A UML Profile for Delta-Oriented Programming
to Support Software Product Line Engineering*

Maya R. A. Setyautami!, Reiner Hihnle?, Radu Muschevici?, and Ade Azurat!

! Fakultas Ilmu Komputer
Universitas Indonesia
Depok, Indonesia
{mayaretno|ade}@cs.ui.ac.id

2 Department of Computer Science
Technische Universitdt Darmstadt,
Darmstadt, Germany
{haehnle|radu}@cs.tu-darmstadt.de

Abstract. Feature-based approaches to software design, like delta-ori-
ented programming, are well-suited to support multi-product software
development paradigms, such as Software Product Lines. Currently, the
popular UML notation does not support delta-oriented software design,
so that several ad-hoc notations tend to be used. This paper presents a
systematic approach to import concepts from delta-oriented programming
into the mainstream notation UML. This is done with minimal overhead
by specifying a new, slim, delta-oriented UML profile. It is compatible
with languages that support delta-oriented programming such as DeltaJ
and ABS. The usefulness of the profile is evaluated with a case study.

1 Introduction

The modeling of product variability—to identify and to manage the commonalities
and differences among software products—is a key issue of any software product
line (SPL) development process [14]. Variability modeling spans all phases of SPL
development, from analyzing the problem by gathering requirements, to design
and implementation of a solution in the form of software. Variability modeling is
thus a concern in both the problem space and the solution space.

In the problem space, variability is typically modeled by abstracting require-
ments to features and describing dependencies between features in a feature
model [10]. In the solution space, features are mapped to implementation arti-
facts. This is often done in an ad-hoc manner and implicitly by using #ifdefs
and similar conditional compilation concepts. More systematic support on the lan-
guage level is provided by feature-oriented programming (FOP) that implements
features using feature modules |3l|16]. A more recent approach is delta-oriented
programming (DOP), an object-oriented language concept that allows a flexible

* Technical Report TUD-CS-2016-0100, https://www.se.tu-darmstadt.de/
publications/details/7tx_bibtex_pil[pub_id]=TUD-CS-2016-0100

https://www.se.tu-darmstadt.de/publications/details/?tx_bibtex_pi1[pub_id]=TUD-CS-2016-0100
https://www.se.tu-darmstadt.de/publications/details/?tx_bibtex_pi1[pub_id]=TUD-CS-2016-0100

“n-to-m” mapping of features to delta modules (or deltas for short): a feature can
be implemented using multiple delta modules, while a delta module can supply
the (partial) implementation for multiple features.

A standard approach for specifying and visualizing the design of software
systems is the widely used Unified Modeling Language (UML). At present UML
does not include modeling elements for specifying the structural variability of
a software design. While extensions to cover feature-oriented design have been
put forward |15],20], such extensions only enable variability modeling at a very
abstract level in the problem space. Critically, they provide no connection to
the model elements used in designing the solution, such as UML class diagrams.
Moreover, in the solution space the distinction between architectural design
and variability modeling is blurred, because UML modeling elements such as
inheritance relations or associations are used for either purpose. This makes
it hard to realize a key ingredient of any modern SPL development processes:
traceability between problem space and solution space.

To remedy this situation, in this paper we propose a systematic connection
between delta-oriented programming and UML structure diagrams. This will
take the form of a UML profile that is very lightweight and comes with minimal
overhead.

The remaining paper is organized as follows. In the following section we
motivate our design choices and highlight the advantages of our approach in the
context of SPLE. To make the paper self-contained, we briefly describe DOP as
well as two of its realizations (ABS and DeltaJ) in Section [3| Our delta-oriented
UML profile, described in Section [d] is called UML-DOP and can be seen as a
static design based on the delta-oriented languages ABS and DeltalJ, in a similar
manner as UML is a static design view on OO languages like Java or C++. In
Section [b| we demonstrate the viability of our approach by applying it to a case
study modeling an Adaptive Information System. We review related work in
Section [6 and conclude, as well as outline future work, in Section [7]

2 DMotivation

Among several available feature-oriented programming paradigms [4}/16}/17] we
chose delta-oriented programming [17] as the basis of our work for the following
reasons: first, DOP is an object-oriented paradigm compatible with mainstream
programming languages and development processes; because of this, it was
possible to design a natural UML profile with low overhead for the DOP extension
of UML; second, even though DOP is a relatively recent paradigm, there exist two
implementations: ABS [89], for Abstract Behavioral Specification, is a mature,
executable modeling language that supports DOP; DeltaJ [11] is an extension of
Java that fully integrates delta modules into Java’s package system.

A key issue we want to address in this work is traceability between problem
and solution space in an SPL development process. For delta-oriented SPLs this
means that the variability model includes information about which delta modules
implement a certain feature, and what features are implemented by a certain

delta module. An advantage of traceability between feature and delta model is
automation: upon selecting a set of features, the corresponding software product
can be generated automatically by tracing the corresponding delta modules and
composing them.

