
Program Transformation Based on
Symbolic Execution and Deduction

(Technical Report)?

Ran Ji and Reiner Hähnle and Richard Bubel

Department of Computer Science
Technische Universität Darmstadt, Germany
{ran,haehnle,bubel}@cs.tu-darmstadt.de

Abstract. We present a program transformation framework based on
symbolic execution and deduction. Its virtues are: (i) behavior preser-
vation of the transformed program is guaranteed by a sound program
logic, and (ii) automated first-order solvers are used for simplification
and optimization. Transformation consists of two phases: first the source
program is symbolically executed by sequent calculus rules in a program
logic. This involves a precise analysis of variable dependencies, aliasing,
and elimination of infeasible execution paths. In the second phase, the
target program is synthesized by a leaves-to-root traversal of the symbolic
execution tree by backward application of (extended) sequent calculus
rules. We prove soundness by a suitable notion of bisimulation and we
discuss one possible approach to automated program optimization.

1 Introduction

State-of-the-art program verification systems can show the correctness of com-
plex software written in industrial programming languages [1]. The main reason
why functional verification is not used routinely is that considerable expertise is
required to come up with formal specifications [2], invariants, and proof hints.
Nevertheless, modern software verification systems are an impressive achieve-
ment: they contain a fully formal semantics of industrial programming languages
and, due to automated first-order reasoning and highly developed heuristics, in
fact a high degree of automation is achieved: more than 99,9% of the proof steps
are typically completely automatic. Given the right annotations and contracts,
often 100% automation is possible. This paper is about leveraging the enormous
potential of verification tools that at the moment goes unused.

The central observation is that everything making functional verification
hard, is in fact not needed if one is mainly interested in simplifying and op-
timizing a program rather than proving it correct. First, there is no need for
complex formal specifications: the property that two programs are bisimilar on
observable locations is easy to express schematically. Second, complex invariants

? This work has been partially supported by the IST program of the European Com-
mission, Future and Emerging Technologies under the IST-231620 HATS project.

are only required to prove non-trivial postconditions. If the preservation of be-
havior becomes the only property to be proven, then simple, schematic invariants
will do. Hence, complex formulas are absent, which does away with the need for
difficult quantifier instantiations.

On the other hand, standard verification tools are not set up to relate a
source and a target program, which is what is needed for program simplification
and optimization. The main contribution of this paper is to adapt the program
logic of a state-of-the-art program verifier [3] to the task of sound program
transformation and to show that fully automatic program simplification and
optimization with guaranteed soundness is possible as a consequence.

This paper extends previous work [4], where the idea of program specializa-
tion via a verification tool was presented for the first time. We remodeled the
ad-hoc semantics of the earlier paper in terms of standard bisimulation theory
[5]. While this greatly improves the presentation, more importantly, it enables
the new optimization described in Section 6.

Aiming at a concise presentation, we employ the small OO imperative pro-
gramming language PL. It contains essential features of OO languages, but ab-
stracts away from technicalities that complicate the presentation. Section 2 in-
troduces PL and Section 3 defines a program logic for it with semantics and
a calculus. These are adapted to the requirements of program transformation
in Section 4. In Section 6 we harvest from our effort and add a non-trivial op-
timization strategy. We close with related work (Section 7) and future work
(Section 8).

2 Programming Language

PL supports classes, objects, attributes, method polymorphism (but not method
overloading). Unsupported features are generic types, exceptions, multi-threading,
floating points, and garbage collection. The types of PL are the types derived
from class declarations, the type int of mathematical integers (Z), and the stan-
dard Boolean type boolean.

A PL program p is a non-empty set of class declarations, where each class
defines a class type. PL contains at least two class types Object and Null. The
class hierarchy (without Null) forms a tree with class Object as root. The type
Null is a singleton with null as its only element and may be used in place of
any class type. It is the smallest class type.

A class Cl := (cname, scnameopt, f ld,mtd) consists of (i) a classname cname
unique in p, (ii) the name of its superclass scname (optional, only omitted for
cname = Object), (iii) a list of field declarations fld and method declarations
mtd. The syntax coincides with that of Java. The only features lacking from
Java are constructors and initialization blocks. We use some conventions: if not
stated otherwise, any sequence of statements is viewed as if it were the body of
a static, void method declared in a class Default with no fields.

The syntax of the executable fragment of PL is given in Fig. 1.

