
A Theorem Prover Backed Approach to Array Abstraction∗

Nathan Wasser and Richard Bubel

Technische Universität Darmstadt, Darmstadt, Germany
{wasser, bubel}@informatik.tu-darmstadt.de

Abstract

We present an extension to an on-demand abstraction framework, which integrates deductive ver-

ification and abstract interpretation. Our extension allows for a significantly higher precision when

reasoning about programs containing arrays. We demonstrate the usefulness of our approach in the

context of reasoning about secure information flow. In addition to abstracting arrays that may have

been modified, our approach can also keep full precision while adding additional information about

array elements which have been only read but not modified.

1 Introduction

Verification and testing have become the bottleneck in large software projects. In fact, rather
than the verification itself, it is the specification that is the real bottleneck. In most non-
trivial areas specification must be done for the most part manually by highly paid and scarce
individuals. Therefore any approach that automates at least part of the specification process can
be increasingly useful in saving time and money and reducing the bottleneck for specification
somewhat. Especially in regards to the automatic generation of loop invariants there are both
built-in problems with automation in that there are obvious limits to any algorithmic approach
as shown by the undecidability theorem, as well as merely the lack of good tools in this area.

We present an extension to an on-demand abstraction framework [4], which integrates de-
ductive verification and abstract interpretation. Our extension allows for a significantly higher
precision when reasoning about programs containing arrays. In addition to abstracting arrays
that may have been modified, our approach can also keep full precision while adding additional
information about array elements which have been only read but not modified.

We demonstrate the usefulness of our approach in the context of reasoning about secure
information flow. Programs that have secure information flow do not leak secret information
to publicly accessible channels.

Outline. Section 2 introduces the logical framework with on-demand abstraction and provides
a brief overview of information flow security. In Section 3 we present our extension, which we
then utilize for information flow analysis of program in Section 4. We conclude and outline
future work in Section 5.

Related Work. Our work builds upon [4] where the logical framework is introduced.
We extended the approach from an academic toy language to a subset of sequential Java
and are implementing tool support based on KeY. A first version of the tool is available
at www.se.tu-darmstadt.de/research/projects/albia/download/. Our approach to rea-
soning about information flow properties differs in the tracking of implicit dependencies and
avoids complicated non-standard rules for branching program statements.

∗The work has been funded by the DFG priority program 1496 ”‘Reliably Secure Software Systems’”

1

www.se.tu-darmstadt.de/research/projects/albia/download/

There are several approaches to the generation of loop invariants including but not limited
to arrays [3, 5, 9]. Our approach is deeply integrated into a fully precise program logic with
on-demand abstraction and can thus maintain a high precision and produce strong invariants.

2 Background

2.1 Information Flow and Non-Interference

Securing data in computing systems is a challenging endeavor. Allowing information disclosure,
while limiting it in such a way as to deny secret information from being publicly observed
can be a tricky task. Information flow analysis usually assigns each hardware input, method
parameter, or similar source a security level, typically either low or high. Likewise all sinks –
be they hardware outputs, return values or allocated memory areas – are assigned a security
level. All flows may then be analyzed to see, for example, if high inputs could be flowing to
low outputs. Allowed and forbidden flows are specified by information flow policies like non-
interference or delimited information release. The most strict policy is non-interference which
states no information at all may leak from high to low security locations. In other words, an
attacker is not able to distinguish multiple computations by observing their low outputs (and
low inputs), if they differ only in their high inputs.

In general this policy is often too strict and requires a form of declassification like delimited
information release which allows a certain well-specified amount of secret information to be
leaked. For instance, a password checker leaks whether the entered password is correct or
incorrect, which is the expected behaviour. One well-known way to enforce information flow
policies is through a security type system. Here any variable within the program is assigned
a certain security level, which allows it to contain only information of the specified or a lower
security level. While this is a sound approach, ensuring that all well-typed programs obey the
policy, it may fail to recognize actually secure programs. Rewriting a program which is not
well-typed, but has no improper information flows can be tedious and non-trivial. Typically,
type-based systems have a high abstraction level which allows them to stay fully automatic,
but comes at the cost of an increased number of false positives. Other approaches as the one
presented in this paper use a logic formalisation of secure information flow [6, 7, 1], but differ
in the degree of automation.

