
Information Flow Analysis Based on
Program Simplification

Ran Ji and Reiner Hähnle

Department of Computer Science
Technische Universität Darmstadt, Germany
{ran,haehnle}@cs.tu-darmstadt.de

Abstract. Deductive verification is a popular approach to language-
based information flow analysis, however, the existing methods need
non-standard verification setups that hamper the prospects for automa-
tion. We propose a uniform framework, wherein information flow analy-
sis is realized by deductive verification of a single, unmodified program
with lightweight postconditions and invariants. We perform symbolic
execution-based verification, during which sound program transforma-
tion generates a simplified program being bisimilar to the target pro-
gram with respect to low variables. The process maintains a sound used
variable set that indicates whether the resulting program is secure.

1 Introduction

Language-based information flow security analysis is an important and popular
research problem [1]. Here we consider static checking of security policies, whose
baseline is non-interference [2,3]: a variation of High (confidential) input does
not cause a variation of Low (public) output. Equivalently, the values of Low

output does not depend on the High input.
Despite considerable effort, a fully satisfying solution to static checking of se-

curity policies has been exclusive. Security type systems [4,5] track the confiden-
tiality level (High/Low) of information contained in variables and program con-
text, and over-approximate information flows occurring in (an over-approximation
of) the possible control flow paths. Together with the value-insensitivity of type-
based analyses, this results in a loss of precision in many situations.

Deductive verification has been suggested in [6] and offers high precision, but
comes at the price of expert user interaction with a verification system. The rea-
son for this is that information flow is a relational property. Checking it requires
to compare different runs of a program with each other. Known approaches are to
analyze the same program twice in a sequential manner (termed self-composition
in [7]), or in a parallel manner [8], or to use additional quantification over the
input variables [6]. In either case, precise postconditions and accordingly strong
invariants are required, rendering automation problematic. Preprocessing of a
program into a product program [9] was suggested as an improvement, but still
complicates the target program in many cases.



In this paper, we propose a uniform framework, wherein information flow
analysis is realized by deductive verification of a single, unmodified program
with lightweight postconditions and invariants. In a first phase we perform sym-
bolic execution-based verification, interleaved with partial evaluation (constant
propagation, dead code elimination, etc.) [10]. In a second phase we perform
bottom-up traversal of the symbolic execution tree to synthesize a program that
is weakly bisimilar to the original with respect to a set of observable locations
(i.e., the Low variables). This builds on earlier work on sound program transfor-
mation [11]. During synthesis we maintain a used variable set that may affect
the values of the observable locations. Whenever no High variables occur in the
used variable set, we can conclude that the non-interference policy is enforced.
Otherwise, deductive verification [6,7,9] can be used on the simplified program,
which still is a vast improvement, because all unused variables have been re-
moved from it. We show that our approach is more precise than security type
systems. At the same time, it is easier to automate, because only lightweight
invariants and postconditions are needed.

The paper is organized as follows: Sect. 2 defines the programming language
and program logic; Sect. 3 presents the sequent calculus rules used for symbolic
execution; Sect. 4 introduces a bisimulation modality and extended suquent cal-
culus rules used for program generation; Sect. 5 shows the information flow
security enforcement; Sect. 6 draws the conclusion and discusses related work
and future work.

2 Language and Logic

2.1 Programming Language

To keep the formalism manageable we work with a non-trivial subset of Java
called PL that supports classes, objects, attributes, method polymorphism (but
not method overloading). Generic types, exceptions, multi-threading, floating
points, and garbage collection are not supported. The types of PL are the types
derived from class declarations, the type int of mathematical integers (Z), and
the standard Boolean type boolean.

A PL program p is a non-empty set of class declarations with at least one
class of name Object. The class hierarchy is a tree with class Object as root.
A class Cl := (cname, scnameopt, f ld,mtd) consists of (i) a classname cname
unique in p, (ii) the name of its superclass scname (only omitted for cname =
Object), and (iii) a list of field fld and method mtd declarations. The syntax
coincides with that of Java. The only features lacking from Java are constructors
and initialization blocks. We agree on the following conventions: if not stated
otherwise, any sequence of statements is viewed as if it were the body of a static,
void method declared in a class Default with no fields.

In a PL program p, a complex statement can be decomposed into a sequence
of simpler statements without changing the meaning of p. For example, statement
y = z ++; can be decomposed into int t = z; z = z + 1; y = t;, where t



is a fresh variable, not used anywhere else. These simple statements have at most
one source of side effect each, which can be a non-terminating expression (such
as a null pointer access), a method call, or an assignment to a location. They
are the essential to compute variable dependencies and simplify symbolic states
during symbolic execution.

2.2 Program Logic

Our program logic is dynamic logic (DL) [12]. We consider deterministic pro-
grams, hence, a program p executed in state s either terminates and reaches
exactly one final state or it does not terminate and no final state reached. A
dynamic logic for PL-programs is called PL-DL. The signature of the program
logic depends on a context PL program C.

