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Abstract. We present a case study on scalable formal verification of
distributed systems that involves a formal model of a Network-on-Chip
(NoC) packet switching platform. We provide an executable model of a
generic m X n mesh chip with unbounded number of packets, the for-
mal specification of certain safety properties, and formal proofs that the
model fulfills these properties. The modeling has been done in ABS, a
language that is intended to permit scalable verification of detailed, pre-
cisely modeled, executable, concurrent systems. Our paper shows that
this is indeed possible and so advances the state-of-art verification of
NoC systems. It also demonstrates that deductive verification is a viable
alternative to model checking for the verification of unbounded concur-
rent systems that can effectively deal with state explosion.

1 Introduction

This paper presents a case study on scalable formal verification of the behavior
of distributed systems. We create a formal, executable model of a Network-on-
Chip (NoC) [27] packet switching platform called ASPIN (Asynchronous Scalable
Packet Switching Integrated Network) [32]. This is a practically relevant system
whose correctness is of great importance for the network infrastructures where
it is deployed.

We model the ASPIN router architecture in the formal, executable, con-
current modeling language ABS [21,23]. We use ABS for a number of rea-
sons: (i) it combines functional, imperative, and object-oriented programming
styles, allowing intuitive, modular, high-level modeling of concepts, domain and
data; (ii) ABS models are fully executable and model system behavior pre-
cisely [2]; (ili) ABS can model synchronous as well as asynchronous commu-
nication; (iv) ABS has been developed to permit scalable formal verification:
there is a program logic [18] as well as a compositional proof system [16] that
permits to prove global system properties by reasoning about object-local invari-
ants; (v) ABS comes with an IDE and a range of analysis as well as productivity
tools [34], specifically, there is a formal verification tool called KeY-ABS [7].



The main contributions of this paper are as follows: (i) a formal model of a
generic m X n mesh ASPIN chip in ABS with unbounded number of packets,
as well as a packet routing algorithm; (ii) the formal specification of a number
of safety properties which together ensure that no packets are lost; (iii) formal
proofs, done with KeY-ABS, that the ABS model of ASPIN fulfills these safety
properties.>

ABS has been developed with the explicit aim to permit scalable verification
of detailed, precisely modeled, executable, concurrent systems. Our paper shows
that this claim is indeed justified. In addition it advances the state-of-the-art with
the first successful verification of a generic NoC model that has an unbounded
number of nodes and packets. This has been achieved with manageable effort and
thus shows that deductive verification is a viable alternative to model checking
for the verification of concurrent systems that can effectively deal with state
explosion.

The paper is organized as follows: Sect. 2 gives a brief introduction into the
modeling language ABS, Sect. 3 details our formal specification approach to
system behavior, Sect. 4 provides some formal background on deductive verifi-
cation with expressive program logics, and Sect. 5 presents the ASPIN NoC case
study. Sect. 6 explains how we achieved the formal specification and verification
of the case study and gives details about the exact properties proven as well as
the necessary effort. In Sect. 7 we sketch possible directions for future work and
Sect. 8 discusses related work and concludes.

2 The ABS Modeling Language

ABS [21,23] is a formal behavioral specification language with a Java-like syn-
tax. It combines functional and imperative programming styles to develop ab-
stract executable models. ABS targets the modeling of concurrent, distributed,
and object-oriented systems. It has a formal syntax and semantics and has a
clean integration of concurrency and object orientation based on concurrent ob-
ject groups (COGs) [23,29]. ABS permits synchronous as well as asynchronous
communication [24] akin to Actors [1] and Erlang processes [4]. ABS offers a
wide variety of complementary modeling alternatives in a concurrent and object-
oriented framework that integrates algebraic datatypes, functional programming
and imperative programming. Compared to object-oriented programming lan-
guages, ABS abstracts from low-level implementation choices such as imperative
data structures, and compared to design-oriented languages like UML diagrams,
it models data-sensitive control flow and it is executable.