Designing the variability model of an SPL using DOP is a creative process,
comparable to, e.g., object-oriented design. The task essentially amounts to
providing a set of reusable delta modules that together implement the features
of the SPL, and can be composed in various ways to obtain all products of the
SPL. A visual design language to aid this process is highly useful but has been
missing so far from the delta-oriented SPL development process.

3 Delta-Oriented Programming

Delta-oriented programming is a feature-oriented programming paradigm suitable
for the development of Software Product Lines [17]. It constitutes a two-tier
approach for addressing product variability: First, so-called code deltas are
associated with a feature they are supposed to implement. A delta is a set of
syntactic code changes that specify in a structured manner how existing code has
to be modified to implement a given feature. In an OO framework the typical
granularity, which is also supported by the ABS and DeltaJ languages, are deltas
for attributes, operations, and classes. Second, to obtain from a given program
P a new version Py that supports feature f, one applies to P the code deltas
associated to f. The resulting “flat” standard program Py realizes feature f. Delta
application is performed by a dedicated compilation step, which makes sure that
the resulting product Py is well-typed and the delta application sequence satisfies
possible ordering constraints. The ability to apply several deltas consecutively
makes the approach compositional. For details, see Schaefer et al. [17].

In contrast to deltas, conventional OO languages often encode feature-driven
variability with the help of class inheritance. But combining both, variability and
functional aspects in one and the same code base, tends to result in code that is
hard to understand and maintain. The ability to clearly separate feature design
and functional design aspects is an advantage for the development of feature-rich
software [6]. Another benefit is that the product obtained after delta application
contains exactly the code required to implement the requested features and none
else.

It is important to point out that even software not architected as a SPL benefits
from DOP: any non-trivial software project involves differently instrumented
code variants for debugging and testing purposes. It is highly advantageous to
be able to maintain these separately.

3.1 Delta Oriented Programming with ABS

The ABS language [9] is an object-oriented, concurrent, executable modeling
language. It supports modeling at the level of data types, functions, imperative
statements and objects. ABS has interfaces, interface inheritance, and classes,

but no code inheritance, hence no abstract classes; instead, delta composition as
outlined above is available as a mechanism of code reuse.

ABS comes with a compiler and tool set that includes code generation back-
ends (Java, Erlang and Haskell), test case generators, as well as various static
analysis tools [21]. It has been successfully used in industrial projects [2]. The full
specification of ABS’s syntax and semantics is available in the ABS Language
Specification [1].

ABS provides language constructs and tools for modeling SPLs using the
DOP approach. Specifically, it supports feature modeling at the design stage,
while it provides DOP at the level of code.

An SPL is implemented in ABS as a set of core modules (the core) and a set
of delta modules that modify the core. The core typically implements a basic
functionality common to all (or most) products of the SPL (cf. Figure 1| for an
example). Delta modules represent the variability of an SPL at the implemen-
tation level. ABS delta modules modify a core module by adding, modifying or
removing program elements, including attributes, classes, methods and interfaces
(cf. Figure [5| for an example).

Determining what goes into the core and what functionality is implemented
using deltas is part of the design process of an SPL and therefore up to the ABS
modeler. A core can be even empty and all functionality may be contained in
deltas.

In addition to core modules and deltas for code modularization, ABS supports
feature-oriented SPL design. Features have a corresponding implementation
which in ABS is described by deltas. Feature models are denoted in ABS using
the textual variability language pTVL, a variant of feature diagrams [19] (cf.
Figure [3)).

Features and deltas in ABS are connected in such a way that features can
be easily traced to the delta modules that provide their implementation, and
vice versa, via a product line configuration (cf. Figure [7]). Each feature can be
implemented using one or more deltas, while each delta may contribute to the
implementation of one or more features. A product line configuration provides
the information to determine which deltas will be applied in which order to the
core, whenever a set of desired features is selected.

A set of selected features that satisfy the constraints mandated by the feature
model is called a product. Figure [I0] shows two such products declared in the
ABS language. The result of a sequence of delta applications to a core mandated
by a given product is called a software product.

3.2 Delta-Oriented Programming with DeltaJ

DeltaJ [11/17] is a Java-based programming language that supports DOP. It
is similar to ABS in scope and syntax, with core modules, delta modules and
product generation.

The latest version of DeltaJ [11] does not require a core. Product generation
relies only on the composition of delta modules. Deltas may add, remove, or
modify classes by modifying their methods and attributes. The feature declaration

and a set of valid feature configurations are contained in a delta-oriented product
line module. For each delta one must specify the features that require its presence.

Product generation is similar as in ABS by composing all delta modules
requested by a feature selection. The first delta is applied to the empty program,
because there is no core module, then the second delta is applied to the outcome
of the first delta application, etc. If the delta modules are not applicable in the
requested order, product generation fails.

