
Sound Deductive Compilation

Ran Ji, and Reiner Hähnle

Department of Computer Science
Technische Universität Darmstadt, Germany
{ran,haehnle}@cs.tu-darmstadt.de

Abstract. Compiler verification is difficult and expensive. Instead of
formally verifying a compiler, we introduce a sound deductive compila-
tion approach, whereby verified bytecode is generated based on symbolic
execution of source code embedded in a program logic. The program logic
guarantees a weak bisimulation relation between the generated bytecode
and the original source code relative to a set of observable locations. The
framework is instantiated for Java source and bytecode. The compila-
tion process is fully automatic and first-order solvers are employed for
bytecode optimization.

1 Introduction

Many formal software verification techniques focus on ensuring the correctness of
source programs. This assumes, however, that compilers preserve the behavior
of the source program, otherwise, they might introduce errors to the already
verified source program. Errors introduced by compilers are notoriously difficult
to expose and track down. Compiler verification [1] is a possible technique to
ensure the correctness of compilers. As it involves reasoning about compiler
implementations and the behavior of the compiler for an infinite number of
programs and their translations, it is very expensive.

In this paper we present a method to guarantee correct compilation to byte-
code for programs written in (a subset of) Java. Instead of formally verifying a
Java compiler, we propose a sound deductive compilation approach to generate
correct Java bytecode from Java source code. It works in two phases, verification
and synthesis. During the verification phase, Java source code is symbolically
executed by sequent calculus rules in a program logic. First-order reasoning is
involved for a precise analysis of variable dependencies, aliasing, and elimination
of infeasible execution paths, which may result in optimized bytecode genera-
tion later on. For sound compilation we need to ensure that the generated Java
bytecode is weakly bisimilar to the original Java source code relative to a set
of observable locations (e.g., return variables). In previous work on sound pro-
gram transformation [2,3], a suitable weak bisimulation relation for two source
programs was defined and used. We extend this work by introducing a mapping
function that relates Java source code and bytecode. To synthesize Java byte-
code in a program logic, we extend the sequent calculus rules to include the weak
bisimulation modalities relating Java source code and bytecode. Then a leaves-
to-root traversal of the symbolic execution tree resulting from the verification

phase synthesizes bytecode by backward application of sequent calculus rules
with bisimumation modalities.

The soundness of the compilation process is guaranteed by soundness of the
underlying program logic, hence, no compiler verification is necessary. Bytecode
generation happens immediately after source code verification on the same proof
object. Therefore, it is possible to combine formal verification and sound compi-
lation into a single process, whereas those two aspects are normally considered
separately, using different techniques and tools.

The paper is organized as follows: Sect. 2 defines the programming language
and program logic; Sect. 3 presents the sequent calculus rules that are used
for symbolic execution in the Java source program verification phase; Sect. 4
reviews the bisimulation modality for two Java source programs; Sect. 5 defines
the mapping function and presents Java bytecode generation; Sect. 6 discusses
related work; Sect. 7 concludes and lists future work. For space reasons, most
proofs are omitted. Proofs of results in Sect. 4 can be found in [3].

2 Language and Logic

2.1 Programming Language

We use a programming language called PL that is a subset of Java. It has classes,
objects, fields, and method polymorphism (but not method overloading). Generic
types, exceptions, multi-threading, floating points, and garbage collection are not
supported. The types of PL are the types derived from class declarations, the
type int of mathematical integers (Z), and the standard Boolean type boolean.

A PL program p is a non-empty set of class declarations with at least one
class of name Object. The class hierarchy is a tree with class Object as root.
A class Cl := (cname, scnameopt, f ld,mtd) consists of (i) a class name cname
unique in p, (ii) the name of its superclass scname (only omitted for cname =
Object), and (iii) a list of field fld and method mtd declarations. The syntax
coincides with that of Java. The only features lacking from Java are constructors
and initialization blocks. We agree on the following conventions: if not stated
otherwise, any sequence of statements is viewed as if it were the body of a static,
void method declared in a class Default with no fields.

In a PL program p, a complex statement can be decomposed into a sequence
of simpler statements without changing the meaning of p. For example, statement
y = z ++; can be decomposed into int t = z; z = z + 1; y = t;, where t

is a fresh variable, not used anywhere else. These simple statements have at most
one source of side effect each, which can be a non-terminating expression (such
as a null pointer access), a method call, or an assignment to a location. They are
essential to compute variable dependencies and simplify symbolic states during
symbolic execution later on.

2.2 Program Logic

Our program logic is dynamic logic (DL) [4]. We consider deterministic pro-
grams, hence, a program p executed in state s either terminates and reaches

exactly one final state or it does not terminate and no final state reached. The
dynamic logic over PL programs is called PL-DL. Its signature depends on a
context PL program C.