In addition, ABS also provides explicit and implicit time-dependent behavior
[6], the modeling of deployment variability [25] and the modeling of variability
in software product line engineering [9]. However, these functionalities of the
language are not used in this paper and will not be further discussed. The rest
of this section focuses on the syntax of ABS which contains a functional layer and

3 The complete model with all formal specifications and proofs is available at
https://www.se.tu-darmstadt.de/se/group-members/crystal-chang-din/noc.



Syntactic categories. Definitions.

T in GroundType T:=B|D|I|D(T)
A in Type A=z=N|T|N(A)
z in Variable Dd ::= data D[(A)] = [Cons];
e in Expression  Cons = Co[(A)]
v in Value Fu=def A fn[(A))(AT) = ¢;
br in Branch ex=x|v| Co[()] ]| fn(e) | case e {br}
p in Pattern v = Co[(T)] | null
br :=p = ¢
pu=-|z[v] Col(p)]

Fig. 1. Syntax for the functional layer of ABS. Terms € and T denote possibly empty
lists over the corresponding syntactic categories, and square brackets [] optional ele-
ments.

an imperative layer. The details of the sequential execution of several threads
inside a COG is not used in the verification techniques showcased in this paper
and therefore we focus on single-object COGs (i.e., concurrent objects).

2.1 The Functional Layer of ABS

The functional layer of ABS is used to model computations on the internal data
of the imperative layer. It allows modelers to abstract from implementation de-
tails of imperative data structures at an early stage in the software design and
thus allows data manipulation without committing to a low-level implementation
choice. The functional layer combines a simple language for parametric algebraic
data types (ADTs) and a pure first-order functional language. ABS includes a
library with four predefined basic types (Bool, Int, String, and Unit), and para-
metric datatypes, (such as lists, sets, and maps). The predefined datatypes come
with arithmetic and comparison operators, and the parametric datatypes have
built-in standard functions. The type Unit is used as a return type for methods
without explicit return value. All other types and functions are user-defined.
The formal syntax of the functional language is given in Fig. 1. The ground
types T consist of basic types B as well as names D for datatypes and I for
interfaces. In general, a type A may also contain type variables N (i.e., uninter-
preted type names [28]). In datatype declarations Dd, a datatype D has a set
of constructors Cons, each of which has a name Co and a list of types A for
their arguments. Function declarations F have a return type A, a function name
fn, a list of parameters T of types A, and a function body e. Both datatypes
and functions may be polymorphic and have a bracketed list of type parameters
(e.g., Set<Bool>). The layered type system allows functions in the functional
layer to be defined over types A which are parametrized by type variables but
only applied to ground types T in the imperative layer; e.g., the head of a list is
defined for List<A> but applied to ground types such as List<Int>.
Ezpressions e include variables x, values v, constructor expressions Co(e),
function expressions fn(€), and case expressions case e {br}. Values v are ex-
pressions that have reached a normal form: constructors applied to values Co(7)



Syntactic categories. Definitions.

s in Stmt P:=1F CL{[T 7] s}

e in Expr IF ::= interface I {[Sgq]}

b in BoolExpr CL ::=class C [(T )] [implementsT] { [T z;] M}
g in Guard Sgu=Tm ([T ED

M:=Sg {[T 7;] s}
su=s;s|skip|x=rhs|ifb{s}[else{s}]|while b{s}
| await g | suspend | return e
rhs:=e | cm | new C (€)
cm ::=elm(e) | z.get
gu=bla?|gAg

Fig. 2. Syntax for the imperative layer of ABS.

or null. Case expressions match a value against a list of branches p = e, where
p is a pattern. Patterns are composed of the following elements: (1) wild cards _
which match anything, (2) variables  match anything if they are free or match
against the existing value of x if they are bound, (3) values v which are compared
literally, and (4) constructor patterns Co(p) which match Co and then recur-
sively match the elements p. The branches are evaluated in the listed order, free
variables in p are bound in the expression e.

2.2 The Imperative Layer of ABS

The imperative layer of ABS addresses concurrency, communication, and syn-
chronization in the system design, and defines interfaces, classes, and methods in
an object-oriented language with a Java-like syntax. In ABS, concurrent objects
(single object COGs) are active in the sense that their run method, if defined,
starts automatically upon creation.