4 The UML-DOP Profile

As a modeling language that is widely used in software development, UML has a
standard syntax and semantics. However, sometimes UML syntax and semantics
are not sufficient to express a specific system concept in a particular domain
(e.g., real-time, business process modeling, finance, etc.). The Object Modeling
Group (OMG) provides several approaches to overcome this problem. One of
them are UML profiles [7] that can be used to customize UML syntax for a
specific domain or programming language. Several programming languages and
frameworks, including CORBA, CCM, CCCMP, CCA, EJB, Java [12], already
have a UML profile.

A UML profile is defined by a set of extension mechanisms that permit
customization: stereotypes, tagged values, and constraints [13]. A stereotype is a
class type that extends another UML class with a specific mechanism and that
must be used together with its extension class. A stereotype class has properties
or attributes, called tagged values. Optional constraints may impose limitations
on their usage.

We define a UML profile, called UML-DOP, to capture delta-oriented con-
cepts in UML notation. Each syntax element of the static design view of DOP
extends a UML meta class and is mapped to stereotypes, tagged values, and
constraints. Although the profile is defined based on ABS and DeltaJ, to simplify
the explanation, we explain the profile definition with ABS.

There is an important advantage of basing the UML-DOP profile on the DOP
approach: as there is a one-to-one mapping from DOP elements to UML model
elements, there is a deterministic translation from ABS/DeltaJ code stubs to
UML model elements. Vice versa, UML (with the UML-DOP profile) can encode
product variability in exactly the same efficient and easy-to-maintain manner as
it is possible in DOP.

4.1 Core Modules

ABS specifies core behavioral modules based on object-oriented modeling. Each
object of a system is an instance of a class and each class must implement one or
more interfaces. Core modules declare a list of model elements for export and
import to regulate access from and to other modules.

Each class declares methods and attributes. A core module in ABS syntax is
similar to a package in Java syntax, but disallows inheritance and overloading.

Multiple inheritance is allowed at the interface level |9]. There is an optional
main method which is declared between two braces. Main methods are executed
by default when running an ABS model. The following code snippet (Figure [1))
is an example of an ABS core module called MProgram that models a progra
in the AISCO case study (see Section [5).

module MProgram;
export *;

interface Program {

Int getId();

String getName();

Int getAmount();

Program getProgram();

Unit setProgram(String n, Int a, String d, String desc, String c);
}

class ProgramImpl(Int id, String name, Int amount) implements Program {
String date = "";
String description = "";
String contact = "";
Int getId() { return id; }
String getName() { return name; }
Int getAmount() { return amount; }
Program getProgram() { return this; }
Unit setProgram(String n, Int a, String d, String desc, String c) {
name = n; amount = a;
date = d; description = desc; contact = c;
}
}

Fig. 1. The ABS core module MProgram

Mapping to UML We need to extend the UML class definition in the UML-
DOP profile to cover properties specific to DOP. A class in DOP has mostly the
same semantics as a UML class. Hence, a class in ABS maps to a UML class.
However, we must account for the differences between ABS and UML classes,
for example, parameters in the class declaration. A class parameter in ABS has
the same semantics as a constructor method in UML that initializes the class
attributes with the given parameter values. As there exist no class parameters in
UML, we map ABS class parameters to a suitable constructor method in UML:

3 Please note that the identifier Program here refers to the usual English sense, “plan”

or “outline”, not to the technical meaning of “code” in Computer Science.

for each ABS class declaration with a non-empty parameter list p we create a
public constructor method in UML whose name is the same as the ABS class
name and with parameter list p. In addition, private attribute declarations for
the elements of p are added to the UML class.

Classes in ABS implement one or more interfaces and are declared inside a
module. ABS modules behave similarly to UML packages that have export and
import lists. Hence we map an ABS module to a UML package with stereotype
<«module». The export and import directives of ABS modules are mapped to UML
dependencies stereotyped «export» and «import», respectively.

Figure |2 shows the UML Diagram resulting from mapping the core ABS
module MProgram based on the stereotypes in the UML-DOP profile (not all
methods are displayed). The UML class ProgramImpl represents the class with
the same name in the ABS model. It implements interface Program and belongs to
a package MProgram with stereotype «module» that represents the ABS module.