Definition 1 (PL-Signature ΣC). A signature ΣC = (Srt,�,Pred,Func, LgV)
consists of: (i) a set of names Srt called sorts containing at least one sort for each
primitive type and one for each class Cl declared in C; (ii) a partial subtyping
order �: Srt× Srt that models the subtype hierarchy of C faithfully; (iii) infinite
sets of predicate symbols Pred := {p : T1 × . . . × Tn | Ti ∈ Srt} and function
symbols Func := {f : T1 × . . . × Tn → T | Ti, T ∈ Srt} for each n ∈ N. We
call α(p) = T1 × . . . × Tn and α(f) = T1 × . . . × Tn → T the signature of the
predicate/function symbol; (iv) a set of logical variables LgV := {x : T |T ∈ Srt}.
Func is divided into disjoint subsets Funcr ∪ PV ∪ Fld:

– rigid function symbols Funcr, which do not depend on the current state of
program execution;

– program variables PV = {i, j, . . .}, which are non-rigid constants;
– field function symbols Fld, where for each field a of type T declared in class
Cl a function a@Cl : Cl → T ∈ Fld exists. We omit @C if no ambiguity
arises.

We distinguish between rigid and non-rigid predicate and function symbols.
The semantics of rigid symbols does not depend on the current state of program
execution, while non-rigid symbols are state-dependent.

Terms t and formulas φ are defined as usual and their definitions are omitted
for brevity. We use updates u to describe symbolic state changes by means of an
explicit substitution. An elementary update of the form i := t or t.a := t is a
pair of location and term. Updates have static single assignment (SSA) form and
the same meaning as (simple) assignments. Elementary updates are composed
into parallel updates u1‖u2 that work like simultaneous assignments. Updates
u are defined by the grammar u ::= i := t | t.a := t | u ‖ u | {u}u (where
a ∈ Fld), together with the usual well-typedness conditions. Updates applied on
terms (formulas), written {u}t ({u}φ), are again terms (formulas). We use the
symbol U to represent updates of the form {u} and {u1} . . . {un}.

Terms, formulas and updates are evaluated in a PL-DL Kripke structure:

Definition 2 (Kripke structure). A PL-DL Kripke structure KΣPL
= (D, I,S)

consists of (i) a set of elements D called domain, (ii) an interpretation I with:

– I(T) = DT , T ∈ Srt assigning each sort a non-empty domain DT . It adheres
to the restrictions imposed by the subtype order �; Null is interpreted as a
singleton set and subtype of all class types.

– I(f) : DT1×. . .×DTn → DT for each rigid function symbol f : T1×. . .×Tn →
T ∈ Funcr.

– I(p) ⊆ DT1
× . . .×DTn

for each predicate symbol p : T1 × . . .× Tn ∈ Pred.

And (iii) a set of states S assigning meaning to non-rigid function symbols: let
s ∈ S then s(a@Cl) : DCl → DT , a@Cl : Cl → T ∈ Fld and s(i) : DT , i ∈ PV.
The pair D = (D, I) is called a first-order structure.

A variable assignment β : LgV → DT maps a first-order variable x : T to
its domain DT . A term, formula or update is evaluated relative to a given first-
order structure D = (D, I), a state s ∈ S and a variable assignment β, while
programs and expressions are evaluated relative to aD and s ∈ S . The evaluation
function val is defined recursively. It evaluates: (i) every term t : T to a value
valD,s,β(t) ∈ DT ; (ii) every formula φ to a truth value valD,s,β(φ) ∈ {tt, ff};
(iii) every update u to a state transformer valD,s,β(u) ∈ S → S ; (iv) every
expression e : T to a set of pairs of state and value valD,s(e) ⊆ 2S×T ; (v) every
statement st to a set of states valD,s(st) ⊆ 2S .

As PL is deterministic, all sets of states or state-value pairs have at most
one element. The semantics of terms, formulas, expressions and statements is
the same as in Java. Details are in [3].

3 Source Code Verification

We verify PL source code following the KeY [5] approach, where a PL program
is symbolically executed. In this paper, we do not emphasize on proving correct-
ness (for which we refer to [5]), but introduce only those concepts of symbolic
execution and the sequent calculus that are needed for bytecode generation.

Symbolic execution of a PL program is performed by application of sequent
calculus rules. Soundness of the rules ensures validity of provable PL-DL formu-
las in a program verification setting [5].

A sequent is a pair of sets of formulas Γ = {φ1, . . . , φn} (antecedent) and
∆ = {ψ1, . . . , ψm} (succedent) of the form Γ =⇒ ∆. Its semantics is defined by
the formula

∧
φ∈Γ φ→

∨
ψ∈∆ ψ. A sequent calculus rule has one conclusion and

zero or more premises. It is applied to a sequent s by matching its conclusion
against s. The instantiated premises are then added as children of s.