Definition 1 (PL-Signature ΣC). A signature ΣC = (Srt,�,Pred,Func, LgV)
consists of: (i) a set of names Srt called sorts containing at least one sort for each
primitive type and one for each class Cl declared in C: Srt ⊇ {int, boolean} ∪
{Cl | for all classes Cl declared in C}; (ii) a partial subtyping order �: Srt×Srt
that models the subtype hierarchy of C faithfully; (iii) infinite sets of predicate
symbols Pred := {p : T1× . . .×Tn | Ti ∈ Srt} and function symbols Func := {f :
T1 × . . .× Tn → T | Ti, T ∈ Srt} for each n ∈ N. We call α(p) = T1 × . . .× Tn
and α(f) = T1 × . . .× Tn → T the signature of the predicate/function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:

– the rigid function symbols Funcr, which do not depend on the current state
of program execution;

– the program variables PV = {i, j, . . .}, which are non-rigid constants;
– the attribute function symbols Attr, such that for each attribute a of type T

declared in class Cl an attribute function a@Cl : Cl → T ∈ Attr exists. We
omit the @C from attribute names if no ambiguity arises.

(iv) a set of logical variables LgV := {x : T |T ∈ Srt}.

We distinguish between rigid and non-rigid predicate and function symbols.
Intuitively, the semantics of rigid symbols does not depend on the current state
of program execution, while non-rigid symbols are state-dependent.

Terms t and formulas φ are defined as usual, thus their definitions are omit-
ted here for brevity. We use updates u to describe state changes by means of an
explicit substitution. An elementary update i := t or t.a := t is a pair of loca-
tion and term. They are of static single assignment (SSA) form, with the same
meaning as simple assignments. Elementary updates are composed to parallel
updates u1‖u2 and work like simultaneous assignments. Updates u are defined
by the grammar u ::= i := t | t.a := t | u ‖ u | {u}u (where a ∈ Attr) together
with the usual well-typedness conditions. Updates applied on terms (formulas),
written {u}t ({u}φ), are again terms (formulas). Terms, formulas and updates
are evaluated wrt a PL-DL Kripke structure:

Definition 2 (Kripke structure). A PL-DL Kripke structure KΣPL
= (D, I,S )

consists of (i) a set of elements D called domain, (ii) an interpretation I with



– I(T ) = DT , T ∈ Srt assigning each sort its non-empty domain DT . It ad-
heres to the restrictions imposed by the subtype order �; Null is always
interpreted as a singleton set and subtype of all class types;

– I(f) : DT1×. . .×DTn → DT for each rigid function symbol f : T1×. . .×Tn →
T ∈ Funcr;

– I(p) ⊆ DT1
× . . .×DTn

for each predicate symbol p : T1 × . . .× Tn ∈ Pred;

and (iii) a set of states S assigning meaning to non-rigid function symbols: let
s ∈ S then s(a@Cl) : DCl → DT , a@Cl : Cl→ T ∈ Attr and s(i) : DT , i ∈ PV.
The pair D = (D, I) is called a first-order structure.

A variable assignment β : LgV → DT maps a logical variable x : T to its
domain DT . A term, formula or update is evaluated relative to a given first-
order structure D = (D, I), a state s ∈ S and a variable assignment β, while
programs and expressions are evaluated relative to aD and s ∈ S . The evaluation
function val is defined recursively. It evaluates: (i) every term t : T to a value
valD,s,β(t) ∈ DT ; (ii) every formula φ to a truth value valD,s,β(φ) ∈ {tt, ff};
(iii) every update u to a state transformer valD,s,β(u) ∈ S → S ; (iv) every
expression e : T to a set of pairs of state and value valD,s(e) ⊆ 2S×T ; (v) every
statement st to a set of states valD,s(st) ⊆ 2S .

As PL is deterministic, all sets of states or state-value pairs have at most one
element. The semantics definition of terms, formulas, expressions and statements
are the same as in Java. More details can also be found in [13].

Example 1 (Update semantics). Evaluating {i := j + 1}i ≥ j in a state s is
identical to evaluating the formula i ≥ j in a state s′ which coincides with
s except for the value of i which is evaluated to the value of valD,s,β(j + 1).
Evaluation of the parallel update i := j‖j := i in a state s leads to the successor
state s′ identical to s except that the values of i and j are swapped. The parallel
update i := 3‖i := 4 has a conflict as i is assigned different values. In such a
case the last occurring assignment i := 4 overrides all previous ones of the same
location. Evaluation of {i := j}{j := i}φ in a state s results in evaluating φ in
a state, where i has the value of j, and j remains unchanged.

Remark 1. {i := j}{j := i}φ is the sequential application of updates i := j

and j := i on the formula φ. To ease the presentation, we overload the concept
of update and also call {i := j}{j := i} an update. In the following, if not
stated otherwise, we use the upper-case letter U to denote this kind of update,
compared to the proper update denoted by a lower-case letter u. An update U
may be the of form {u} and {u1} · · · {un}. Furthermore, {u1} · · · {un} can be
simplified to the form {u}, called the normal form (NF) of an update.