<<nodul e>>
MPr ogr am

<<i nterface>>
Program ProgramImpl

-id: Int

-nane: String

-anmount: | nt

+get Progran{id:Int): Program
+set Progr an(nane, anount ,

dat e, desc,)
cont): Unit -date: String
-description: String
4 -contact: String

b e e e e e = +Program npl (i d, namne,
anount)
+get Progran(id:Int): Program
+set Progr an(nane, anount ,
dat e, desc,
cont): Unit

Fig. 2. UML representation of ABS core module MProgram

4.2 Feature Modeling

As mentioned in Section an ABS feature model is defined using a textual
variability language that organizes features in a tree structure similar to feature
diagrams. A feature model specifies properties for each feature. It also specifies
dependencies among features through grouping, as well as “require” /“exclude”

constraints. The code snippet in Figure [3]is part of the ABS feature model for the
ATSCO case study (cf. Section. There is a mandatory feature ProgramData that
has two optional child features, Periodic and Continuous, and one mandatory
feature Eventual. There is also an optional feature DonationData that can have
one or more child features Money, Item and Confirmation. The group constraint
for the root feature AISCO is allof, meaning all elements of the group must appear.
The group constraint for feature ProgramData has cardinality [1..*] implying
that one can choose one or more child features, and the constraint for Donation-
Data has cardinality [0..%], which is equivalent to making all child features
optional.

root AISCO {
group allof {
ProgramData {
group [1..%] { opt Periodic, opt Continuous, Eventual }
},
opt DonationData {
group [0..*] { Money, Item, Confirmation }
},
}
}

Fig. 3. An ABS feature model

Mapping to UML The UML standard includes no dedicated diagram type for
feature modeling along the lines of feature diagrams. Hence we need to adapt
a suitable UML diagram type for the UML-DOP profile. We decided to map a
feature to a UML component with stereotype «feature», because a feature is
more abstract than a class and has various dependencies. The implementation of
a feature is given by delta modules, as explained in Section [£.3] The stereotype
«feature» has a tagged value isRoot of type Boolean to indicate whether it is at
the root of the feature diagram.

The group constraint of a feature is given as a cardinality 5] (e.g. allof, opt,
[1..x]) that specifies the number of child features that can be selected within
the group. We map a feature group to a UML port with a cardinality property of
type string. The relation between parent features and child features is mapped
to a UML dependency with stereotype «optional» or «mandatory». Additional
relations (constraints) among feature in ABS (for example require and exclude)
are mapped to a UML dependency with corresponding stereotype (for example
«require» and «exclude»).

Figure [4 shows the UML diagram that results from mapping the ABS feature
model in Figure [3] to UML based on the stereotypes defined above. There is a
UML component ProgramData with stereotype «feature» that represents the

feature ProgramData in the ABS model. The same applies to the child features
Continuous, Periodic and Eventual. In the ABS feature model, Eventual is
mandatory and the others are optional, denoted by the [1..%] cardinality. The
cardinality is mapped to the property of the UML port of the corresponding
component.

<<feature>>
ProgramData

.7

<<opt i onal >> Py <<nandat ory>>
- --=-=== <<optipnat>> = = = = = = = 1
1

1
1 I_I_
<<feature>> 1 <<feature>>

Periodic <<feature>> Eventual
Continuous

L |

Fig. 4. UML representation of ABS feature model

4.3 Delta Modeling

ABS delta modules modify a set of ABS core modules. As mentioned in Sec-
tion deltas can modify interfaces, classes, methods and attributes. The code
in Figure [5|is an example of a delta module named DContinuous. It modifies
class ProgramImpl to add two new attributes end_date and payment. The delta
module also adds a method setEndDate and modifies the method setProgram.

Mapping to UML We extend UML to represent the central concept of DOP,
delta modules. A delta describes a set of changes to some given ABS core modules
in order to (partially) implement one or more features. A delta module can modify
multiple classes and interfaces. Hence we map a delta module to a UML package
with stereotype «delta». It consists of one or more modified classes or modified
interfaces that has an association with the original class. The modified class is
mapped to a UML class with stereotype «modifiedClass» and the modified
interface is mapped to a UML interface with stereotype «modifiedInterface».
The association between the original class/interface and the modified class/inter-
face is stereotyped «adds», «removes» or «<modifies», depending on the type of
modification.

The modifier that describes how a certain element of the modified class/inter-
face is modified is mapped to a UML property (for attributes) or UML operation
(for methods) and has one of the stereotypes «adds», «removes» or «modifies».

delta DContinuous;
uses MProgram;
modifies class ProgramImpl {
adds String end_date = "";
adds Pair<Int, String> payment = Pair(0, "");

adds Unit setEndDate (String e) { end_date = e; }
modifies Unit setProgram(String n, Int a, String d,
String desc, String c) {
name = n; payment = Pair(a, d);
description = desc; contact = c;
}
}

Fig. 5. The ABS delta module DContinuous

For example, if a new attribute is added to the modified class, there will be a
UML property with stereotype «adds>» representing that attribute.

Figure [6] shows the UML diagram that represents the ABS delta module
DContinuous. The delta module is represented as a UML package DContinuous
with stereotype «delta». The class ProgramImpl modified by the delta adds new
attributes and a method; it also modifies an existing method. This is represented
in the modified class ProgramImpl with the end_date and payment properties,
stereotyped with «adds». The new and the modified method are represented with
the operation setProgram stereotyped «modifies» and the operation setEndDate
stereotyped «adds».