Our PL-DL sequent calculus behaves as a symbolic interpreter for PL. A
sequent for PL-DL is always of the form Γ =⇒ U [p]φ,∆. The box modality [·]
indicates partial correctness: if p is executed and terminates then in all reached
final states φ holds. During symbolic execution performed by the sequent rules
(see Fig. 1), the antecedents Γ accumulate path conditions and may contain
preconditions. Updates U record the symbolic value at a point of execution and
φ represents postconditions. The update Vmod in the loopInvariant rule skolemizes
the program locations that might be changed in the loop body. This is necessary,
because the invariant must hold in any state. When the program is fully executed,
we obtain a set of first-order formulas (one for each symbolic execution path),
to be proven or disproven by first-order reasoning.

During symbolic execution, complex statements are decomposed into simple
statements. First-order reasoning and interleaved partial evaluation [6] help to
simplify the target program on-the-fly. Symbolic execution works as follows:

1. Select an open proof goal with a [·] modality. If no [·] exists on any branch,
then symbolic execution is completed. Focus on the first active statement
(possibly empty) of the program in the modality.

2. If it is a complex statement, apply rules to decompose it into simple state-
ments and goto 1., otherwise continue.

emptyBox
Γ =⇒ Uφ,∆
Γ =⇒ U []φ,∆

assignment
Γ =⇒ U{l := r}[ω]φ,∆

Γ =⇒ U [l = r;ω]φ,∆

ifElse
Γ,Ub =⇒ U [p;ω]φ,∆ Γ,U¬b =⇒ U [q;ω]φ,∆

Γ =⇒ U [if (b) {p} else {q} ω]φ,∆

loopInvariant

Γ =⇒ Uinv,∆ (init)
Γ,UVmod(b ∧ inv) =⇒ UVmod[p]inv,∆ (preserves)
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω]φ,∆ (use case)

Γ =⇒ U [while (b) {p} ω]φ,∆

Fig. 1. Selected sequent calculus rules (further rules are in [3,5]).

3. Apply the sequent calculus rule corresponding to the active statement.
4. Simplify the resulting updates and apply first-order simplification to the

premises. This might result in some closed branches. It is possible to detect
and eliminate infeasible paths in this way. Goto 1.

Example 1. We look at typical proof goals that arise during symbolic execution:

1. Γ, i > j ⇒ U [if (i>j) {p} else {q} ω]φ: Applying rule ifElse and sim-
plification eliminates the else branch and continues with p ω.

2. Γ ⇒ {i := c‖ . . .}[j = i; ω]φ where c is a constant: it is sound to replace
the statement j = i with j = c and continue with symbolic execution. This
is known as constant propagation. More techniques for partial evaluation can
be integrated into symbolic execution [6].

3. Γ ⇒ {o1.a := v1‖ . . .}[o2.a = v2; ω]φ: After executing o2.a = v2, the alias
is analyzed: (i) if o2 = null is true the program does not terminate; (ii)
else, if o2 = o1 holds, the value of o1.a in the update is overridden and the
new update is {o1.a := v2‖ . . . ‖o2.a := v2}; (iii) else the new update is
{o1.a := v1‖ . . . ‖o2.a := v2}. Neither of (i)–(iii) might be provable and
then symbolic execution splits into these three cases when encountering a
potentially aliased object access.

The result of symbolic execution for a PL program p is a symbolic execution
tree (SET), as illustrated in Fig. 2. Note that, here we did not show the part that
does not contain any PL program, e,g, the (init) branch obtained after applying
the loopInvariant rule. Complete SETs are finite trees whose root is labeled with
Γ =⇒ [p]φ,∆ and no leaf has a [·] modality. Without loss of generality, we can
assume that each inner node i is annotated by a sequent Γi =⇒ Ui[pi]φi, ∆i,
where pi is the remaining program to be executed. Every child node in an SET
is generated by rule application from its parent. A branching node represents
a statement whose execution causes branching, e.g., conditional, loop, etc. We
call a sequential block (SB) a maximal program fragment in an SET that is
symbolically executed without branching. The SET in Fig. 2 has 7 SBs bl0,. . . ,bl6.

4 Weak Bisimulation and Program Transformation

Here we review the concepts of weak bisimulation relations of PL programs, and
the extended sequent calculus rules for program transformation.

Program

. . . ;

. . .

if (cond) {
. . . }

else {
. . . }

while (guard) {
. . . }

. . .

. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

bl0

bl1 then-branch bl2 else-branch

bl3 loop body
bl4

bl5 loop body
bl6

S.E.−→

Fig. 2. Symbolic execution tree with loop invariant applied.

The structure of an SET makes it possible to generate a program through its
leaves-to-root traversal, by applying the sequent calculus rules reversely step-by-
step. This requires to extend the sequent calculus rules with means for program
synthesis. Obviously, the generated program should behave exactly as the origi-
nal one, at least for the observable locations (e.g., return variables).