Information flow dependencies can be both direct, for example, an assignment x = y flows
information from y to x, or indirect as in executing different code based on a certain condition:
The statement if (b) then t else e flows information about b into both statements t and e.

Example 1. In the following example programs, h and l are program variables, where h has
security level High and l security level Low. A program is considered secure if an attacker who
reads the final values of the Low variables cannot infer any information about the initial values
of the High variables.

1. l=h is obviously insecure, because information flows directly from h to l.

2. if (h>0) {l=1} else {l=2} is also insecure, because information about the sign of the
initial value of h flows indirectly to l.

3. if (l>0) {h=1} else {h=2} is secure, because the value of l is not touched at all.

4. if (h>0) {l=1} else {l=2}; l=3 is secure, because the final value of l is always 3, inde-
pendently of the initial value of h.

5. h=0;l=h is secure, because the final value of l is always 0.

6. if (h>0) {h=l;l=h} is secure, because the value of l is not changed.

7. if (h>0) {l=2;h=1} else {l=2;h=2} is secure, because the final value of l is always 2.

8. l=h−h is secure, because the final value of l is always 0.

2.2 Underlying Logic Framework

2.2.1 Dynamic Logic for Java

The logic we use to present our approach on generating array invariants is dynamic logic [10], or
more precise, Java Card Dynamic Logic (JavaDL) [2] using the explicit heap model as developed
in [13]. Our programming language is sequential Java without dynamic class loading, garbage
collection and floats.

The described approach can be easily adapted by any other program logic and calculus,
which uses an explicit representation of the symbolic state and to a lesser extent makes use of
symbolic execution.

In dynamic logic, programs are first class citizens, i.e., programs occur syntactically as part
of the formulas and not in an encoded form. Dynamic logic (and thus JavaDL) is a first-
order logic with two additional modalities 〈·〉· (diamond) and [·]· (box). The first argument
takes a sequence of executable statements and the second argument an arbitrary dynamic logic
formula. At this stage we are not concerned with termination of programs and therefore we
restrict ourselves to the box modality, which is sufficient to encode partial correctness.

Intuitively, the formula [s]post expresses that if program s terminates then in its final state
formula post holds. Dynamic logic is closed under quantification and subsumes Hoare logic.
The Hoare triple {P}s{Q} is equivalent to the DL formula P → [s]Q.

Example 2. The formula x >= 0→ [while(x>0) { x--; }]x
.
= 0 means that if the program

is started in a state where x is greater than 0 and it terminates then in its final state x
.
= 0

holds.

The Java heap is modelled as a datatype Heap axiomatized as the theory of arrays containing
the following functions and axioms:

store : Heap× Object× Field× Any→ Heap

select : Heap× Object× Field→ Any

select(store(h, u, g, z), o, f) ;

{
z , if u = o and g = f
select(h, o, f) , otherwise

An array is a special kind of object which consists of a length field and infinitely many
fields arr(0), arr(1), . . . with arr being a function mapping each integer to a unique field.

JavaDL declares a global program variable heap on which Java programs operate, i.e.,
read and write. For ease of reading we use o.f and a[i] instead of select(heap, o, f) resp.
select(heap, a, arr(i)).

To keep track of state changes (local variable or heap changes) JavaDL uses updates, which
can be thought of as explicit substitutions. Let x denote a program variable and t a term of
compatible type. An elementary update x := t has the same semantics as an assignment where
the right-hand side is side-effect free. Elementary updates ui can be composed to parallel
updates u1‖ . . . ‖un which are executed simultaneously. Conflicts, i.e., if the same variable
is assigned different values in a parallel update, are resolved using a last-one-wins conflict
resolution.

Updates can be applied to a formula or a term {x := t} ξ resulting in a new formula resp.
term.