Definition 3 (Normal form of update). An update is in normal form, de-
noted by Unf , if it has the shape {u1‖ · · · ‖un}, n ≥ 0, where each ui is an
elementary update and there is no conflict between ui and uj for any i 6= j.

The normal form of an update can be achieved by applying a sequence of
update simplification steps [13]. Soundness of these rules and that they achieve
normal form are proven in [14].



3 Symbolic Execution Based Program Verification

3.1 Sequent Calculus

We perform symbolic execution-based program verification following the KeY [15]
approach. Symbolic execution of a PL-program is achieved by application of se-
quent calculus rules. Soundness of the rules ensures validity of provable PL-DL
formulas in a program verification setting [15].

A sequent is a pair of sets of formulas Γ = {φ1, . . . , φn} (antecedent) and
∆ = {ψ1, . . . , ψm} (succedent) of the form Γ =⇒ ∆. Its semantics is defined by
the formula

∧
φ∈Γ φ→

∨
ψ∈∆ ψ. A sequent calculus rule has one conclusion and

zero or more premises. It is applied to a sequent s by matching its conclusion
against s. The instantiated premises are then added as children of s.

Our PL-DL sequent calculus behaves as a symbolic interpreter for PL. A se-
quent for PL-DL is always of the form Γ =⇒ U [p]φ,∆. During symbolic execution
performed by the sequent rules (see Fig. 1) the antecedent Γ accumulates path
conditions and contains possible preconditions. The updates U record the cur-
rent symbolic value and φ represents postconditions. When a program is fully
executed, we obtain a set of first-order formulas (each for an execution path)
which is to be proven, or disproven, by a first-order solver.

emptyBox
Γ =⇒ Uφ,∆
Γ =⇒ U []φ,∆

assignment
Γ =⇒ U{l := r}[ω]φ,∆

Γ =⇒ U [l = r;ω]φ,∆

ifElse
Γ,Ub =⇒ U [p;ω]φ,∆ Γ,U¬b =⇒ U [q;ω]φ,∆

Γ =⇒ U [if (b) {p} else {q} ω]φ,∆

loopInvariant

Γ =⇒ Uinv,∆ (init)
Γ,UVmod(b ∧ inv) =⇒ UVmod[p]inv,∆ (preserves)
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω]φ,∆ (use case)

Γ =⇒ U [while (b) {p} ω]φ,∆

Fig. 1. Selected sequent calculus rules (for more details, see [13,15]).

During symbolic execution complex statements are decomposed into simple
ones. First-order reasoning as well as interleaved partial evaluation [10] help to
simplify the target program on-the-fly. Symbolic execution of works as follows:

1. Select an open proof goal with a [·] modality. If no [·] exists on any branch,
then symbolic execution is completed. Focus on the first active statement
(possibly empty) of the program in the modality.

2. If it is a complex statement, apply rules to decompose it into simple state-
ments and goto 1., otherwise continue.

3. Apply the sequent calculus rule corresponding to the active statement.
4. Simplify the resulting updates and apply first-order simplification to the

premises. This might result in some closed branches. It is possible to detect
and eliminate infeasible paths in this way. Goto 1.



Example 2. We look at typical proof goals that arise during symbolic execution:

1. Γ, i > j ⇒ U [if (i>j) {p} else {q} ω]φ: Applying rule ifElse and sim-
plification eliminates the else branch and continues with p ω.

2. Γ ⇒ {i := c‖ . . .}[j = i; ω]φ where c is a constant: It is sound to replace
the statement j = i with j = c and continue with symbolic execution. This
is known as constant propagation. More techniques for partial evaluation can
be integrated into symbolic execution [10].

3. Γ ⇒ {o1.a := v1‖ . . .}[o2.a = v2; ω]φ: After executing o2.a = v2, the alias
is analyzed: (i) if o2 = null is true the program does not terminate; (ii)
else, if o2 = o1 holds, the value of o1.a in the update is overridden and the
new update is {o1.a := v2‖ . . . ‖o2.a := v2}; (iii) else the new update is
{o1.a := v1‖ . . . ‖o2.a := v2}. Neither of (i)–(iii) might be provable, then
symbolic execution splits into these three cases.

Program

. . . ;

. . .

if (cond) {
. . . }

else {
. . . }

while (guard) {
. . . }

. . .

. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

bl0

bl1 then-branch bl2 else-branch

bl3 loop body
bl4

bl5 loop body
bl6

S.E.−→

Fig. 2. Symbolic execution tree with loop invariant applied.