4.1 Weak Bisimulation Relation of Programs

Definition 3 (Location sets, observation equivalence). A location set is
a set containing program variables x and attribute expressions o.a (a ∈ Fld and o
being a term of the appropriate sort). Let loc be the set of all program locations,
given two states s1, s2 and a location set obs ⊆ loc, a relation ≈: loc × S × S
is an observation equivalence if and only if for all ol ∈ obs, valD,s1,β(ol) =
valD,s2,β(ol) holds. It is written as s1 ≈obs s2. We call obs observable locations.

A transition relation −→: Π × S × S relates two states s, s′ by a program

p iff p starts in state s and terminates in state s′, written s
p−→ s′. We have:

s
p−→ s′, where s′ = valD,s(p). If p does not terminate, we write s

p−→.
Since a complex statement can be decomposed into simple statements during

symbolic execution, we can assume that a program consists of simple statements.

Definition 4 (Observable and internal statement/transition). Consider

states s, s′, a simple statement sSt, a transition relation −→, where s
sSt−→ s′,

and the observable locations obs; we call sSt an observable statement and −→
an observable transition, if and only if there exists ol ∈ obs, and valD,s′,β(ol) 6=
valD,s,β(ol). We write

sSt−→obs. Otherwise, sSt is called an internal statement
and −→ an internal transition, written −→int.

Assume an observable transition s
sSt−→obs s

′ changes the evaluation of some
location ol ∈ obs in state s′. The observable locations obs1 in state s should also
contain the locations ol1 that are read by ol, since changes to ol1 can lead to a
change of ol in the final state s′.

Example 2. Consider the set of observable locations obs={x, y} and program
fragment “z = x + y; x = 1 + z;”. The statement z = x + y; becomes ob-
servable because the value of z is changed and it will be used later in the ob-
servable statement x = 1 + z;. The observable location set obs1 should contain
z after the execution of z = x + y; .

Definition 5 (Weak transition). Given observable locations obs, the transi-
tion relation =⇒int is the reflexive, transitive closure of −→int. The transition

relation
sSt
=⇒obs is the composition of the relations =⇒int,

sSt−→obs and =⇒int. The

weak transition
ŝSt
=⇒obs represents either

sSt
=⇒obs, if sSt observable, or =⇒int oth-

erwise.

Definition 6 (Weak bisimulation for states). Given two programs p1, p2
and observable locations obs, obs′, let sSt1 be a simple statement and s1, s

′
1

two program states of p1, and sSt2 be a simple statement and s2, s
′
2 are two

program states of p2. A relation ≈ is a weak bisimulation for states if and only
if s1 ≈obs s2 implies:

– if s1
ŝSt1=⇒obs′ s

′
1, then s2

ŝSt2=⇒obs′ s
′
2 and s′1 ≈obs′ s′2

– if s2
ŝSt2=⇒obs′ s

′
2, then s1

ŝSt1=⇒obs′ s
′
1 and s′2 ≈obs′ s′1

where valD,s1(sSt1) ≈obs′ valD,s2(sSt2).

Definition 7 (Weak bisimulation for programs). Let p1, p2 be two pro-
grams, obs and obs′ are observable locations, and ≈ is a weak bisimulation rela-
tion for states. ≈ is a weak bisimulation for programs, written p1 ≈obs p2, if for
the sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s′1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s′2 = sm+1

2 ,

we have (i) s′2 ≈obs s′1; (ii) for each state si1 there exists a state sj2 such that

si1 ≈obs′ s
j
2 for some obs′; (iii) for each state sj2 there exists a state si1 such that

sj2 ≈obs′ si1 for some obs′, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The weak bisimulation relation for programs defined above requires a weak
transition that relates two states with at most one observable transition. This
definition reflects the structural properties of a program and can be characterized
as a small-step semantics. It directly implies the lemma below that relates the
weak bisimulation relation of programs to a big-step semantics.

Lemma 1. Let p, q be programs, obs a set of observable locations. Then p ≈obs q
if and only if valD,s(p) ≈obs valD,s(q) for any first-order structure D, state s.

4.2 The Weak Bisimulation Modality

We introduce a weak bisimulation modality that allows us to relate two pro-
grams, which behave indistinguishably on the observable locations.

Definition 8 (Weak bisimulation modality: syntax). The bisimulation
modality [p G q]@(obs, use) is a modal operator providing compartments for
programs p, q and location sets obs and use. We extend our definition of formu-
las: let φ be a PL-DL formula, p, q PL programs, and obs, use location sets such
that pv(φ) ⊆ obs, where pv(φ) is the set of all program variables occurring in φ,
then [p G q]@(obs, use)φ is also a PL-DL formula. An extended sequent based
on the bisimulation modality has the form Γ =⇒ U [p G q]@(obs, use)φ,∆.