Statements
stmnt ::= stmnt stmnt | lvarDecl | locExp’=’exp’;’ | cond | loop
loop ::= while ’(’exp’)’ ’{’stmnt’}’
lvarDecl ::=Type IDENT (’=’ exp)opt’;’
cond ::= if ’(’exp’)’ ’{’stmnt’}’ else ’{’stmnt’}’
Expressions
exp ::= (exp.)optmthdCall | opExp | locExp
mthdCall ::= mthdName’(’expopt(’,’exp)

∗’)’

opExp ::= opr(expopt(,exp)
∗) | Z | TRUE | FALSE | null

opr ::= ! | - | < | <= | >= | > | == | && | || | + | - | * | / | % | ++
Locations
locExp ::= IDENT | exp.IDENT

Fig. 1. Syntax of PL.

Any complex statement can be easily decomposed into a sequence of simpler
statements without changing the meaning of a program, e.g., y = z ++; can be
decomposed into int t = z; z = z + 1; y = t;, where t is a fresh variable,
not used anywhere else. As we shall see later, a suitable notion of simplicity is
essential, for example, to compute variable dependencies and simplify symbolic
states. This is built into our semantics and calculus, so we need a precise defini-
tion of simple statements. In Fig. 2, statements in the syntactic category spStmnt
have at most one source of side effect each. This can be a non-terminating ex-
pression (such as a null pointer access), a method call, or an assignment to a
location.

spStmnt ::= spLvarDecl | locVar’=’spExp’;’ | locVar’=’spAtr’;’| spAtr’=’spExp’;’
spLvarDecl ::=Type IDENT’;’

spExp ::= (locVar.)optspMthdCall | spOpExp | litVar
spMthdCall ::= mthdName’(’litVaropt(’,’litVar)

∗’)’

spOpExp ::= !litVar | -litVar | litVar binOpr litVar
litVar ::= litval | locVar litval ::=Z | TRUE | FALSE | null
binOpr ::= < | <= | >= | > | == | && | || | + | - | * | / | %
locVar ::= IDENT

spAtr ::= locVar.IDENT

Fig. 2. Syntax of PL simple statements.

3 Program Logic and Sequent Calculus

Symbolic execution was introduced independently by King [6] and others in the
early 1970s. The main idea is to take symbolic values (terms) instead of concrete
ones for the initial values of input variables, fields, etc., for program execution.

The interpreter then performs algebraic computations on terms instead of com-
puting concrete results. In this paper, following [7], symbolic execution is done
by applying sequent calculus rules of a program logic. Sequent calculi are often
used to verify a program against a specification [7], but here we focus on sym-
bolic execution, which we embed into a program logic for the purpose of being
able to argue the correctness of program transformations and optimizations.

3.1 Program Logic

Our program logic is dynamic logic (DL) [8]. The target program occurs in
unencoded form as a first-class citizen inside the logic’s connectives. Sorted first-
order dynamic logic is sorted first-order logic that is syntactically closed wrt
program correctness modalities [·]· (box) and 〈·〉· (diamond). The first argument
is a program and the second a dynamic logic formula. Let p denote a program
and φ a dynamic logic formula then [p]φ and 〈p〉φ are DL-formulas. Informally,
the former expresses that if p is executed and terminates then in all reached final
states φ holds; the latter means that if p is executed then it terminates and in
at least one of the reached final states φ holds.

We consider only deterministic programs, hence, a program p executed in a
given state s either terminates and reaches exactly one final state or it does not
terminate and there are no reachable final states. The box modality expresses
partial correctness of a program, while the diamond modality coincides with total
correctness.

A dynamic logic based on PL-programs is called PL-DL. The signature of
the program logic depends on a context PL-program C.

Definition 1 (PL-Signature ΣC). A signature ΣC = (Srt,�,Pred,Func, LgV)
consists of:

(i) a set of names Srt called sorts containing at least one sort for each primi-
tive type and one for each class Cl declared in C: Srt ⊇ {int, boolean} ∪
{Cl | for all classes Cl declared in C};

(ii) a partial subtyping order �: Srt×Srt that models the subtype hierarchy of C
faithfully;

(iii) a set of predicate symbols Pred := {p : T1 × . . .× Tn | Ti ∈ Srt, n ∈ N}. We
call α(p) = T1 × . . .× Tn the signature of the predicate symbol.

(iv) a set of function symbols Func := {f : T1 × . . .× Tn → T | Ti, T ∈ Srt, n ∈
N}. We call α(f) = T1× . . .×Tn → T the signature of the function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:

• the rigid function symbols Funcr;
• the program variables PV = {i, j, . . .}, which are non-rigid constants;
• the non-rigid function symbols attribute Attr, such that for each attribute
a of type T declared in class Cl an attribute function a@Cl : Cl →
T ∈ Attr exists. We omit the @C from attribute function names if no
ambiguity arises.