The result of symbolic execution for a PL program p following the sequent
calculus rules is a symbolic execution tree (SET), as illustrated in Fig. 2. Note
that here we did not show the part that does not contain any PL program,
e.g., the (init) branch obtained after applying the loopInvariant rule. Complete
symbolic execution trees are finite trees whose root is labeled with Γ =⇒ [p]φ,∆
and no leaf has a [·] modality. We can assume that each inner node i is annotated
by a sequent Γi =⇒ Ui[pi]φi, ∆i, where pi is the program to be executed. Every
child node is generated by rule application from its parent. A branching node
represents a statement whose execution causes branching, e.g., conditional, loops
etc. We call a sequential block (SB) a maximal program fragment in an SET that
is symbolically executed without branching. A sequential block bl0 is a child of a
sequential block bl1 if bl0 starts and bl1 ends with the same branching node. The
descendant relation is the transitive closure of the child relation. A generalized
sequential block (GSB) is a sequential block together with all its descendants.
GSBs always end with leaf nodes.



In the SET shown in Fig. 2, there are 7 sequential blocks bl0,. . . ,bl6, and
bl3 is the child of bl1, and the descendant of bl0. We have GSBs {bl1, bl3, bl4}
and {bl2, bl5, bl6}. For convenience, we refer to a GSB with the father sequential
block. For instance, GSB {bl1, bl3, bl4} is denoted as GSB(bl1). An SET is a GSB
itself, which is GSB(bl0) in Fig. 2.

4 Program Transformation

The structure of an SET makes it possible to generate a program by bottom-up
traversal. The resulting program transformation is the core concept behind our
information flow analysis. The idea is to apply sequent calculus rules reversely to
generate a simplified program step-by-step. This requires to extend the sequent
rules by means for program generation. Obviously, the generated program should
behave exactly as the original one, at least for the observable locations.

4.1 Weak Bisimulation Relation of Programs

Definition 4 (Location sets, observation equivalence). A location set is a
set containing program variables x and attribute expressions o.a (a ∈ Attr and o
being a term of the appropriate sort). Let loc be the set of all program locations,
given two states s1, s2 and a location set obs ⊆ loc. A relation ≈: loc × S × S
is an observation equivalence if and only if for all ol ∈ obs, valD,s1,β(ol) =
valD,s2,β(ol) holds. It is written as s1 ≈obs s2. We call obs observable locations.

A transition relation −→: Π × S × S relates two states s, s′ by a program

p iff p starts in state s and terminates in state s′, written s
p−→ s′. We have:

s
p−→ s′, where s′ = valD,s(p). If p does not terminate, we write s

p−→.
Since a complex statement can be decomposed into simple statements during

symbolic execution, we can assume that a program consists of simple statements.

Definition 5 (Observable and internal statement/transition). Consider

states s, s′, a simple statement sSt, a transition relation −→, where s
sSt−→ s′,

and the observable locations obs; we call sSt an observable statement and −→
an observable transition, if and only if there exists ol ∈ obs, and valD,s′,β(ol) 6=
valD,s,β(ol). We write

sSt−→obs. Otherwise, sSt is called an internal statement
and −→ an internal transition, written −→int.

Assume an observable transition s
sSt−→obs s

′ changes the evaluation of some
location ol ∈ obs in state s′. The observable locations obs1 in state s should also
contain the locations ol1 that are read by ol, since changes to ol1 can lead to a
change of ol in the final state s′.

Example 3. Consider the set of observable locations obs={x, y} and program
fragment “z = x + y; x = 1 + z;”. The statement z = x + y; becomes ob-
servable because the value of z is changed and it will be used later in the ob-
servable statement x = 1 + z;. The observable location set obs1 should contain
z after the execution of z = x + y; .



Definition 6 (Weak transition). Given observable locations obs, the transi-
tion relation =⇒int is the reflexive, transitive closure of −→int. The transition

relation
sSt
=⇒obs is the composition of the relations =⇒int,

sSt−→obs and =⇒int. The

weak transition
ŝSt
=⇒obs represents either

sSt
=⇒obs, if sSt observable, or =⇒int oth-

erwise.

Definition 7 (Weak bisimulation for states). Given two programs p1, p2
and observable locations obs, obs′, let sSt1 be a simple statement and s1, s

′
1

two program states of p1, and sSt2 is a simple statement and s2, s
′
2 are two

program states of p2. A relation ≈ is a weak bisimulation for states if and only
if s1 ≈obs s2 implies:

– if s1
ŝSt1=⇒obs′ s

′
1, then s2

ŝSt2=⇒obs′ s
′
2 and s′1 ≈obs′ s′2

– if s2
ŝSt2=⇒obs′ s

′
2, then s1

ŝSt1=⇒obs′ s
′
1 and s′2 ≈obs′ s′1

where valD,s1(sSt1) ≈obs′ valD,s2(sSt2).