Next we define the location set usedVar(s, p, obs). Its purpose is to capture
precisely those locations whose value influences the final value of an observable
location l ∈ obs after executing a program p. Later we approximate this set by
the set of all program variables in a program that are used before being redefined
(i.e., assigned a new value).

Definition 9 (Used program variable). A variable v ∈ PV is called used
by a program p in state s with respect to a location set obs, if there exists an
l ∈ obs such that

D, s |= ∀vl.∃v0.((〈p〉l = vl)→ ({v := v0}〈p〉l 6= vl))

The set usedVar(s, p, obs) is defined as the smallest set containing all used pro-
gram variables of p with respect to obs.

The formula defining a used variable v of a program p encodes that there
is an interference with a location contained in obs. In Example 2, z is a used
variable. We formalize the semantics of the weak bisimulation modality:

Definition 10 (Weak bisimulation modality: semantics). With p, q PL-
programs, D, s, β, and obs, use as above, let valD,s,β([p G q]@(obs, use)φ) = tt
if and only if

1. valD,s,β([p]φ) = tt

2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈use s we have valD,s(p) ≈obs valD,s′(q)

Lemma 2. Let obs be the set of all locations observable by φ and let p, q be
programs. If p ≈obs q then valD,s,β([p]φ)↔ valD,s,β([q]φ) holds for all D, s, β.

The following lemma shows the intended meaning of the used variable set use.

Lemma 3. Let the extended sequent Γ =⇒ U [p G q]@(obs, use)φ,∆ occur in
a sequential block bl in a state s1, where P is the program corresponding to bl,
p is the program to be executed in bl in state s1, and p′ is the program already
executed in bl (see Fig. 3). Let Q be the program to be generated in bl, q the
already generated program in bl, and q′ the remaining program to be generated
in bl. The location set use are the dynamically observable locations for which
the following relations hold: (i) p ≈obs q; (ii) P ≈obs Q; (iii) p′ ≈use q′.

s0

s1

s2

s′0

s′1

s′2

p′

p q

q′

P Q

obs

use

use0

U

bl
bl2

bl1

Fig. 3. Program in a sequential block.

4.3 Sequent Calculus Rules for Weak Bisimulation Modality

The sequent calculus rules for weak bisimulation modality are of the form:

Γ1 =⇒ U1[p1 G q1]@(obs1, use1)φ1,∆1

. . .
Γn =⇒ Un[pn G qn]@(obsn, usen)φn,∆n

Γ =⇒ U [p G q]@(obs, use)φ,∆

An example is the following assignment rule:

Γ =⇒ U{l := r}[ω G ω]@(obs, use)φ,∆(
Γ =⇒ U [l = r;ω G l = r;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ U [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)
Here, ω represents the already generated program before the rule application.
The use set contains all variables that may affect the values of observable lo-
cations in the final state. In the first case, when l is among those variables, we
have to update the use set by removing l and adding r which is read by the
assignment. Otherwise, we generate no code. The emptyBox rule, ifElse rule and
loopInvariant rule are as follows (denotes the place holder of empty):

emptyBox
Γ =⇒ U@(obs,)φ,∆

Γ =⇒ U [G]@(obs, obs)φ,∆

ifElse

Γ,Ub =⇒ U [p;ω G p;ω]@(obs, usep;ω)φ,∆
Γ,U¬b =⇒ U [q;ω G q;ω]@(obs, useq;ω)φ,∆

Γ =⇒ U [if (b) {p} else {q};ω G
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,∆

loopInvariant

Γ =⇒ Uinv,∆
Γ,UVmod(b ∧ inv) =⇒ UVmod

[p G p]@(obs ∪ use1 ∪ {b}, use2)inv,∆
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω G ω]@(obs, use1)φ,∆

Γ =⇒ U [while(b){p}ω G while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,∆
(with b boolean variable)

The emptyBox rule starts the program generation, where use is instantiated as
obs. We can begin generating a program when the original program is symboli-
cally executed completely, but not when it is fully verified. So even if we cannot

verify the original program, we are still able to perform a sound program trans-
formation. In the loopInvariant rule, obs in the (preserves) branch depends on the
use1 from the (use case) branch, so we need to synthesize the (use case) branch
first when synthesizing a loop. The (init) branch does not contribute to program
generation (that is why this branch is not shown in the SET in Fig. 2, Sect. 3).
More extended sequent calculus rules are in [3].

To synthesize a program, one starts with a leaf node and generates the pro-
gram within its SB first, e.g., bl3, bl4 in Fig. 2. These are combined by rules
corresponding to statements that contain a SB, such as loopInvariant (containing
bl3 and bl4). One continues with these steps recursively until the root is reached.