Statements are standard for sequential composition si; sz, and for skip, if,
while, and return constructs. Cooperative scheduling in ABS is achieved by
explicitly suspending the execution of the active process. The statement suspend
unconditionally suspends the execution of the active process and moves this
process to the queue. The statement await g conditionally suspends execution:
the guard g controls processor release and consists of Boolean conditions b and
return tests x? (explained in the next paragraph). Just like expressions e, the
evaluation of guards g is side-effect free. However, if g evaluates to false, the
processor is released and the process suspended. When the execution thread is
idle, an enabled task may be selected from the pool of suspended tasks by means
of a default scheduling policy. In addition to expressions e, the right hand side
of an assignment x=rhs includes object group creation new C(€), method calls
o!m(e), and future dereferencing z.get. Method calls and future dereferencing
are explained in the next paragraph.

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments of the form
f=olm(€) to future variables f of type Fut(T), where T corresponds to the
return type of the called method m. Here, o is an object expression, m a method



name, and € are expressions providing actual parameter values for the method
invocation. (Local calls are written this!m(e).) After calling f=o0!m(e), the future
variable f refers to the return value of the call, and the caller may proceed
without blocking. Two operations on future variables control synchronization in
ABS. First, the guard await f? suspends the active process unless a return to
the call associated with f has arrived, allowing other processes in the object
to execute. Second, the return value is retrieved by the expression f.get, which
blocks all execution in the object until the return value is available. Futures
are first-class citizens of ABS and can be passed around as method parameters.
The read-only variable destiny() refers to the future associated with the current
process [13]. The statement sequence x=olm(e);v=x.get contains no suspension
statement and, therefore, encodes commonly used blocking calls, abbreviated
v=0.m(e) (often referred to as synchronous calls). If the return value of a call
is of no interest, the call may occur directly as a statement olm(e) with no
associated future variable. This corresponds to asynchronous message passing.
The syntax of the imperative layer of ABS is given in Fig. 2. A program
P consists of lists of interface and class declarations followed by a main block
{T 7; s}, which is similar to a method body. An interface IF has a name I and
method signatures Sg. A class CL has a name C, interfaces I (specifying types
for its instances), class parameters and state variables x of type T, and methods
M (The attributes of the class are both its parameters and state variables).
A method signature Sg declares the return type 7' of a method with name

m and formal parameters T of types T. M defines a method with signature
Sg, local variable declarations  of types T, and a statement s. Statements
may access attributes, locally defined variables (including the read-only variables
this for self-reference and destiny() explained above), and the method’s formal

parameters. There are no type variables at the imperative layer of ABS.

3 Observable Behaviour

The observable behavior of a system can be described by communication histo-
ries over observable events [22]. Since message passing in ABS is asynchronous,
we consider separate events for method invocation, reacting upon a method call,
resolving a future, and for fetching the value of a future. Each event can only be
observed by one object, namely the generating object. Assume an object o calls
a method m on object o/ with input values € and where fr denotes the identity
of the associated future. An invocation message is sent from o to o/ when the
method is invoked. This is reflected by the invocation event invEuv(o, o', fr,m,€)
generated by o and illustrated by the sequence diagram in Fig. 3. An invoca-
tion reaction event invREv(o,0 , fr,m,€) is generated by o' once the method
starts execution. When the method terminates, the object o’ generates the fu-
ture event futEv(o', fr,m,e). This event reflects that fr is resolved with return
value e. The fetching event fetREwv(o, fr,e) is generated by o when fetching the
value of the resolved future. References fr to futures bind all four event types
together and allow to filter out those events from an event history that relate to



invEv(o, 0, fr,m,€)e
®linvREv(o,0', fr,m,e)
futEv(o’, fr,m, e)

\
. JetREW(o", fr, )

fetREv(o, fr,e)

Fig. 3. History events and when they occur

the same method invocation. Since future identities may be passed to another
object o”, that object may also fetch the future value, reflected by the event
fetREv(0”, fr,e), generated by o” in Fig. 3.