Definition 8 (Weak bisimulation for programs). Let p1, p2 be two pro-
grams, obs and obs′ are observable locations, and ≈ is a weak bisimulation rela-
tion for states. ≈ is a weak bisimulation for programs, written p1 ≈obs p2, if for
the sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s′1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s′2 = sm+1

2 ,

we have (i) s′2 ≈obs s′1; (ii) for each state si1 there exists a state sj2 such that

si1 ≈obs′ s
j
2 for some obs′; (iii) for each state sj2 there exists a state si1 such that

sj2 ≈obs′ si1 for some obs′, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The weak bisimulation relation for programs defined above requires a weak
transition that relates two states with at most one observable transition. This
definition reflects the structural properties of a program and can be characterized
as a small-step semantics. It directly implies the lemma below that relates the
weak bisimulation relation of programs to a big-step semantics.

Lemma 1. Let p, q be programs, obs a set of observable locations. Then p ≈obs q
if and only if valD,s(p) ≈obs valD,s(q) for any first-order structure D, state s.

4.2 The Weak Bisimulation Modality

We introduce a weak bisimulation modality which allows us to relate two pro-
grams that behave indistinguishably on the observable locations.

Definition 9 (Weak bisimulation modality—syntax). The bisimulation
modality [ p G q ]@(obs, use) is a modal operator providing compartments for
programs p, q and location sets obs and use. We extend our definition of for-
mulas: Let φ be a PL-DL formula and p, q two PL programs and obs, use two
location sets such that pv(φ) ⊆ obs where pv(φ) is the set of all program variables
occurring in φ, then [ p G q ]@(obs, use)φ is also a PL-DL formula.



The intuition behind the location set usedVar(s, p, obs) defined below is to
capture precisely those locations whose value influences the final value of an
observable location l ∈ obs (or the evaluation of a formula φ) after executing a
program p. We approximate the set later by the set of all program variables in
a program that are used before being redefined (i.e., assigned a new value).

Definition 10 (Used program variable). A variable v ∈ PV is called used
by program p relative to a location set obs, if there exists an l ∈ obs such that

D, s |= ∀vl.∃v0.((〈p〉l = vl)→ ({v := v0}〈p〉l 6= vl))

The set usedVar(s, p, obs) is defined as the smallest set containing all used pro-
gram variables of p with respect to obs.

The formula defining a used variable v of a program p encodes that there is
an interference with a location contained in obs. In Ex. 3, z is a used variable.

We formalize the semantics of the weak bisimulation modality:

Definition 11 (Weak bisimulation modality—semantics). Let p, q PL-
programs, D, s, β, obs, use as above, then valD,s,β([ p G q ]@(obs, use)φ) = tt if
and only if

1. valD,s,β([p]φ) = tt
2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈use s we have valD,s(p) ≈obs valD,s′(q)

Lemma 2 ([13]). Let obs be the set of all locations observable by φ and p, q be
programs. If p ≈obs q then valD,s,β([p]φ)↔ valD,s,β([q]φ) holds for all D, s, β.

The following lemma illustrates the meaning of used variable set use. An ex-
tended sequent for the bisimulation modality is Γ =⇒ U [ p G q ]@(obs, use)φ,∆.

Lemma 3 ([13]). An extended sequent Γ =⇒ U [ p G q ]@(obs, use)φ,∆ within
a sequential block bl represents a certain state s1, where P is the original program
executed in bl, p the program to be executed in bl at state s1, and p′ the program
already executed in bl; likewise, Q is the program to be generated in bl, q the
already generated program in bl, q′ the program remaining to be generated in bl
(illustrated in Fig. 3). Then use are the dynamically observable locations such
that: (i) p ≈obs q; (ii) P ≈obs Q; (iii) p′ ≈use q′.

4.3 Sequent Calculus Rules for Bisimulation Modality

We define a sequent calculus over extended sequents with the weak bisimulation
modality. One example is the assignment rule:

Γ =⇒ U{l := r}[ ω G ω ]@(obs, use)φ,∆(
Γ =⇒ U [ l = r;ω G l = r;ω ]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ U [ l = r;ω G ω ]@(obs, use)φ,∆ otherwise

)



s0

s1

s2

s′0

s′1

s′2

p′

p q

q′

P Q

obs

use

use0

U

bl

bl2

bl1

Fig. 3. Program in a sequential block.

Here, ω represents the program generated before rule application. The use set
contains all variables that may affect the values of observable locations in the
final state. If l is among those variables, we update the use set by removing l

and adding r which is read by the assignment. Otherwise, we generate no code.

Updates record the evaluation of the locations in an execution path. For the
purpose of information flow analysis, we need a set of more precise program
generation rules that also involve the updates in a sequential block.

An elementary update l1 := exp1 is independent from another elementary
update l2 := exp2 if l1 does not occur in exp2 and l2 does not occur in exp1.

Definition 12 (SNF update). An update is in sequentialized normal form
(SNF), denoted by Usnf , if it has the shape of a sequence of two parallel updates
{ua1‖ . . . ‖uam}{u1‖ . . . ‖un}, m ≥ 0, n ≥ 0. We call {u1‖ . . . ‖un} the core update,
denoted by Usnfc , where each ui is an elementary update of the form li := expi,
and all ui, uj (i 6= j) are independent and have no conflict. We call {ua1‖ . . . ‖uam}
the auxiliary update, denoted by Usnfa , where (i) each uai is of the form lk :=
l (k ≥ 0); (ii) l is a program variable; (iii) lk is a fresh program variable;
(iv) there is no conflict between uai and uaj for all i 6= j.