Example 3. To clarify the semantics and usage of updates we give some small examples:

• evaluating the formula {i := i + 1} (i > 0) in a state s holds iff i > 0 holds in a state s′

which coincides with s except for the value of i which is s′(i) = s(i) + 1

• evaluating {i := j || j := i} φ in a state s is the same as evaluating φ in a state s′ which
coincides with s except that the values of the program variables i and j are exchanged.
Note, this is only possible in this way as parallel updates are applied simultaneously and
do not influence each other, in other words, the right-hand side of the elementary updates
in a parallel update are evaluated in the pre-state (here: s).

• the parallel update x := 3 || x := 5 is equivalent to x := 5 as in case of conflicts the last
assignment wins.

Each chain of sequential applications of elementary updates {u1} . . . {un}φ can be rewritten
into a parallel update. For further details see [12]. Changes to the Java heap (e.g., assigning a
value to an array element) are kept track by updating the global heap variable accordingly.

2.2.2 Calculus

To prove that a formula is valid we use a Gentzen-style sequent calculus. A sequent

ψ1, . . . , ψm ⇒ φ1, . . . , φn has the same meaning as (
∧

i∈{1,...,m}

ψi)→ (
∨

j∈{1,...,n}

φj)

The rules of the sequent calculus are of the general form

name

premiss︷ ︸︸ ︷
seq1 . . . seqn

seq︸︷︷︸
conclusion

A proof in a sequent calculus is a tree constructed by a sequence of rule applications where
each node is labelled with a sequent. For each inner node there is a calculus rule such that
the conclusion matches the sequent in the node and the sequents of the children match the
instantiated premisses of the rule. A branch is closed if the last applied rule was an axiom rule,
i.e., a rule with an empty premiss. A proof is closed if all branches are closed.

The sequent calculus realizes a symbolic interpreter for Java programs. Most of the rules
match on the first active statement of a program, i.e., the statement an interpreter would
execute next. One example of such a rule is the conditional rule:

Γ, b⇒ [p; r]φ,∆ Γ,¬b⇒ [q; r]φ,∆

Γ⇒ [if (b) {p} else {q}; r]φ,∆

where Γ,∆ stand for (possibly empty) sets of formulas. Rules are applied in reverse order, i.e.,
the conclusion is matched against the sequent of an open goal (leaf node). If a match is possible
and the rule is applied, the leaf becomes an inner node of which each child corresponds to one
sequent of the rule’s premisses. For instance, the above rule causes the proof to split into two
branches. The left branch assumes that the guard of the conditional statement is true. Here,
we have to show that after execution of the then branch of the conditional and the rest of the
program, we are in a state in which formula φ holds. The right branch is concerned with the
analogue case where the guard is assumed to be false.

The advantage of symbolic execution is that during verification we follow the normal program
control flow. In contrast to a Dijkstra-style weakest precondition computation approach [8],
which reasons backwards through the program, we achieve a more natural forward style of
reasoning. For this the assignment rule is crucial. We present here the assignment rules for
local variables and for array elements:

assignloc
Γ⇒ {x := e} [r]φ,∆

Γ⇒ [x=e; r],∆φ
assignarr

Γ⇒ {heap := store(heap, a, arr(i), e)} [r]φ,∆

Γ⇒ [a[i]=e; r]φ,∆

where x, a, i denote program variables and e a side-effect free expression. The assignment rule
for local variables turns the assignment directly into an elementary update, while the array
assignment rule assigns the global heap variable a new heap which coincides with the old one
except for the value of a[i].

During symbolic execution the program is stepwise decomposed and updates are accumu-
lated in front of the modality representing the effect of the program. Once the program has
been completely executed and the updates have been applied (similar to substitutions) on the
formulas, only first-order goals remain which can be proven as usual.

For a loop the simplest approach is to unwind it (note, the version below is simplified
ignoring possible breaks or continues):

loopUnwind
Γ⇒ [if (g) { p; while (g) {p}}; r]ϕ,∆

Γ⇒ [while (g) {p}; r]ϕ,∆

Of course, unrolling a loop works only if a fixed bound is known a priori. Otherwise, loop
invariants or induction have to be used.

2.2.3 Value-Based Abstraction

Finally, we present briefly how abstract domains and abstract values are represented in our
logical framework. We follow previous work of some of the co-authors [4].