For a method call with future fr, the ordering of events is described by the
regular expression

invEv(o, 0, fr,m,€) - invREv(0,0’, fr,m,€) - futEv(d’, fr,m, e)[-fetREv(_, fr,e)]*

for some fixed o, o/, m, €, e, and where “” denotes concatenation of events,
“” denotes arbitrary values. Thus the result value may be read several times,
each time with the same value, namely that given in the preceding future event.
A communication history is wellformed if the order of communication events
follows the pattern defined above, the identities of the generated future is fresh,
and the communicating objects are non-null.

Invariants Class invariants express a relation between the internal state and
observable communication of class instances. They are specified by a predicate
over the class attributes and the local history. A class invariant must hold after
initialization, it must be maintained by all methods, and it must hold at all
processor release points (i.e., await, suspend).

A global invariant can be obtained as a conjunction of the class invariants
for all objects in the system, adding wellformedness of the global history [19].
This is made more precise in Sect. 6.2 below.

4 Deductive Verification

A formal proof is a sequence of reasoning steps designed to convince the reader
about the truth of some formulae, i.e., a theorem. In order to do this the proof
must lead without gaps from axioms to the theorem by applying proof rules.



KeY-ABS is a deductive verification system for ABS programs based on the
KeY theorem prover [5]. As a program logic it uses first-order dynamic logic for
ABS (ABSDL) [7,16]. For an ABS program S and ABSDL formulae P and @,
the formula P — [S]Q expresses: If the execution of a program S starts in a
state where the assertion P holds and the program terminates normally, then
the assertion @ holds in the final state. Hence, [-] acts as a partial correctness
modality operator. Given an ABS method m with body mb and a class invari-
ant I, the ABSDL formula I — [mb]I expresses that the method m preserves
the class invariant. We use a Gentzen-style sequent calculus to prove ABSDL
formulae. Within a sequent we represent P — [S]Q as

I PHIS|Q, A,

where I and A stand for (possibly empty) sets of formulae. A sequent calculus
as realized in ABSDL essentially simulates a symbolic interpreter for ABS. The
assignment rule for a local program variable is :

I'{v :=e}[rest]p, A

I't [v=e;rest]p, A

where v is a local program variable and e is a pure (side effect-free) expression.
This rule rewrites the formula by moving the assignment from the program into a
so-called update {v := e}, which captures state changes. The symbolic execution
continues with the remaining program rest. Updates [5] can be viewed as explicit
substitutions that accumulate in front of the modality during symbolic program
execution. Updates can only be applied to formulae or terms. Once the program
to be verified has been completely executed and the modality is empty, the
accumulated updates are applied to the formula after the modality, resulting
in a pure first-order formula. Below we show the proof rule for asynchronous
method invocations:

I'F {U}(o #null AwE(h)), A
I' - {U}(futureIsFresh(u, h) —
{fr == || h:= h- invEv(this, 0,u, m,€)}[rest]|p), A
I'F{U}[fr = o!m(e); rest]p, A

This proof rule has two premisses and splits the proof into two branches. The
first premiss on top ensures that the callee is non-null and the current history h
is wellformed. The second branch introduces a constant u which represents the
generated future as the placeholder for the method result. The left side of the
implication ensures that u is fresh in h and updates the history by appending
the invocation event for the asynchronous method call. We refer to [16] for the
other ABSDL rules as well as soundness and completeness proofs of the ABSDL
calculus.

asyncCall

5 Network-on-Chip Case Study

Network-on-Chip (NoC) [27] is a packet switching platform for single chip sys-
tems which scales well to an arbitrary number of resources (e.g., CPU, memory,



type Pos = Pair<Int, Int>; // (x,y) coordinates
type Packet = Pair<Int, Pos>; // (id, destination)
type Buffer = Int;
data Direction = N | W | S | E | NONE ; // north, west, south, east, none
data Port = P(Bool inState , Bool outState, Router rld, Buffer buff);
// (input port state, output port state, neighbor router id, buffer size)
type Ports = Map<Direction, Port>;