Theorem 1. The extended sequent calculus rules are sound.

5 Bytecode Generation

The weak bisimulation modality [p G q]@(obs, use) of Sect. 4.2 requires q to
be a program in the same language as p, but this is not really necessary. We can
just as well generate Java bytecode from Java source code (or PL to be precise),
which realizes a Java (PL) compiler. The soundness of compilation is entailed
by the sound bisimulation modality and extended sequent calculus rules.

We target the version of Java bytecode that can be executed by a Java
Virtual Machine (JVM) [7]. The Java Virtual Machine is a conventional stack-
based abstract machine. Most instructions pop their arguments off the stack,
and push back their results on the stack. A set of registers (also called local
variables) is provided. They can be accessed via a load instruction that pushes
the value of a given register on the stack, and a store instruction that stores
the top of the stack in the given register. Most Java compilers use registers
to store the values of source-level local variables and method parameters, and
the stack to hold temporary results during evaluation of expressions. Both the
stack and the registers are preserved across method calls. Control is handled
by a variety of branch instructions: unconditional branch (goto), conditional
branches (e.g., ifeq), and multiway branches (corresponding to switch). In the
JVM, most instructions are typed. For instance, the iadd instruction (integer
addition) requires that the stack initially contains at least two elements and that
these two elements are of type int; it then pushes back a result of type int.

The semantics of Java bytecode is normally defined as an operational seman-
tics in the form of an abstract machine (JVM). We ignore the technical details
here (see [7]) and focus on the relation between the semantics of PL source code
and Java bytecode. This allows us to use most results from Sect. 4.

Execution of Java bytecode is a sequence of stack operations on the JVM.
A state in Java bytecode is defined as a snapshot of the status of the registers
(variables) and the stack. We define a mapping function ξ to relate PL source
code to Java bytecode.

Definition 11 (Mapping function). For a PL program, St is the set of state-
ments, S is a set of states, PV is a set of program variables. And for Java byte-

code, Inst is the set of instructions, SB is a set of states, PVB is a set of program
variables. A mapping function ξ maps:

(i) every pv ∈ PV to a distinct pvB ∈ PVB. ξ(pv) = pvB.
(ii) every s ∈ S to an sB ∈ SB. ξ(s) = sB.

(iii) every st ∈ St to a sequence of instructions: inst1 · · · instn, where for 0 ≤
i ≤ n insti ∈ Inst and ξ(st) = inst1 · · · instn.

ξ−1 is the inverse of ξ.

Fig. 4 shows some PL statements and Java bytecode related by the mapping
function ξ. We also maintain a program counter pc (initially 0) to indicate the
label of bytecode instructions, and pci has the value of pc + i.

PL statement Java bytecode

l=r
iload ξ(r)

istore ξ(l)

p1; p2
ξ(p1)

ξ(p2)

if(b) {p} else {q}

iload ξ(b)
ifeq pc1
ξ(p)

goto pc2
pc1: ξ(q)
pc2:

while(b) {p}

pc1: iload ξ(b)
ifeq pc2
ξ(p)

goto pc1
pc2:

Fig. 4. Mapping of PL programs to Java bytecode.

As a property of the mapping function ξ, the following lemma gives the
relation of the semantics of PL programs to the semantics of Java bytecode. We
assume Java bytecode is evaluated by an evaluation function valb, logic structure
DB and in a state s. The actual representation of DB is not of importance.

Lemma 4. Given the evaluation function val, the first-order structure D and
a state s ∈ S of PL program p, and the corresponding evaluation function
valb and logic structure DB of Java bytecode q. If ξ(p) = q, then valD,s(p) =
valbDB ,ξ(s)(q).

Lemma 4 shows that instead of evaluating Java bytecode, we can evaluate its ξ−1-
mapped PL program. This allows us to define the weak bisimulation modality
for a PL program and Java bytecode by adding a mapping function ξ to Defs. 3-
7 in Sect. 4.2. For example, the definition of weak bisimulation for PL program
and Java bytecode is given below. The other definitions are analogous.

Definition 12 (Weak bisimulation for PL program and Java bytecode).
Let p1, p2 be two PL programs, q is Java bytecode, and ξ is a mapping function
such that ξ(p2) = q. Assume obs, obs′ are observable locations, and ≈ is a weak
bisimulation relation for states. Then ≈ is a weak bisimulation for a PL program
p1 and Java bytecode q, written p1 ≈obs q, if for the sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s′1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s′2 = sm+1

2 ,

(i) s′2 ≈obs s′1; (ii) for each state si1 there exists a state sj2 such that si1 ≈obs′ s
j
2

for some obs′; (iii) for each state sj2 there exists a state si1 such that sj2 ≈obs′ si1
for some obs′, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Definition 13 (Weak bisimulation modality for PL program and Java
bytecode: syntax). The bisimulation modality [p G q]@(obs, use) is a modal
operator providing compartments for a PL program p, Java bytecode q and loca-
tion sets obs and use. We extend our definition of formulas: Let φ be a PL-DL
formula, p a PL program, q Java bytecode, and obs, use location sets such that
pv(φ) ⊆ obs, then [p G q]@(obs, use)φ is also a PL-DL formula.