[<<modul e>>
MPr ogr am

-idr Int
-name: String
-anmount: Int
-date: String

. . . del
-description: String ;;“':::us

-contact: String

Programimpl

<<modifies>>

+Program npl (i d, nane, <<nodi fi edd ass>>
anount) Programimpl
+get Progran(id): Program - <<adds>> end_date: String
+set Pr ogr an(nane, anount , - <<adds>> Paynent: Pair
dat e, desc +<<nodi fi es>> set Progran(nane: String,
cont): Unit armount : I nt,
date: String)

+<<adds>> set EndDat e()

Fig. 6. UML representation of ABS delta module DContinuous

4.4 Product Line Configuration

A product line configuration specifies the (many-to-many) relation between
features in feature modeling and deltas in delta modeling. Based on the set of
features in a specific product, the configuration defines which delta modules
should be applied. In ABS the declaration starts with the name of a product line,
followed by the list of features and a configuration for each delta module.

The ABS code snippet in Figure [7] is part of a product line configuration
for the AISCO product line, which has sixteen features altogether (see also
Figure . The when clause specifies an application condition [17]. For example,
the delta DPeriodic is applied whenever the Periodic feature is selected in a
product. Our example has only one-to-one relations between deltas and features.
In general, a feature may trigger application of more than one delta and some
deltas might be applied only for a combination of features. It is also possible to
specify a partial order on the application of deltas using an after clause. This is
not shown here.

productline AISCO;

features ProgramData, Periodic, Eventual, Continuous, PublicationSystem,
MemberNotification, StoryBoard, AutomaticReport, FinancialReport,
Income, Expense, Donor, Summary, ObjectiveTarget, Product,
InstitutionalBeneficiary, IndividualBeneficiary,
DonationData, Money, Item, Confirmation;

delta DPeriodic when Periodic;
delta DEventual when Eventual;
delta DContinuous when Continuous;

Fig. 7. An ABS product line configuration

Mapping to UML In Sections and we mapped features to UML
components and ABS delta modules to UML packages. Product line configurations
define a link between features and deltas. Hence we represent a product line
configuration as a UML dependency between a UML component with stereotype
«feature» that represents the feature, and a UML package with stereotype
«delta» that represents the delta module. This UML dependency has stereotype
«when» to indicate the application condition. If more than one delta is needed
to be applied for a feature, we can specify the order using a UML dependency
between two deltas with stereotype «after».

Figure [§ shows a UML diagram that models the product line configuration of
Figure[7] It consists of the dependency relationship between the UML component
Continuous with stereotype «feature» and the UML package DContinuous

<<feature>>

Continuous
<<del t a>>

DCont i nuous

<<nodi fi edd ass>>
Programimpl
-<<adds>> end_date: String
- <<adds>> Paynent: Pair

<<when>> +<<nodi fi es>> set Progran{ name: Stri ng,
anmount : I nt,
date: String)

+<<adds>> set EndDat e()

Fig. 8. UML representation of AISCO product line configuration

<<product>>
. PKPU g - e e e)
'
'
'
'
'

1 L 1
<<feature>> <<feature>> <<feature>> <cfeature>>
Programbata fg - - - - - ' PublicationSystem Obj T
P 1
' '
' '
. - - o) o
1 ! '
L] ' 1
['

L L L)
<<feature>> <<feature>> !
Eventual Periodic Continuous [+~ "7 T T Summary Donor T

! '

! '

! L
<<feature>> <<feature>> <<feature>> <<feature>>
t Y Product Institutional
Beneficiary

Fig. 9. UML representation of AISCO product PKPU

with stereotype «delta». Based on the diagram, we can infer that ABS delta
DContinuous is applied when feature Continuous is selected.

4.5 Product Selection

A product selection defines product variants based on the features that they
include. An ABS product declaration starts with the product name and is followed
by the list of features that are requested for the product. The ABS compiler
checks whether the specified set of features satisfy the constraints defined by the
feature model.

The AISCO case study (cf. Section defines several such products; the
code snippet in Figure[I0]shows the declaration of the SekolahBermainMatahari
and PKPU products. The set of requested features is declared after the product
name inside parentheses. For example, the PKPU product implements the features
ProgramData including Periodic, Eventual, and Continuous; Publication-
System including StoryBoard and MemberNotification; FinancialReport in-

cluding Summary and Donor; ObjectiveTarget including Product and Institu-
tionalBeneficiary.

product SekolahBermainMatahari
(ProgramData, Periodic, Eventual,
PublicationSystem, AutomaticReport, StoryBoard,
FinancialReport, Income, Expense, Donor);
product PKPU
(ProgramData, Periodic, Eventual, Continuous,
PublicationSystem, StoryBoard, AutomaticReport,
FinancialReport, Summary, Donor,
ObjectiveTarget, Product, InstitutionalBeneficiary);

Fig. 10. An ABS product selection

Mapping to UML In the UML-DOP profile we have to represent the relation
between products and features specified by a product selection. A product
has one or more features and a feature can be selected for multiple products.
In Section we mapped features to UML components. Because a product
is essentially a set of features, we represent a product as a UML component
with stereotype «product». The features implemented within that product are
represented by a UML dependency to that component.