Fig. 4. ADTs for the ASPIN model in ABS

etc.). The NoC architecture is an m X n mesh of switches and resources which
are placed on the slots formed by the switches. The NoC architecture essentially
is the on-chip communication infrastructure. ASPIN (Asynchronous Scalable
Packet Switching Integrated Network) [32] is an example of a NoC with routers
and processors. ASPIN has physically distributed routers in each core. Each
router is connected to four other neighboring routers and each core is locally con-
nected to one router. ASPIN routers are split into five separate modules (north,
south, east, west, and local) with ports that have input and output channels
and buffers. ASPIN uses the storage strategy of input buffering, and each input
channel is provided with an independent FIFO buffer. Packets arriving from dif-
ferent neighboring routers (and from the local core) are stored in the respective
FIFO buffer. Communication between routers is established using a four-phase
handshake protocol. The protocol uses request and acknowledgment messages
between neighboring routers to transfer a packet. ASPIN uses the distributed
X-first algorithm to route packets from input channels to output channels. Using
this algorithm, packets move along the X (horizontal) direction in the grid first,
and afterwards along the Y (vertical) direction to reach their destination. The
X-first algorithm is claimed to be deadlock-free [32]. In this section we model
the functionality and routing algorithm of ASPIN in ABS. As a starting point
we use the ASPIN model by Sharifi et al. [30,31]. In Sect. 6 we will formally
verify our model in ABSDL.

We model each router as an object that communicates with other routers
through asynchronous method calls. The abstract data types used in our model
are given in Fig. 4. We abstract away from the local communication to cores, so
each router has four ports and each port has an input and output channel, the
identifier rld of the neighbor router and a buffer. Packets are modeled as pairs
that contain the packet identifier and the final destination coordinate.

The ABS model of a router is given in Fig. 5. The method setPorts initializes
all the ports in a router and connects it with the corresponding neighbor routers.
Packets are transferred using a protocol expressed in our model with two methods
redirectPk and getPk. The internal method redirectPk is called when a router
wants to redirect a packet to a neighbor router. The X-first routing algorithm
in Fig. 6 decides which port direc (and as a consequence which neighbor router)
to choose. The parameter srcPort determines in which input buffer the packet is
temporally and locally stored. As part of the communication protocol, the input
channel of srcPort and the output channel of direc are blocked until the neighbor



interface Router{
Unit setPorts(Router e, Router w, Router n, Router s);
Unit getPk(Packet pk, Direction srcPort);}

class Routerlmp(Pos address, Int buffSize) implements Router {
Ports ports = EmptyMap;
Set<Packet> receivedPks = EmptySet; // received packages

Unit setPorts(Router e, Router w, Router n, Router s){
ports = map[Pair(N, P(True, True, n, 0)), Pair(S, P(True , True, s, 0)),
Pair(E, P(True, True, e, 0)), Pair(W, P(True, True, w, 0))];}
Unit getPk(Packet pk, Direction srcPort){
if (addressPk(pk) != address) {
await buff(lookup(ports,srcPort)) < buffSize;
ports = put(ports,srcPort,increaseBuff(lookup(ports,srcPort)));
this!redirectPk(pk,srcPort); }
else { // record that packet was successfully received
receivedPks = insertElement(receivedPks, pk); } }

Unit redirectPk(Packet pk, Direction srcPort){

Direction direc = xFirstRouting(addressPk(pk), address);
await (inState(lookup(ports,srcPort)) == True)

&& (outState(lookup(ports,direc)) == True);
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), False));
ports = put(ports, direc, outSet(lookup(ports, direc), False));
Router r = rld(lookup(ports, direc));
Fut<Unit> f = rlgetPk(pk, opposite(direc)); await f?;
ports = put(ports, srcPort, decreaseBuff(lookup(ports, srcPort)));
ports = put(ports, srcPort, inSet(lookup(ports, srcPort), True));
ports = put(ports, direc, outSet(lookup(ports, direc), True));}}

Fig.5. A model of an ASPIN router using ABS

router confirms that it has gotten the packet, using f = rlgetPk(...); await f?
statements to simulate request and acknowledgment messages (here r is the Id
of the neighbor router). The method getPk checks if the final destination of the
packet is the current router, if so, it stores the packet, otherwise it temporally
stores the packet in the srcPort buffer and redirect it. The model uses standard
library functions for maps and sets (e.g, put, lookup, etc.) and observers as well as
other functions over the ADTs (e.g., inState, decreaseBuff, etc.). Fig. 7 depicts a
scenario with a 2 x 2 ASPIN chip. The sequence diagram shows how the different
methods in the different routers are distributively called when a packet is sent
from router ROO to router R11.