An NF update with independent elementary updates is also an SNF update
with only a core part. Sound rules to compute the SNF of updates and maintain
SNF after rule application are in[13]. Using SNF of updates, the assignment rule
becomes:

Γ =⇒ Usnf1 [ ω G ω ]@(obs, use)φ,∆(
Γ =⇒ Usnf [ l = r;ω G l = r1;ω ]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ Usnf [ l = r;ω G ω ]@(obs, use)φ,∆ otherwise

)
where Usnf1 = Usnfa1 {. . . ‖l := r1} is the SNF of Usnf{l := r}.

Whenever the core update is empty, we use the auxAssignment rule:

Γ =⇒ Usnfa1 [ ω G ω ]@(obs, use)φ,∆(
Γ =⇒ Usnfa [ ω G Tl l0 = l;ω ]@(obs, use− {l0} ∪ {l})φ,∆ if l0 ∈ use
Γ =⇒ Usnfa [ ω G ω ]@(obs, use)φ,∆ otherwise

)
where Usnfa = {u} and Usnfa1 = {u‖l0 := l} being the auxiliary update



The auxiliary assignments are always generated at the start of a sequential
block. Fig. 4 shows some other extended sequent calculus rules (nop denotes no
operation, and denotes the place holder of empty). More are in [13].

emptyBox
Γ =⇒ Usnf@(obs, )φ,∆

Γ =⇒ Usnf [ nop G nop ]@(obs, obs)φ,∆

ifElse

Γ,Usnfb =⇒ Usnf [ p;ω G p;ω ]@(obs, usep;ω)φ,∆

Γ,Usnf¬b =⇒ Usnf [ q;ω G q;ω ]@(obs, useq;ω)φ,∆

Γ =⇒ Usnf [ if (b) {p} else {q};ω G
if (b) {p;ω} else {q;ω} ]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,∆

(with b boolean variable.)

loopInv

Γ =⇒ Usnf inv,∆

Γ,UsnfVmod(b ∧ inv) =⇒ UsnfVmod

[ p G p ]@(use1 ∪ {b}, use2)inv,∆

Γ,UsnfVmod(¬b ∧ inv) =⇒ UsnfVmod[ ω G ω ]@(obs, use1)φ,∆

Γ =⇒ Usnf [ while(b){p}ω G while(b){p}ω ]@(obs, use1 ∪ use2 ∪ {b})φ,∆

Fig. 4. A collection of extended sequent calculus rules with SNF updates.

Sequent rule application for the bisimulation modality is in two phases:

Phase 1. Symbolic execution of source program as usual. In addition, the ob-
servable location sets obs are propagated, because they contain the observable
locations (by the program fragments and the post condition) to be used in the
second phase. For the purpose of information flow analysis, obs contains the Low

variables and the locations used in the continuation of the program, e.g., pro-
gram variables used after a loop must be reflected in the observable locations of
the loop body. It results in an SET as illustrated in Fig. 2.

Phase 2. Generate the simplified program and used variable set by applying
the rules bottom-up. Start with a leaf node (emptyBox rule) and generate the
program within its sequential block first, e.g., bl3 in Fig. 2. These programs are
combined by rules corresponding to statements containing a sequential block,
such as loopInv (containing bl3 and bl4). One continues with the GSB containing
the compound statements, e.g., GSB(bl2), and so on, until the root. The order of
processing the sequential blocks matters, for instance, the program for bl4 must
be generated before that for bl3, because the observable locations in n3 depend
on the used variable set of bl4, according to the loopInv rule.

Remark 2. The SNF updates used in the calculus rules are the SNF updates
in the current sequential block. A program execution path may contain several
sequential blocks. We do keep the SNF update for each sequential block with-
out simplifying them further into a bigger SNF update for the entire execution
path. In Fig. 2, the execution path from node n0 to n4 involves sequential blocks



bl0, bl1 and bl4. When we generate the program in bl4, we should formally use
Usnf0 Usnf2 Usnf4 , however, we just care about the SNF update of bl4 when gener-

ating the program for bl4, so in the above rules, Usnf refers to Usnf4 only.

Lemma 4 ([13]). The extended sequent calculus rules are sound.

5 Information Flow Security Analysis

Example 4. Let l be Low variables and h be High variables in a program. We
discuss whether the standard security policy, as stated in the introduction, holds
for some example programs:

(i). l = h; is insecure because information of h is leaked directly to l.
(ii). l = h; l = 0; is secure because the final value of l does not depend on h.
(iii). h = 0; l = h; is secure because the final value of l is always 0.
(iv). l = h; l = l− h; is secure because the final value of l is always 0.
(v). if(h > 0) {h = l; l = h; } is secure because the final value of l is unchanged.