A finite abstract domain A is defined as a set of abstract elements {⊥, a1, . . . , an,>} forming
a lattice w.r.t. v. For instance, the sign domain for integers as given in Fig. 1.

>

⊥

≤ ≥

0< >

γ(>) = Z
γ(≤) = {i ∈ Z | i ≤ 0}
γ(≥) = {i ∈ Z | i ≥ 0}
γ(<) = {i ∈ Z | i < 0}
γ(>) = {i ∈ Z | i > 0}
γ(0) = {0}
γ(⊥) = {}

Figure 1: Abstract domain lattice for sign analysis

One way to support reasoning with abstract domains would be to integrate them into the
logic by introducing new types that represent them. This causes major problems as it would
require doubling all function symbols, such as addition, and it would be difficult to achieve

well-typedness when assigning program variables abstract domain elements. Instead we went
a different route, adding for any abstract element ai an infinite number of constant symbols
γai,j , where j ∈ N0 for which we restrict the interpretation to γai,j ∈ γ(ai), with γ, α being
the concretisation and abstraction functions forming a Galois connection. Note, the type of the
γai,j functions is a concrete domain and the only fact we know is that a γai,j belongs to the
values represented by ai. In addition, we add for each abstract element ai a predicate symbol
χai

as characteristic function for γ(ai).

2.2.4 Generating Loop Invariants

Being able to represent abstract values in our logical framework, we use the possibility to
automatically generate loop invariants. We sketch here only the rough idea, for more details
we refer to [4].

As detailed earlier, when verifying a program we start with a Java DL formula like pre →
[p]post and try to prove it with our sequent calculus. We start executing p symbolically until
we reach a loop, i.e., the open goal looks similar to Γ⇒ {u0}[while (g){bd}; r]post,∆.

At that point we have to either provide a loop invariant or perform induction and pro-
vide an induction hypothesis. Instead we start to generate an update (called invariant up-
date), which describes all possible states that may be reached when leaving the loop. We
describe the computation of the invariant update along a small example: Consider the pro-
gram: i = 0; while (i<n) { i++; } z = z + i;. As abstract domain for integers we use
the sign domain. We want to prove

z0
.
= 0→ {z := z0} [i = 0; while (i<n) { i++; } z = z + i;]z ≥ 0

After some proof steps we arrive at

z0
.
= 0⇒ {i := 0 || z := z0} [while (i<n) { i++; } z = z + i;]z ≥ 0

To continue the verification, we compute the invariant update by unrolling the loop once and
symbolically executing the loop body. We compare the update u0 when entering the loop body
with the one after the first iteration u1. For all locations modified by the loop we abstract
their value by the best fitting abstract value ai which encompasses both values. Here u0 is
i := 0 || z := z0 and u1 is i := 1 || z := z0. The only changed value is that of i. Comparing the
value before the loop iteration and afterwards, gives us ≥ as the best fitting abstract element of
the sign domain. Hence, we replace i in u1 by a fresh (not yet used) symbol γ≥,3, the resulting
update u′1 now looks similar to i := γ≥,3 || z := z0. We then unroll the loop once again and
repeat the process always comparing the update from the n-th iteration with the one from the
n − 1-th iteration until a fixed point is found. The so created update u′ describes at least all
states that may possibly occur after the loop. We continue the verification with the remaining
program under update u′.

In a simplified version taken from [4] the rule to introduce the computed update looks as
follows :

invariantUpdate

Γ, {u}(x̄ .
= c̄)⇒ ∃γ̄.{u′}(x̄ .

= c̄),∆
Γ, {u′}g, {u′}[p](x̄

.
= c̄)⇒ ∃γ̄.{u′}(x̄ .

= c̄),∆
Γ, {u′}¬g ⇒ {U ′}[r]ϕ,∆

Γ⇒ {u}[while (g) {p}; r]ϕ,∆

where u′ is the computed abstracted update. We do not go into details here, but basically
the first two branches verify that the computed update u′ is indeed correct, while in the third
branch program execution is continued after the loop and under u′.