Sitmulation. The behavior of the ASPIN model in ABS can be analyzed using
simulations. The operational semantics of ABS [23,25] has been specified in
rewriting logic which allows ABS models to be analyzed using rewriting tools.
A simulation tool for ABS based on Maude [10] is part of the ABS tool set [34].
Given an initial configuration of a 4 x 4 mesh, we have executed test cases where:
(1) a router is the destination of its own generated packet, (2) successful arrival
of packets between two neighboring routers which send packets to each other,
and (3) many packets sent through the same port at the same time.



def Direction xFirstRouting(Pos destination, Pos current) =
case x(current) < x(destination) {

True => E;
False => case x(current) > x(destination) {
True => W,
False => case y(current) < y(destination) {
True => S;
False => case y(current) > y(destination) {

True => N;
False => NONE; }; }; :; };

Fig. 6. X-first routing algorithm in ABS

6 Formal Specification and Verification of the Case Study

In this section we formalize and verify global safety properties about our ABS
NoC model in ABSDL using the KeY-ABS verification tool. This excludes any
possibility of error at the level of the ABS model. Central to our verification
effort are communication histories that abstractly capture the system state at
any point in time [11]. Specifically, partial correctness properties are specified
by finite initial segments of communication histories of the system under veri-
fication. A history invariant is a predicate over communication histories which
holds for all finite sequences in the (prefix-closed) set of possible histories, thus
expressing safety properties [3]. Our verification approach uses local reasoning
about RouterImp objects and establishes a system invariant over the global
history from invariants over the local histories of each object.

6.1 Local Reasoning

Object-oriented programming supports modular design by providing classes as
the basic modular unit. Our four event semantics (described in Sect. 3) keeps the
local histories of different objects disjoint, so it is possible to reason locally about
each object. For ABS programs, the class invariants must hold after initialization
of all class instances, must be maintained by all methods and they must hold
at all process release points so that they can serve as a method contracts. We
present the class invariants for Routerlmp in Lemma 1 and 2 and we show the
proof obligations shown by KeY-ABS that result from the verification of our
model against the class invariants. Fig. 8 illustrates the explanations.

Lemma 1. Whenever a router R terminates an execution of the getPk method,
then R must either have sent an internal invocation to redirect the packet or
have stored the packet in its receivedPks set.

10
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Fig. 7. A sequence diagram for a 2 x 2 ASPIN chip sending a packet to router R11

We formalize this lemma as an ABSDL formula (slightly beautified):

Vig,u.0 < iy <len(h) A futEu(this, u, getPk, -) = at(h,i1)
=
Tig, pk .0 < iy < i1 A invREv(_, this, u, getPk, (pk, ) = at(h,iz) A
((dest(pk) # address(this) =
iz .o < i3 < i1 A invEu(this, this, _, redirectPk, (pk, -)) = at(h,i3)) V
(dest(pk) = address(this) = pk € receivedPks))

where “_” denotes a value that is of no interest. The function len(s) returns the
length of the sequence s, the function at(s,#) returns the element located at the
index 7 of the sequence s, the function dest(pk) returns the destination address
of the packet pk, and address(r) returns the address of the router r.

This formula expresses that for every future event evy; of getPk with future
identifier v found in history h we can find by pattern matching with u in the
preceding history a corresponding invocation reaction event ev, that contains
the sent packet pk. If this router is the destination of pk, then pk must be in its
receivedPks set, otherwise an invocation event of redirectPk containing pk must
be found in the history between events ev; and evs.