Definition 14 (Weak bisimulation modality for PL program and Java
bytecode: semantics). For PL-programs p, p1 and Java bytecode q; D, s, β,
and obs, use are as before, ξ is a mapping function such that ξ(p1) = q. Let
valD,s,β([p G q]@(obs, use)φ) = tt if and only if

1. valD,s,β([p]φ) = tt
2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈use s we have valD,s(p) ≈obs valD,s′(p1) = valbDB ,ξ(s′)(q)

The used program variable set usedVar(s, p, obs) is defined in the same way
as in Def. 9.

The extended sequent calculus rules for Java bytecode generation can be
defined based on the weak bisimulation modality for PL program and Java
bytecode. In most cases, by changing the generated PL program part to its ξ-
mapped Java bytecode in the rules presented in Sect. 4.3, we can obtain the
rules for bytecode generation, as shown in Fig. 5. The symbol ω represents the
generated Java bytecode for PL program ω, ξ is the mapping function, and
we need to update the program counter after the application of the ifElse and
loopInvariant rules to obtain a correct compilation result.

Theorem 2. The extended sequent calculus rules given in Fig. 5 are sound.

Proof. Follows from Theorem 1, Def. 11, and Lemma 4. ut

By introducing a mapping function ξ we avoid to use the semantics of Java
bytecode directly but relate it to the semantics of PL programs, which results
in a better integration of the new weak bisimulation modality with the ones
introduced before. In fact, ξ can also be viewed as the compilation function
since it maps the source code to the bytecode. However, instead of operating on

emptyBox
Γ =⇒ U@(obs,)φ,∆

Γ =⇒ U [G]@(obs, obs)φ,∆

assignment
Γ =⇒ U{l := r}[ω G ω]@(obs, use)φ,∆Γ =⇒ U [l = r;ω G

iload ξ(r)
istore ξ(l)
ω

]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use

Γ =⇒ U [l = r;ω G ω]@(obs, use)φ,∆ otherwise


ifElse

Γ,Ub =⇒ U [p;ω G p;ω]@(obs, usep;ω)φ,∆
Γ,U¬b =⇒ U [q;ω G q;ω]@(obs, useq;ω)φ,∆

Γ =⇒ U [if (b) {p} else {q};ω G

iload ξ(b)
ifeq pc1
p;ω
goto pc2
pc1 : q;ω
pc2 :

]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,∆

(after rule application: pc = pc + 2.)

loopInvariant
Γ =⇒ Uinv,∆
Γ,UVmod(b ∧ inv) =⇒ UVmod[p G p]@(obs ∪ use1 ∪ {b}, use2)inv,∆
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω G ω]@(obs, use1)φ,∆

Γ =⇒ U [while(b){p}ω G

pc1 : iload ξ(b)
ifeq pc2
ω
goto pc1
pc2 :

]@(obs, use1 ∪ use2 ∪ {b})φ,∆

(after rule application: pc = pc + 2.)

Fig. 5. A collection of sequent calculus rules for generating Java bytecode.

the original source program like a standard compiler would do, ξ is applied to
the generated source code and the bytecode is generated based on that already
specialized code. So it works as an optimizing compiler.

Example 3. Given suitable pre- and post-conditions Pre and Post, one can for-
mally verify the PL program shown in Fig. 6 on the left and, at the same time,
compile it to Java bytecode. Assume that cpn = FALSE is known and contained
in Pre, and the observable locations obs is the return variable set {tot}.

This program might be part of a cashier system to calculate the total amount
a customer has to pay (if buying i items at a price of 20 units). The total sum is
stored in both tot and atot. If the customer can provide a coupon (cpn), then
a reduction of 50 units is applied. Finally, the total cost is returned as tot.

To verify this program we perform symbolic execution, using the sequent
calculus rules shown in Fig. 1. After a few applications of the assignment rule,
we use the loopInvariant rule and continue. In the (use case) branch, we encounter
the conditional. Knowing cpn = FALSE, by partial evaluation, we continue with
the (else) branch. After fully executing the code in each branch, we do first-order
reasoning steps to complete the verification. Now we focus on compilation, using
the extended sequent calculus rules given in Fig 5. The resulting program is
shown in Fig. 6 on the right.