Figure [0] shows the UML representation of the product PKPU declared in
Figure The product is represented as a UML component with stereotype
«product» having dependencies to the various features (represented by UML
components) that it implements: Periodic, Eventual, etc.

4.6 UML-DOP Profile Summary

A summary of the mapping between DOP elements and stereotyped UML
elements of the UML-DOP profile is shown in Table [I| The UML extensions are
characterized by their stereotype names. A visualization of the UML-DOP profile
with a UML profile diagram is shown in Figure [T1} The diagram contains the
stereotype classes with tagged values and the extended UML metaclasses. Each
stereotype must extend one or more metaclasses.

5 Evaluation

We evaluate the completeness of our UML-DOP profile by applying the profile to
a medium-sized, representative ABS model. We chose the “Adaptive Information
System for Charity Organizations” (AISCO), a software system that helps charity

Table 1. UML-DOP profile, mapping of DOP elements to UML stereotypes

Element Name|UML Base Class |Stereotype Name

Module Package <module»
Export Module |Dependency «export»
Import Module |Dependency «import»
Delta Module Package «deltay»
Delta Parameter |Property «deltaParam»
Association «adds»
Association «removes»
Module Modifier | Association «modifies»
Class <«modifiedClass»
Interface «modifiedInterface»
«adds>»
Modifier Operation; Property|«removes»
«modifies»
Feature Component «feature»
Optional Dependency «optional»
Mandatory Dependency «mandatory»
Require Dependency «require»
Exclude Dependency «exclude»
Product Component «product>»
When Dependency «when»
After Dependency «after»

organizations to publish their activities and to generate financial reports. The
case study was selected for the following reasons:

1. it is a typical product line development that shows a variety of aspects,
including multiplicity constraints, cross feature relations, etc.;

2. it is not an academic toy study, but a medium-sized project driven by real-
world requirements;

3. it has been developed on the basis of ABS and DOP and we have full access
to the source code.

The AISCO system is designed to help charity organizations in reporting
their work. These organizations share many characteristics: basically, they all
obtain funds from donors and then distribute them to beneficiaries. However,
their activities vary widely and include building public facilities, child support,
education matters, to name just a few. After obtaining funds and running their
program, charities are obliged to report their programs’ results and the financial
flow. Hence, the system is designed to record income, expenses, donors, and
beneficiaries. The report can be generated automatically or created manually.

Based on four different charity organization in Indonesia, we analyzed the
requirements for AISCO. We modeled the feature for monitoring a charity

<<profile>>
UM_- DOP

<<net acl ass>>
Component

<<netacl ass>> <<netacl ass>> <<met acl ass>>
Package Class Interface

A

<<stereot ype>>
<<stereotype>> feature
product

<<ster eot ype>> <<stereotype>> <<st er eot ype>> <<ster eot ype>>
module delta modifiedClass modifiedinterface

<<netacl ass>>
Dependency

+ sRoot: Booel an

<<ster eot ype>>

. <<stereot ype>>
import

exclude

<<st er eot ype>> <<st er eot ype>> <<ster eot ype>> <<stereot ype>> <<st er eot ype>> <<ster eot ype>>
export after when optional mandatory require

<<net acl ass>>

<<netacl ass>>
Association | Operation

<<st er eot ype>> <<st er eot ype>> <<st er eot ype>>

<<netacl ass>>
Property

<<stereot ype>>
removes modifies adds deltaParam

Fig.11. UML-DOP profile as a UML profile diagram

program (ProgramData) as mandatory, because all organizations need this feature.
The organizations have programs with different scheduling behavior, which
could be periodic (weekly, monthly, or yearly), eventual (a program that can
be run anytime), or continuous (a program that runs gradually). All these
require different system behavior. It is possible that an organization runs several
programs of a different nature. There is an organization that only has periodical
program, another organization has eventual program, and a big organization can
have these three kinds of program. We modeled the different scheduling types
as optional child features of ProgramData. Further, mandatory features are a
publication system and financial reporting—these are needed by all organizations.
Other optional features include objective/target data that specifies the recipients
information, and donation reporting. The full feature model of AISCO, which
describes its commonality and variability in detail is shown in Figure

The AISCO case study is fully modeled in the ABS language and uses DOP
for the implementation of featuresE] There are six core ABS modules and sixteen
delta modules. In addition, there is the feature model represented in pTVL, the
product line configuration, and a product selection.