(vi). if(h > 0) {l = 1; } else {l = 2; } is insecure because partial information of
h can be learned from the final value of l.

(vii). if(h > 0) {l = 1; } else {l = 2; } l = 0; is secure because the final value of
l is always 0.

(viii). if(h > 0) {l = 1; } else {l = 1; } is secure because the final value of l is
always 1.

In (i), the information from the value of the High variables flows directly
to the Low variables (explicit flow). It is also possible that information flows
indirectly from High to Low variables (implicit flow), as shown in (vi).

The approaches using security type systems (as overviewed in [1]) are sound,
i.e., an insecure program can never be classified as secure. However, they often
overapproximate and classify secure programs as insecure or unknown. In Ex. 4
they have trouble classifying (iii), (iv), (v) due to value insensitivity, as well as
(vii), (viii) which requires control-flow sensitivity.

We introduced a sound program transformation approach in the previous
sections. The choice of observable locations obs does not affect the soundness of
the framework. We can fix obs as the Low variables, then the generated program is
a dependency flow of Low variables. Along with program generation, we maintain
the used variable set use in the extended sequent calculus rules. When program
generation is finished, by Lemma 3 and Def. 10, use is the set of observable
locations in the initial state and each variable that belongs to use will interfere
with obs (Low variables) in the final state. For information flow security this
means every input variable that belongs to use will interfere with Low output
variables. According to the definition of non-interference, it suffices to guarantee
that High variables do not occur in use to enforce non-interference.

Theorem 1 (Non-Interference Enforcement). Given a PL program p, a
set of High variables H and a set of Low variables L; after program transformation,
we obtain program q and used variable set use0, such that p ≈L q. The non-
interference policy is enforced if for all h ∈ H, h /∈ use0.



Proof. Direct result of Lemma 3, Def. 10 and notion of non-interference. ut

Because the program transformation process employs first-order reasoning
and partial evaluation in the symbolic execution phase, as well as using updates
during program generation, we achieve a more precise information flow analysis
than security type systems.

We analyze the programs in Ex. 4 by fixing l as observable locations. For
(i), we generate the program l = h; and used variable set use = {h}, so the
program is insecure. For (ii), the first statement l = h; is not generated accord-
ing to the assignment rule in Sect. 4.3, and use = ∅, so it is secure. The SNF
update of (iii) is {h := 0‖l := 0}, it generates program l = 0; which is secure.
For (iv), the SNF update is {l := 0} so the generated program is secure. For
(v), we generate if(h > 0) {l = l; } with used variable set use = {h}, which
cannot be classified as secure. For (vi), the generated program is identical to
the source and use = {h}, which is classified as insecure. For (vii), we generate
if(h > 0) {l = 0; } else {l = 0; } and use = {h}, which cannot be classified as
secure. We cannot classify program (viii) as secure as well for the same reason.

While our approach achieves a more precise analysis of information flow than
type-based approaches, we have trouble with (v), (vii), (viii). But this can be
addressed by extended sequent rules tailored to information flow analysis:

assignNotSelf

Γ =⇒ Usnf
1 [ ω G ω ]@(obs, use)φ,∆(

Γ =⇒ Usnf [ l = r;ω G l = r1;ω ]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use ∧ r1 6= l

Γ =⇒ Usnf [ l = r;ω G ω ]@(obs, use)φ,∆ otherwise

)
where Usnf

1 = Usnfa
1 {. . . ‖l := r1} is the SNF of Usnf{l := r}).

ifElseUnify
Γ,Ub =⇒ U [ p;ω G p;ω ]@(obs, usep;ω)φ,∆
Γ,U¬b =⇒ U [ q;ω G q;ω ]@(obs, useq;ω)φ,∆

Γ =⇒ U [ if (b) {p} else {q};ω G p;ω ]@(obs, usep;ω)φ,∆
(with b boolean variable, p;ω ≈obs q;ω, and usep;ω = useq;ω)

loopInvNoBody
Γ =⇒ Usnf inv,∆

Γ,UsnfVmod(b ∧ inv) =⇒ UsnfVmod

[ p G p ]@(use1 ∪ {b}, use2)inv,∆

Γ,UsnfVmod(¬b ∧ inv) =⇒ UsnfVmod[ ω G ω ]@(obs, use1)φ,∆(
Γ =⇒ Usnf [ while(b){p}ω G ω ]@(obs, use1)φ,∆ if use1 = ∅
Γ =⇒ Usnf [ while(b){p}ω G while(b){p}ω ]@(obs, use1 ∪ use2 ∪ {b})φ,∆ otherwise

)
The assignNotSelf rule avoids the generation of self assignments l = l;. The

ifElseUnify rule checks whether the then branch and else branch have the same
effect, if so, we do not generate a conditional block. The loopInvNoBody rule
avoids the generation of a loop body, if the used variable set obtained in the
continuation of the loop is empty. Because in this case, the loop does not affect
the values of the observable locations at all.