Remark 1. In the heap model of KeY-ABS, any value stored in the heap can be
potentially modified while a process is released. Therefore, to prove the above

11



this next

invEy this,this,u,redirecth,Epk,s;; thistredirectPk(pk,s)
invR Fv(this this,u,redirect Pk, (pk,s rextlzetPk(pk.d)

invEv(this,next, fr,getPk,(pk,d)) P invEv(this,next, fr,getPk, (pk,d))

await 7 == True futBEv(next,fr,getPk,_)

futBEv(this,u,redirectPk,.) | £---

Fig. 8. Communication history between a router and its neighboring router next where
the package is sent to

property we need a somewhat stronger invariant expressing that the address of a
router stored in the heap is rigid (cannot be modified by any other process). Due
to a current technical limitation, we proved the invariant for a slightly simplified
version of the model where the router address is passed as a parameter of getPk.
This technical modification does obviously not affect the overall behavior of the
model and will be lifted in future work.

Lemma 2. Whenever a router R terminates an execution of redirectPk, the
input channel of srcPort and the output channel of direc are released.

Again, we formalize this lemma as an ABSDL formula:

Yu . futEv(this, u, redirectPk, ) = at(h,len(h) — 1)
=
Fiy, 19, pk,srcP,dirP .0 < i1 <ig <len(h) —1 A
(invREv(this, this, u, redirectPk, (pk, srcP)) = at(h,i1) A
invEu(this, -, -, getPk, (pk, opposite(dirP))) = at(h,iz)) A
(inState(lookup(ports, srcP)) A outState(lookup(ports, dirP)))

This formula expresses that whenever the last event in the history h is a future
event of redirectPk method, by pattern matching with the same future and packet
in the previous history, we can find the matched invocation reaction event and
the invocation event. In these two events we filter out the source port srcP and
the direction port dirP used in the latest run of redirectPk. The input channel
of srcP and the output channel of dirP must be released in the current state.
This invariant captures the properties of the current state and is prefix-closed.
With KeY-ABS we proved that the Routerlmp class of our model satisfies this
invariant.

12



6.2 System Specification

The global history of the system is composed of the local histories of each in-
stance of each class. However, communication between asynchronous concurrent
objects is performed by asynchronous method calls, so messages may in general
be delayed in the network. The observable behavior of a system includes the
possibility that the order of messages received by the callee is different from the
order of messages sent by the caller. The necessary assumptions about message
ordering in our setting are captured by a global notion of wellformed history.

Lemma 3. The global history H of a system S modeled with ABS and derived
from its operational semantics, is wellformed, i.e., the predicate wf(H) holds.

The formal definition of wf and a proof of the lemma are in [17], an informal
definition is given in Sect. 3 above (see also Fig. 3).

Let I15(h) be the conjunction of Iye py (this, h) and I egirectpr (this, k), which
are the class invariants defined in Lemma 1 and 2 where h is the local history of
this. The local histories represent the activity of each concurrent object. We for-
mulate a system invariant by the conjunction of the instantiated class invariants
of all Routerlmp objects 7:

I(H) & wf(H,newq(H)) A I.(H/r)

(r:Routerlmp) Enewop (H)

where H is the global history of the system and I,.(H/r) is the object invariant of
r instantiated from the class invariant Iy;;s(h). The local history of r is obtained
by the projection H/r from the global history. The function newq,(H) returns
the set of Routerlmp objects generated within the system execution captured
by H. Each wellformed interleaving of the local histories represents a possible
global history. History wellformedness wf(H, new,,(H)) ensures proper ordering
of those events that belong to the same method invocation. The composition
rule was proven sound in [16]. As a consequence, we obtain:

Theorem 1. Whenever a router R releases a pair of input and output channels
used for redirecting a receiving packet, the next router of R must either have
sent an internal invocation to redirect the packet or have stored the packet in its
receivedPks set. Hence, the network does not drop any packets.

