 162 -11.48%
MemoryAllocator_alloc_unsigned 1.362 1.232 -9.54% 91 78 -14.29%
ArrayList_enlarge 2.764 2.499 -9.59% 152 125 -17.76%
arrayMax 1.921 1.734 -9.73% 97 72 -25.77%
arrayFillNonAtomic 5.376 4.852 -9.75% 294 268 -8.84%
ArrayList_enlarge 3.195 2.871 -10.14% 157 130 -17.20%
SumAndMax_sumAndMax 4.101 3.676 -10.36% 140 114 -18.57%
ArrayList.add 2.302 2.060 -10.51% 144 131 -9.03%
LinkedList_get_normal 6.889 6.160 -10.58% 184 159 -13.59%
segsum 822 727 -11.56% 64 51 -20.31%
removeDups_arrayPart 1.735 1.533 -11.64% 102 89 -12.75%
reverseArray2 2.224 1.964 -11.69% 134 110 -17.91%
selection_sort 5.512 4.829 -12.39% 278 205 -26.26%
ArrayList.remFirst 2.485 2.175 -12.47% 168 133 -20.83%
loop2 1.032 892 -13.57% 83 57 -31.33%
AddAndMultiply_add 1.351 1.165 -13.77% 109 83 -23.85%
oldForParams 544 469 -13.79% 48 37 -22.92%
cubicSum 909 775 -14.74% 64 53 -17.19%
permissions_method3 1.656 1.401 -15.40% 91 57 -37.36%
contains 1.021 863 -15.48% 73 49 -32.88%
sum0 769 646 -15.99% 85 58 -31.76%
project 6.137 5.088 -17.09% 433 293 -32.33%
for_ReferenceArray 664 550 -17.17% 70 44 -37.14%
for_Array 827 684 -17.29% 95 68 -28.42%
ArrayList_get 1.830 1.496 -18.25% 157 121 -22.93%
loopInvFree 403 329 -18.36% 56 44 -21.43%
sum2 785 631 -19.62% 100 58 -42.00%
sum1 939 753 -19.81% 85 58 -31.76%
sum3 820 646 -21.22% 100 58 -42.00%
ArrayList_contains_dep 6.069 4.393 -27.62% 396 213 -46.21%
ArrayList.remove.0 3.689 2.473 -32.96% 186 69 -62.90%
jml-information-flow 48.215 31.659 -34.34% 474 369 -22.15%
Simple_unnecessaryLoopInvariant 110 71 -35.45% 27 13 -51.85%
lcp 3.132 1.927 -38.47% 235 104 -55.74%
for_Iterable 622 300 -51.77% 130 58 -55.38%

Table 2: All experimental results for the KeY examples containing loops, ordered
by the percentage of proof nodes saved by using the new loop invariant rule.

A New Invariant Rule 19

Additionally Relevant Calculus Rules

The old invariant rule in KeY transforms all continue and break statements inside
a loop to labeled breaks; therefore, only the rules for labeled breaks (Fig. 6) were
existing before our extension. Fig. 5 depicts the rules added by us for handling
unlabeled breaks as well as labeled and unlabeled continues.

blockBreakNoLabel
Γ ` {U}[π break; ω]ϕ,∆

Γ ` {U}[π l1, . . . , ln:{ break; p } ω]ϕ,∆

tryBreakNoLabel
Γ ` {U}[π r break; ω]ϕ,∆

Γ ` {U}[π try{
break; p

} cs finally{ r } ω]ϕ,∆

blockContinueNoLabel
Γ ` {U}[π continue; ω]ϕ,∆

Γ ` {U}[π l1, . . . , ln:{ continue; p } ω]ϕ,∆

tryContinueNoLabel
Γ ` {U}[π r continue; ω]ϕ,∆

Γ ` {U}[π try{
continue; p

} cs finally{ r } ω]ϕ,∆

blockContinueNoMatch
Γ ` {U}[π continue l; ω]ϕ,∆

Γ ` {U}[π l1 : . . . ln :{ continue l; p } ω]ϕ,∆

if l′ 6= ln

tryContinueLabel
Γ ` {U}[π r continue l′; ω]ϕ,∆

Γ ` {U}[π try{
continue l′; p

} cs finally{ r } ω]ϕ,∆

blockContinueLabel
Γ ` {U}[π continue; ω]ϕ,∆

Γ ` {U}[π l1 : . . . ln :{ continue ln; p } ω]ϕ,∆

Fig. 5: Additional calculus rules

blockBreakNoMatch
Γ ` {U}[π break l; ω]ϕ,∆

Γ ` {U}[π l1 : . . . ln :{ break l; p } ω]ϕ,∆

if l /∈ {l1, . . . , ln}

blockBreakLabel
Γ ` {U}[π ω]ϕ,∆

Γ ` {U}[π l1 : . . . l : . . . ln :{
break l; p } ω]ϕ,∆

Fig. 6: Existing rules in KeY [1] for labeled breaks

Invariant rules in Hoare Logic

In Section 3, we mentioned that the “classic” three-branch invariant rule also ex-
ists in Hoare logic. The rule originally proposed in [19] only knows one branch;
however, there the “initially valid” condition is already contained as an assump-
tion, and the loop has already been separated from the remaining program by
sequential (de)composition. If we start with the general situation of a program
with a loop, we end up with the following partial proof in which the three-branch
structure becomes obvious (where Inv is the loop invariant, m.p. the modus po-
nens rule and Inv ′ ≡ P ∧ Inv):

20 Dominic Steinhöfel and Nathan Wasser

m.p.

(Initially valid)

P → Inv
composition

iteration

(Preserved)

{Inv ′ ∧B} body {Inv ′}
{Inv ′} while (B) body {Inv ′ ∧ ¬B}

(Use case)

{Inv ′ ∧ ¬B} p {Q}
{Inv ′} while(B) body ; p {Q}

{P} while(B) body ; p {Q}

Therefore, the following rule of inference is also valid in Hoare logic:

P → Inv (initially valid)
{P ∧ Inv ∧B} body {P ∧ Inv} (preserved)
{P ∧ Inv ∧ ¬B} p {Q} (use case)

{P} while(B) body ; p {Q}

For implementing the rule loopScopeInvariant in Hoare logic, we would have
to extend the language a bit, thus allowing body to be executed in a context.
This extension is however easier to realize in the existing framework than the
addition of multiple program parts, as required by the rule loopInvTransform.
We think that that the result could somehow resemble the technique of [20], but
would be structurally simpler.

	A New Invariant Rule for the Analysis of Loops with Non-standard Control Flows