We can see that the resulting Java bytecode is sound and also more optimized
than that obtained by a normal line-by-line compiler. For instance, the bytecode
for the statement atot = tot is not generated because it will not affect the final
result of the observable locations (return variable). And the bytecode for the
conditional is ignored thanks to partial evaluation.

int tot = 0;

int atot = 0;

int i;

boolean cpn;

while (i > 0) {

tot = tot + 20;

atot = tot;

i = i - 1;

}

if (cpn) {

tot = tot - 50;

if (tot < 0) {

tot = 0;

}

}

return tot;

iconst_0

istore_1

1: iload_2

ifle 2

iload_1

bipush 20

iadd

istore_1

iinc 2, -1

goto 1

2:

iload_1

ireturn

Fig. 6. Program to be compiled into bytecode and generated bytecode.

If one is only interested in sound compilation, but not in functional verifica-
tion, then the trivial postcondition true is sufficient. As a consequence, it suffices
to supply true as well for the invariant of the loopInvariant rule and symbolic ex-
ecution becomes fully automatic. The resulting first-order proof obligations are
no problem for state-of-art solvers.

6 Related Work

Compiler verification has been a research topic for more than 40 years [8,9]. Since
then, many proofs have been conducted, ranging from single-pass compilers for
toy languages to sophisticated code optimizations [1]. Recently, the CompCert

project [10,11,12] has been the most successful story in compiler verification. In
that project, a complete compilation tool chain has been verified from a subset
of C source code to PowerPC assembly language in Coq. CompCert focuses on
low-level details and language features such as memory layout, register alloca-
tion and instruction selection. As part of the Verisoft project, a non-optimizing
compiler from C0, a subset of C, directly to DLX assembly has been verified
in Isabelle/HOL [13]. Like CompCert, it focuses on low-level details and proves
a weak simulation theorem for sequential executions. The paper [14] presents a
rigorous formalization (in the proof assistant Isabelle/HOL) of concurrent Java
source and byte code together with an executable compiler and its correctness
proof. All of this work consists of monolithic, highly complex specifications and
proofs that consumed person years of work. In contrast, our approach aims at
fully automated, correct compilation on-the-fly of one given program at a time.

A “grand challenge” for computer science proposed by Hoare [15] is to achieve
a “verifying compiler” that checks the correctness of a program along with com-
pilation, just like a compiler performing type checking nowadays. Our approach
has the same goal of verifying source code and compiled code within one process,
but takes the opposite view: it performs sound compilation by a source program
verification tool. Our approach may be viewed as a “compiling verifier”.

7 Conclusion and Future Work

In this work, we presented a sound deductive compilation approach for programs
written in a subset of Java. It generates Java bytecode following Java source code
verification, so it is possible to ensure the correctness of both source code and
bytecode within one process. The generated Java bytecode is more optimized
than that obtained from line-by-line compilation. The soundness of compilation
is guaranteed.

We plan to consolidate the implementation of the approach presented here,
and to support more features of Java in the future. The bisimulation modality
defined in Sect. 4.2 gives the opportunity to analyze information flow security
problems. It can be integrated into the current work, so we can achieve a uni-
fied framework for program verification, sound compilation and information flow
analysis.

References

1. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes
28 (November 2003) 2–2

2. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on symbolic execution
and deduction. In: SEFM. LNCS, Springer (2013) 289–304

3. Ji, R., Hähnle, R., Bubel, R.: Program transformation based on sym-
bolic execution and deduction. Technical Report CS-2013-0348, Tech-
nische Universität Darmstadt, Fachbereich Informatik (2013) https:

//www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/

Group_Members/ran_ji/TUD-CS-2013-0348.pdf.

https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/ran_ji/TUD-CS-2013-0348.pdf

4. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
5. Beckert, B., Hähnle, R., Schmitt, P., eds.: Verification of Object-Oriented Software:

The KeY Approach. Volume 4334 of LNCS. Springer (2006)
6. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial evalua-

tion. In: Post Conf. Proc. FMCO2009. LNCS, Springer-Verlag (2009)
7. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley

(1997)
8. McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions. In:

Mathematical Aspects of Computer Science, volume 19 of Proc. of Symposia in
Applied Mathematics, American Mathematical Society (1967) 33–41

9. Milner, R., Weyhrauch, R.: Proving compiler correctness in a mechanized logic.
In: Proc. 7th Annual Machine Intelligence Workshop, volume 7 of Machine Intel-
ligence, Edinburgh University Press (1972) 51–72

10. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL. (2006) 42–54

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (2009)
107–115

12. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4)
(2009) 363–446

13. Leinenbach, D.: Compiler Verification in the Context of Pervasive System Verifi-
cation. PhD thesis, Saarland University, Saarbrücken (2008)

14. Lochbihler, A.: Verifying a compiler for Java threads. In: ESOP. (2010) 427–447
15. Hoare, T.: The verifying compiler: A grand challenge for computing research.

Journal of the ACM 50(1) (2003) 63–69

	Sound Deductive Compilation