3 Generation of array invariants

The value-based abstraction approach works well for primitive types and certain abstract do-
mains for objects, but loses precision quickly in presence of arrays. In this section we refine
the approach when dealing with arrays: instead of introducing abstract domains for arrays
(e.g., abstracting an array to its length), we utilize the abstract domain of the array elements,
formulating invariants that hold for different partitions of the array.

We recall, that for primitive types we use γs which express a constant but freely chosen
value within an abstract domain. For example, γ>,5 is some value, for which one can positively
state that it is greater than zero. Besides γs we also have χ-functions which express that the
given abstraction is a valid abstraction of the argument. For example, χ>(x) tells us that x
must be greater than zero. A range predicate R decides whether a given index is within the
range or not. For this paper we restrict ranges to closed intervals with an according range
predicate R : Z× Z× Z. The formula R(lo, hi, j) holds iff lo ≤ j ≤ hi. We write j ∈ R(lo, hi)
instead of R(lo, hi, j) and omit lo and hi when they are clear from the context. For a fixed but
arbitrary lo and hi, the χ-classification of array a’s elements within that range forms a lattice.
Using the sign lattice for integers we get:

∀ j ∈ R.χ>(a[j])

∀ j ∈ R.χ≤(a[j]) ∀ j ∈ R.χ≥(a[j])

∀ j ∈ R.χ<(a[j]) ∀ j ∈ R.χ0(a[j]) ∀ j ∈ R.χ>(a[j])

∀ j ∈ R.χ⊥(a[j])

In section 2.2.4 we have described the general approach, which requires only the states prior
to and after execution of an arbitrary loop iteration in order to calculate the invariant update.
As invariant updates alone cannot capture all information, we additionally generate formulas
expressing invariants about the array elements which hold for each iteration. To achieve a
higher precision we will generate invariants for arrays which either have their elements modified
or whose elements influence control flow.

We are concerned with loops that access and possibly modify array elements in a structured
way. We therefore analyze two distinct ranges within arrays: The range of elements which have
already been processed (Racc) and the range of untouched elements (Runmod). When analyzing
a loop we begin with two invariants for each relevant array a: ∀ j ∈ Racc.χ⊥(a[j]), which is the
neutral element for successively merging additional information about the elements we obtain
information about within a loop iteration, and an invariant which states that the elements in
Runmod remained unchanged since the start of the loop. This second invariant belongs to a
simple lattice which only contains this invariant along with the top and bottom elements for the
range Runmod. In case the array accesses cannot be described in the chosen range shape (here:
closed intervals), the range designated as untouched may be incorrect, however, the existence of
such a top element ensures soundness at the cost of precision. In all other cases this additional
information is very often required in order to prove a useful invariant, although usually it is no

longer used after the loop’s completion, as in most cases no array elements remain outside of
the range Racc upon exiting the loop.

Listing 1: Partial array copy

i = 0;

while(i < a.length){

if (a[i] < 0) {

a[i] = b[i];

}

i = i + 1;

}

As an example we want to prove the following sequent:

a 6= null ∧ b 6= null ∧ a.length ≤ b.length ∧ ∀ int j. 0 ≤ j < b.length→ b[j] > 0

⇒ [p] ∀ int j. 0 ≤ j < a.length→ a[j] ≥ 0,

where p is the program given in Listing 1. The program partially copies one array into another
array. Based on knowledge of the array being copied, as well as local knowledge about the
elements of the array being modified, an invariant can be generated classifying the array after
the loop.

Using update invariant generation, we infer that i is greater or equal to zero in all loop
iterations.

This is done starting at the actual value 0 for the initial state and systematically joining with
the new values i can accumulate after each iteration, while ensuring termination by remaining
within a fixed-length lattice.