Now programs (v), (vii), (viii) in Ex. 4 can be classified properly. For (v),
according to assignNotSelf, we do not generate any program in the then branch,



then apply ifElseUnify rule (both branches are empty), and obtain the empty
program, with used variable set use = {l}. It can be classified as secure. For
(vii), we generate the program l = 0; and use = ∅, it is secure. Program of (viii)
is also secure for the same reason as (vii).

Example 5. Consider the following program with loop invariant l > 0 and post
condition l

.
= 2 (

.
= being first-order equality). Let l be Low and h be High.

l = 1; while(h>0) {l++; h--;} if(l>0) {l = 2;}

After symbolic execution of the loop we have three branches. In the branch that
continues after the loop, we encounter a conditional. With the loop invariant we
can infer that the guard holds, so we only execute the then branch with l = 2;.
Every open goal is closeable, so the program is proven. We start to analyze
information flow security with obs = {l}. In the first step, the statement l = 2;
is generated empty used variable set. According to loopInvNoBody, we do not
generate loop body code. Continuing with l = 1;, we obtain the program l = 2;
and an empty used variable set. According to Theorem 1, this program is secure.

Remark 3. We can perform the program transformation without suitable loop
invariants (just use true), as discussed previously [16,17]. This achieves a higher
degree of automation, which is desirable in the context of program specialization.
However, proper loop invariants will increase the precision of the information
flow analysis. Without the loop invariant l > 0 in Ex. 5, we have to generate the
conditional as well as the loop body, and then we cannot classify the program.

6 Conclusion

We presented a novel approach to analyze information flow security based on
sound program simplification and verification. It ensures correctness and secu-
rity of a program at once. First-order reasoning analyzes variable dependencies,
aliasing, and eliminates infeasible execution paths. Interleaving partial evalu-
ation with symbolic execution reduces SETs. Sound program transformation
generates a simplified program that represents the dependency flow of the low
variables. The set of used variables is maintained during synthesis, allowing to
check non-interference by a simple lookup. As compared to approaches based on
security type systems [1], we obtain higher precision due to value and control
flow sensitivity, as well as first-order reasoning.

In contrast to other approaches based on deductive verification [7,6,18] (see
also discussion in the Introduction), we completely avoid adding complexity to
the target program or complex quantification. An orthogonal approach to ours
that uses abstraction to increase automation is [18]. It could be easily combined.

In the future we plan to implement our approach, perform larger case studies,
and to look at more realistic security policies than just non-interference, such as
declassification [19].



References

1. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1) (2003) 5–19

2. Cohen, E.S.: Information transmission in computational systems. In: SOSP. (1977)
133–139

3. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE
Symposium on Security and Privacy. (1982) 11–20

4. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow
analysis. Journal of Computer Security 4(2/3) (1996) 167–188

5. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL. (2006) 79–90
6. Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of

secure information flow. In Hutter, D., Ullmann, M., eds.: 2nd Intl. Conf. on
Security in Pervasive Computing. Volume 3450 of LNCS., Springer (2005) 193–209

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, IEEE Com-
puter Society (2004) 100–114

8. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In Giacobazzi,
R., ed.: 11th Static Analysis Symposium (SAS), Verona, Italy. Volume 3148 of
LNCS., Springer (2004) 100–115

9. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In Butler, M., Schulte, W., eds.: FM. Volume 6664 of LNCS., Springer (2011) 200–
214

10. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial evalua-
tion. In: Post Conf. Proc. FMCO 2008. LNCS, Springer-Verlag (2009)

11. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execution
and deduction. In: SEFM. (2013) 289–304

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
13. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execu-

tion and deduction. Technical Report CS-2013-0348, TU Darmstadt, Fachbereich
Informatik (2013) https://www.se.tu-darmstadt.de/fileadmin/user_upload/

Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf.
14. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.

In Hermann, M., Voronkov, A., eds.: LPAR. Volume 4246 of LNCS., Springer
(2006) 422–436

15. Beckert, B., Hähnle, R., Schmitt, P., eds.: Verification of Object-Oriented Software:
The KeY Approach. Volume 4334 of LNCS. Springer (2006)

16. Bubel, R., Hähnle, R., Ji, R.: Program specialization via a software verification
tool. In Aichernig, B., de Boer, F.S., Bonsangue, M.M., eds.: Post Conf. Proc. of
FMCO 2009. LNCS, Springer (2010)

17. Ji, R., Bubel, R.: PE-KeY: A Partial Evaluator for Java Programs. In: IFM.
LNCS, Springer (2012) 283–295

18. Bubel, R., Hähnle, R., Weiss, B.: Abstract interpretation of symbolic execution
with explicit state updates. In de Boer, F., Bonsangue, M.M., Madelaine, E., eds.:
Post Conf. Proc. FMCO 2008. Volume 5751 of LNCS., Springer (2009) 247–277

19. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: CSFW.
(2005) 255–269

https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf

	Information Flow Analysis Based on Program Simplification