We made sure that all ABS elements of the AISCO case study can be modeled
with our UML-DOP profile to evaluate completeness of the profile. As outlined

4 https://gitlab.com/IS4Charity/aisco-abs.git

https://gitlab.com/IS4Charity/aisco-abs.git

l Mandatory

(L Optional

Fig. 12. Feature diagram of the AISCO case study

in Section [f] core ABS modules are mapped to UML packages containing a UML
class diagram, ABS delta modules are mapped to UML packages that contain
UML classes with a modifier stereotype, features are mapped to UML components
with stereotype «feature», and products are mapped to UML components with
stereotype «product>».

A fragment of the resulting UML diagram is displayed in Figure On
top is the MProgram module, containing the ABS core Program interface and
ProgramImpl class. There is also the ProgramData feature with three optional
child features, Periodic, Eventual, and Continuous. The latter feature is im-
plemented by applying the delta DContinuous, which adds two new attributes to
the ProgramImpl class. It also adds a method and modifies method setProgram.
Product selection is illustrated with the product PKPU that has nine features.
Their implementation is not shown.

The UML-DOP profile makes it possible to represent the delta-oriented design
of the entire AISCO product line. Feature variability, feature implementation, the
modifications implemented by deltas, as well as product selection are all clearly
visible in a single UML diagram.

6 Related Work

There exists a UML Profile for Software Product Lines |22], which is defined based
on the UML 2.0 metamodel. The profile is defined on UML class and sequence
diagrams. The authors propose eight stereotypes and one tagged value related to
optionality and variations, such as «optional», «variation», and «variant».
There exist UML profiles designed for feature diagrams |15/20]. These are intended
for integrating feature diagrams with UML models. Possompes et al. [15] define a
UML profile for the cardinality-based feature diagram of Czarnecki-Eisenecker [5].
The profile of Vranic and Snirc [20] is based on their own feature metamodel and
implemented in IBM Rational Software Architect to support linking the feature

Programimpl

<<interface>>
Program

[<<modifies>>

[Fderta
locont i nuous

Fget Progran(id:Tnt): Program

+set Pr ogr an(nane, amount ,
date, desc,
cont): it

<<modi f1 el ass>>
Programimpl

“<<adds>> end_dale. SUring
- <<adds>> Paynent: Pair

<<product>> T<<hodi 16555 set Pogr an(nane: U1 ng,
e] PKPU e m e amount: I nt,
' date: String)
H +<<adds>> set EndDat e()
A A '
'
: : : -
feat . feature:
t e

Fig. 13. AISCO UML diagram with UML-DOP profile

diagrams with UML artifacts. Both propose stereotypes related to features and
products that are more complete than the UML profile of Ziadi .

The main difference of all mentioned approaches to our work is that we use
DOP as a unifying framework for modeling product variability. This approach
has a number of important advantages:

1. a very slim UML profile is sufficient that has a systematic and easy-to-
remember nomenclature;

2. the implementation of features (in the form of a product line configuration)
is part of the static view and hence traceable;

3. not merely features and their implementation is represented, but also product
selection: as a consequence, a static view of the whole SPL development can
be represented in the form of UML diagrams.

Extended UML class diagrams are also used to evaluate a DOP-based frame-
work for automated product derivation in . There core classes and deltas
are represented in a single diagram which can be problematic from the point
of readability and does not scale to multiple deltas. No UML profile is defined,
instead an ad-hoc notation that decorates UML model elements with symbols +,
*, — as well as a color schema is used. Features are not represented.

While we have refrained from defining a dedicated UML profile for feature
diagrams, this would be easily possible and it is orthogonal to the UML-DOP
profile.

UML profiles can be defined based on the syntax of an underlying OO language.
The OMG published a UML profile based on Java syntax . We took advantage
of this possibility to create a UML-DOP profile based on ABS and DeltaJ syntax.

7 Conclusion and Future Work

We defined a UML-DOP profile that permits to represent software product
line variability using the popular UML notation. Because it is based on delta-
oriented programming, the profile is very lightweight: by reusing stereotyped
UML elements all DOP elements can be represented in UML. In the profile these
stereotypes extend the UML metaclasses Class, Interface, Component, Package,
Dependency, Association, Property, and Operation.

The proposed profile is compatible with current implementations of DOP, the
ABS modeling language and the DeltaJ extension of Java. The grounding of our
suggested profile in actual programming languages has the advantage that one
can connect the diagrams with executable code. Hence, our UML-DOP profile is
more than a mere visual design notation, because it reflects precisely the structure
of the underlying implementation. This is a suitable basis for end-to-end (feature
model to executable code) modeling in SPL development and for round-trip
engineering of SPLs. These are topics we would like to explore in the future.