Before entering loop: i = 0

After first iteration: i = merge(0, 1) = γ≥,0

After second iteration: i = merge(γ≥,0, γ≥,0 + 1) = γ≥,1 (fixed point found)

The array a will have invariants created for it due to both the control flow depending on its
elements as well as the modification thereof. The array b is deemed uninteresting. Based on
the generated update information about i – and the additional information that i < a.length
(given by the loop guard) at the start of each loop iteration – our starting invariant for the
range Racc = R(0, i− 1) (heuristically determined) is:

∀ int j. 0 ≤ j < i→ χ⊥(a[j])

This invariant is obviously valid only for the empty range, but provides a neutral element
as starting point for the joins: After one iteration we join the initial sign lattice element ⊥ with
both the then-branch value of a[i], which is b[i], as well as with the else-branch value of a[i],
which while unchanged contains the added information from the branch condition that a[i] ≥ 0.
As b[i] > 0 is also assured due to the precondition, the joins result in the new, stricter invariant:

∀ int j. 0 ≤ j < i→ χ≥(a[j])

The second iteration reveals that a fixed point has been found for a, which is strong enough
to prove the postcondition.

4 Application to non-interference analysis

To verify whether a program has secure information flow w.r.t. the non-interference property,
we make use of the fact that information-flow analysis can be reformulated as an analysis of
variable dependencies (see [11]). For any variable x we determine the set of variables on whose
initial values the final value of x can at most depend. We associate security levels with sets of
variables. A program adheres to non-interference if the final value of any lower level variable
does not depend on a variable with a higher security level.

In order to track dependencies we extend our logic as follows: For each local variable x there
is an additional variable xdep containing its dependencies. In the case that a local variable a
refers to an array object there is also an additional dependency array adepArr which stores the
dependencies of the array elements. Our logic also includes extensions for objects and their
fields, but these are skipped for ease of presentation.

Implicit dependencies (caused by branching instructions) are tracked by a global variable
depStack, which implements a stack of dependency sets. To update the stack, the program is
instrumented with special push, pop and peek statements by corresponding calculus rules. For
instance, the rule for executing conditional statements is now:

conditional
Γ, b⇒ [push(deps(b) ∪ peek()); p; pop(); rest]φ,∆ analogous for else

Γ⇒ [if(b){p}else{q}; rest]φ,∆
,

where deps(t) computes a safe approximation of the dependency set for a side-effect free program
expression t.

deps(t) :=


xdep if t is a local variable x

deps(a) ∪ deps(t′) ∪ adepArr[t′] if t = a[t′]

deps(a) if t = a.length
(Note: The approximation of a.length is sound as length is a final field)

Figure 2: Definition of deps (excerpt)

Both explicit and implicit dependencies must be considered whenever an assignment is
executed. Here are two of those rules:

assignlocal
Γ⇒ {x := e || xdep := deps(e) ∪ peek(depStack)} [r]φ,∆

Γ⇒ [x = e; r]φ,∆

assignarrayElement

Γ⇒ {heap := store(store(heap, a, arr(i), e),
adepArr, arr(i), deps(e) ∪ deps(i) ∪ peek(depStack))} [r]φ,∆

Γ⇒ [a[i] = e; r]φ,∆

Our intention is to implement a fully automatic verifier for information flow analysis. To
achieve automation we use the invariant generation as explained in Section 3. The canonical
candidate for an abstract domain for dependency sets is the security lattice given by the appli-
cation context. In the following example we use the universal lattice (powerset of all program

locations) which coincides with the concrete domain for dependency sets. We analyze the pro-
gram p in Listing 2 w.r.t. the dependencies of the array elements of a. Given a set of program
variables high we aim to prove the following sequent:

a 6= null ∧ b 6= null ∧ a.length ≤ b.length ∧
∀ int j. 0 ≤ j < b.length→ b[j] > 0 ∧ ∀ int j. 0 ≤ j < a.length→ a[j] > 0 ∧
high ∩ deps(a)

.
= ∅ ∧ ∀ int j. 0 ≤ j < a.length→ high ∩ deps(a[j])

.
= ∅

⇒
[p]∀ int j. 0 ≤ j < a.length→ high ∩ deps(a[j])

.
= ∅

Listing 2: Dependency tracking

i = 0;

while(i < a.length){

if (a[i] < 0) {

a[i] = b[i];

}

i = i + 1;

}

The formula must be valid, as a does not initially depend on a high variable and neither do
any of its elements. The only point in the program where one of its elements could be assigned a
value with a high dependency is within the then-branch of the conditional statement. However,
due to the precondition this code is never executed. Figure 3 shows the dependency tracking as
performed within the logic during the proof search. Our approach allows to generate a suitable
loop invariant which is strong enough to prove the desired property thanks to the advantage of
having a theorem prover backing the generation of loop invariants.