Effort. The modelling of the NoC case study in ABS took ca. two person weeks.
Formal specification and verification was mainly done by the first author of
this paper who at the time was not experienced with the verification tool KeY-
ABS. The effort for formal specification was ca. two person weeks and for formal
verification ca. one person month, but this included training to use the tool
effectively. For an experienced user of KeY-ABS, we estimate that these figures
would be three person days and one person week, respectively.
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def Int distance(Pos destination, Pos current) =
abs(x(destination) — x(current)) + abs(y(destination) — y(current));

assert (distance(addressPk(pk),addr)==distance(addressPk(pk),prevAddr)—1);

Fig. 9. A function to calculate the distance between the current position and the final
destination of a packet for the X-first routing algorithm

7 Future Work

Deadlock Analysis. In addition to history-based invariants, it is conceivable to
prove other properties, such as deadlock-freedom. Deadlocks may occur in a sys-
tem, for example, when a shared buffer between processes is full and one process
can decrease the buffer size only if the other process increases the buffer size. This
situation is prevented in the ABS model by disallowing self-calls before decreas-
ing the size of the buffer (the method invocation of get Pk within redirect Pk in
our model is an external call). It is possible to argue informally that our ABS
model of NoC is indeed deadlock-free, but a formal proof with KeY-ABS is fu-
ture work. The main obstacle is that deadlocks are a global property and one
would need to find a way to encode sufficient conditions for deadlock-freedom
into the local histories. There are deadlock analyzers for ABS [20], but these,
like other approaches to deadlock analysis of concurrent systems, work only for
a fixed number of objects.

Extensions of the Model. The ASPIN chip model presented in this paper can eas-
ily be extended with time (e.g, delays and deadline annotations) and scheduling
(e.g., FIFO, EDF, user-defined, etc.) using Real-Time ABS [6]. The extension
with time would allow us to run simulations and obtain results about the per-
formance of the model. Adding scheduling to the model would allow us to, for
example, guarantee the ordering of the sent packets (using FIFO scheduling)
or to express priority of packets. We can also easily change the routing algo-
rithm in Fig. 6 without any need to alter the Routerlmp class in Fig. 5. It is
possible to compare the performance of different routing algorithms by means
of simulations.

Runtime Assertion Checking. Another extension to the model could be runtime
assertion checking (RAC) [18], for example, to ensure that packets make progress
towards their final destination. For this one would use the distance function in
Fig. 9 and simply include the assertion into the model, where addr is the address
of the current router and prevAddr is the address of the previous neighbor router
from where the packet was redirected. RAC is already supported by the ABS
tool set and can be used for this case study, but to keep the paper focussed we
decided not to report the results here.
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8 Related Work and Conclusion

Previous work on formal modeling of NoC includes [8,12, 30, 31]. The papers
[30, 31], which were a starting point for our work, present a formal model of
NoC in the actor-based modeling language Rebeca [26,33]. In [30], the authors
model the functional and timed behavior of ASPIN (with the X-first routing
algorithm). To analyze their model, they used the model checker of Rebeca,
Afra [26], to guarantee deadlock-freedom and successful packet sending for spe-
cific chip configurations. They also measure the maximum end-to-end latency
of packets. In [31] the authors compare the performance of different routing al-
gorithms. The ASPIN model presented in this paper does not capture timing
behavior and uses the X-first routing algorithm, but timing behavior can eas-
ily be added and other routing algorithms can be plugged into the model as
explained in Sect. 7. Compared to the Rebeca model, our ABS model of the
ASPIN chip is deadlock-free and more compact. It is decoupled from the rout-
ing algorithm and easier to understand than the Rebeca model, because ABS
permits intuitive, object-oriented modeling of the involved concepts, as well as
high-level concepts for modeling concurrency. Our verification approach deals
with an unbounded number of objects and is valid for generic NoC models for
any m X n mesh in the ASPIN chip as well as any number of sent packets. This
is possible, because we use deductive verification in the expressive program logic
ABSDL with the verification tool KeY-ABS [7,16] and formal specification of
observable behavior [14,15]. This allowed us to prove global safety properties of
the system using local rules and symbolic execution. In contrast to model check-
ing this allows us to deal effectively with unbounded target systems without
encountering state explosion.
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