Our UML-DOP profile can be used as a basis for transformation rules from
standard UML designs to feature-oriented designs expressed with DOP elements
and back. We intend to support automatic translation between standard UML
and UML-DOP using Text-to-Model transformation. Of specific interest are
refactoring rules that can be applied to transform a legacy system into a feature-
based DOP design.

Acknowledgments Research partly funded by the EU project FP7-ENVISAGE
No. 610582, see http://www.envisage-project.eu. Thanks to Crystal Chang
Din for her careful reading and valuable feedback on earlier drafts of this
manuscript. Thanks to members of RSE Lab Fasilkom UI for their support
in identifying the case study.

References

1. The ABS Language Specification, ABS version 1.2.0 edition, Apr. 2013. http/
//tools.hats-project.eu/download/absrefmanual.pdf.

2. E. Albert, F. S. de Boer, R. Hiahnle, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa,
and P. Y. H. Wong. Formal modeling of resource management for cloud architectures:
An industrial case study using Real-Time ABS. Journal of Service-Oriented
Computing and Applications, 8(4):323-339, 2014.

3. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. [EEE
Transactions on Software Engineering, 30:355-371, 2004.

4. L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Product Lines
using Traits. In Proc. of Object-Oriented Programming Languages and Systems
(OOPS), Track of ACM SAC, 2010.

5. K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature
models. In Software Product Lines, pages 162—-164. Springer-Verlag, 2004.

6. G. C. S. Ferreira, F. N. Gaia, E. Figueiredo, and M. de Almeida Maia. On the use of
feature-oriented programming for evolving software product lines — A comparative
study. Sci. Comput. Program., 93:65-85, 2014.

http://www.envisage-project.eu
http://tools.hats-project.eu/download/absrefmanual.pdf
http://tools.hats-project.eu/download/absrefmanual.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. L. Fuentes-Fernandez and A. Vallecillo-Moreno. An Introduction to UML Profiles.

The European Journal for the Informatics Professional, V:6-13, 2004.

. R. Hahnle. The Abstract Behavioral Specification language: A tutorial introduction.

In M. Bonsangue, F. de Boer, E. Giachino, and R. Hahnle, editors, International
School on Formal Models for Components and Objects: Post Proceedings, volume
7866 of Lecture Notes in Computer Science, pages 1-37. Springer-Verlag, 2013.

. E. B. Johnsen, R. Hahnle, J. Schéifer, R. Schlatte, and M. Steffen. ABS: A core

language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO 2010), volume 6957 of LNCS, pages 142-164.
Springer-Verlag, 2011.

K. C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented
domain analysis (FODA) feasibility study. Technical Report CMU /SEI-90-TR-021,
Carnegie Mellon University Software Engineering Institute, 1990.

J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, and F. Damiani.
DeltaJ 1.5: Delta-oriented programming for Java 1.5. In Principles and Practice of
Programming in Java, PPPJ ’14, pages 63-74. ACM Press, 2014.

Object Management Group. Metamodel and UML Profile for Java and EJB
Specification, 2004. available at http://www.omg.org.

Object Management Group. Unified Modelling Language: Superstructure, 2004.
available at http://www.omg.org.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering.
Springer, 2005.

T. Possompes, C. Dony, M. Huchard, and C. Tibermacine. Design of a UML profile
for feature diagrams and its tooling implementation. In International Conference
on Software Engineering & Knowledge Engineering, SEKE’2011, pages 693-698.
Knowledge Systems Institute, 2011.

C. Prehofer. Feature-oriented programming: A new way of object composition.
Concurrency and Computation: Practice and Ezxperience, 13(6):465-501, 2001.

I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. Delta-oriented programming
of software product lines. In International Software Product Line Conference, SPLC
’10, pages 77-91. Springer, 2010.

I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A model-based framework for auto-
mated product derivation. In International Workshop on Model-driven Approaches
in Software Product Line Engineering (MAPLE), 2009.

P. Schobbens, P. Heymans, and J. Trigaux. Feature diagrams: A survey and a formal
semantics. In Requirements Engineering, 14th IEEE International Conference, pages
139-148, 2006.

V. Vranic and J. Snirc. Integrating feature modeling into UML. In Net Object
Days/Grid Service Engineering and Management, Lecture Notes in Informatics,
pages 3—-15. Gesellschaft fiir Informatik, 2006.

P. Y. H. Wong, E. Albert, R. Muschevici, J. Proenga, J. Schéfer, and R. Schlatte.
The ABS tool suite: modelling, executing and analysing distributed adaptable object-
oriented systems. Journal on Software Tools for Technology Transfer, 14(5):567-588,
2012.

T. Ziadi, L. Hélouét, and J.-M. Jézéquel. Towards a UML profile for software
product lines. In Software Product-Family Engineering, volume 3014 of LNCS,
pages 129-139. Springer, 2004.

http://www.omg.org
http://www.omg.org

	A UML Profile for Delta-Oriented Programming to Support Software Product Line Engineering