Java Additional steps

i = 0; idep := ∅ ∪ depStack
while(i < a.length) { depStack := push(peek(depStack) ∪ idep ∪ adep, depStack)

if (a[i] < 0) { depStack := push(peek(depStack) ∪ adep ∪ idep ∪ adep[i], depStack)
a[i] = b[i]; not executed, as in this branch the preconditions are contradictory:

a[i] < 0 ∧ ∀ int j. 0 ≤ j < a.length→ a[j] > 0
} depStack := pop(depStack) – end of if-statement
i = i + 1; idep := idep ∪ depStack
} depStack := pop(depStack)

Figure 3: Dependency tracking as performed during proof search

5 Conclusion and Future Work

We extended an abstraction on-demand framework with the ability to maintain a high precision
when dealing with arrays. We applied the approach to information-flow analysis. A first imple-
mentation is available at www.se.tu-darmstadt.de/research/projects/albia/download/.
We are currently extending the maturity of the tool and the coverage of the supported sequen-
tial Java fragment. Further, we investigate improvements to the loop invariant generation by
allowing range predicates for more and different shaped structures. A goal is to be able to deal
with array initialisation as found in cryptographic software which can be non-contiguous.

www.se.tu-darmstadt.de/research/projects/albia/download/

Acknowledgements.

We thank Eduard Kamburjan for help with the implementation and fruitful discussions.

References

[1] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-composition.
In 17th IEEE Computer Security Foundations Workshop, CSFW-17,Pacific Grove, CA, USA,
pages 100–114. IEEE Computer Society, 2004.

[2] Bernhard Beckert, Reiner Hähnle, and Peter Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jrme Feret, Laurent Mauborgne, Antoine Min,
David Monniaux, and Xavier Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In Torben Mogensen, David A. Schmidt,
and Ivan Hal Sudborough, editors, The Essence of Computation, volume 2566 of Lecture Notes in
Computer Science, pages 85–108. Springer, 2002.

[4] Richard Bubel, Reiner Hähnle, and Benjamin Weiß. Abstract interpretation of symbolic ex-
ecution with explicit state updates. In Frank S. de Boer, Marcello M. Bonsangue, and Eric
Madeleine, editors, Revised Lectures, 7th International Symposium on Formal Methods for Com-
ponents and Objects (FMCO 2008), volume 5751 of Lecture Notes in Computer Science, pages
247–277. Springer-Verlag, 2009.

[5] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. In Thomas Ball and Mooly Sagiv, editors,
POPL, pages 105–118. ACM, 2011.

[6] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving approach to analysis of secure
information flow. In Roberto Gorrieri, editor, Workshop on Issues in the Theory of Security,
WITS. IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

[7] Ádám Darvas, Reiner Hähnle, and Dave Sands. A theorem proving approach to analysis of se-
cure information flow. In Dieter Hutter and Markus Ullmann, editors, Proc. 2nd International
Conference on Security in Pervasive Computing, volume 3450 of LNCS, pages 193–209. Springer,
2005.

[8] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[9] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric analysis of array
operations. In Jens Palsberg and Martn Abadi, editors, POPL, pages 338–350. ACM, 2005.

[10] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[11] Sebastian Hunt and David Sands. On flow-sensitive security types. In 33rd ACM Symposium on
Principles of Programming Languages (POPL), pages 79–90. ACM Press, 2006.

[12] Philipp Rümmer. Sequential, parallel, and quantified updates of first-order structures. In Logic for
Programming, Artificial Intelligence and Reasoning, volume 4246 of Lecture Notes in Computer
Science, pages 422–436. Springer-Verlag, 2006.

[13] Benjamin Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames, Dynamic
Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Technology, 2011.

	Introduction
	Background
	Information Flow and Non-Interference
	Underlying Logic Framework
	Dynamic Logic for Java
	Calculus
	Value-Based Abstraction
	Generating Loop Invariants

	Generation of array invariants
	Application to non-interference analysis
	Conclusion and Future Work