(v) a set of logical variables LgV := {x : T |T ∈ Srt}.

We distinguish between rigid and non-rigid function and predicate symbols.
Intuitively, the semantics of rigid symbols does not depend on the current state of
program execution, while non-rigid symbols are state-dependent. Local program
variables, static, and instance fields are modeled as non-rigid function symbols
and together form a separate class of non-rigid symbols called location symbols.
Specifically, local program variables and static fields are modeled as non-rigid
constants, instance fields as unary non-rigid functions.

ΠΣC denotes the set of all executable PL programs (i.e., sequences of state-
ments) with locations over signature ΣC . In the remaining paper, we use the
notion of a program to refer to a sequence of executable PL-statements. If we
want to include class, interface or method declarations, we either include them
explicitly or make a reference to the context program C.

The inductive definition of terms and formulas is standard, but we introduce
a new syntactic category called update to represent state updates with symbolic
expressions.

Definition 2 (Terms, Updates and Formulas). Terms t, updates u and
formulas φ are well-sorted first-order expressions of the following kind:

t ::= x | i | t.a | f(t, . . . , t) | (φ ? t : t) | Z | TRUE | FALSE | null | {u}t
u ::= i := t | t.a := t | u ‖ u | {u}u
φ ::= true | false | p(t, . . . , t) | ¬φ | φ ◦ φ (◦ ∈ {∧,∨,→,↔}) | (φ ? φ : φ) |

∀x : T.φ | ∃x : T.φ | [p]φ | 〈p〉φ | {u}φ

where a ∈ Attr, f ∈ Func, p ∈ Pred, i ∈ PV, x : T ∈ LgV, and p is a sequence of
executable PL statements.

An elementary update i := t or t.a := t is a pair of location and term. They
are of single static assignment (SSA) form [9,10], with the same meaning as
simple assignments. Elementary updates are composed to parallel updates u1‖u2
and work like simultaneous assignments. Updates applied to terms or formulas
are again terms or formulas.

Terms, formulas and updates are evaluated with respect to a PL-DL Kripke
structure.

Definition 3 (Kripke structure). A PL-DL Kripke structure KΣPL
= (D, I,S)

consists of

(i) a set of elements D called domain,
(ii) an interpretation I with

• I(T) = DT , T ∈ Srt assigning each sort its non-empty domain DT .
It adheres to the restrictions imposed by the subtype order �; Null is
always interpreted as a singleton set and subtype of all class types;

• I(f) : DT1
× . . . × DTn

→ DT for each rigid function symbol f : T1 ×
. . .× Tn → T ∈ Funcr;

• I(p) ⊆ DT1× . . .×DTn for each predicate symbol p : T1× . . .× Tn ∈ Pred;

(iii) a set of states S assigning meaning to non-rigid function symbols: let s ∈ S
then s(a@Cl) : DCl → DT , a@Cl : Cl→ T ∈ Attr and s(i) : DT , i ∈ PV.

The pair D = (D, I) is called a first-order structure.

As usual in first-order logic, to define evaluation of terms and formulas in
addition to a structure we need the notion of a variable assignment. A variable
assignment β : LgV→ DT maps a logical variable x : T to its domain DT .

Definition 4 (Evaluation function). A term, formula or update is evaluated
relative to a given first-order structure D = (D, I), a state s ∈ S and a variable
assignment β, while programs and expressions are evaluated relative to a D and
s ∈ S. The evaluation function val is defined recursively. It evaluates

(i) every term t : T to a value valD,s,β(t) ∈ DT ;
(ii) every formula φ to a truth value valD,s,β(φ) ∈ {tt, ff};

(iii) every update u to a state transformer valD,s,β(u) ∈ S → S;
(iv) every expression e : T to a set of pairs of state and value valD,s(e) ⊆ 2S×T ;
(v) every statement st to a set of states valD,s(st) ⊆ 2S .

Since PL is deterministic, all sets of states or state-value pairs have at most
one element.

Fig. 3 shows a collection of the semantic definition. The expression s[x← v]
denotes a state coincides with s except at x which is mapped to the evaluation
of v.

Example 1 (Update semantics). We illustrate the semantics of updates of Fig. 3.
Evaluating {i := j + 1}i ≥ j in a state s is identical to evaluating the formula
i ≥ j in a state s′ which coincides with s except for the value of i which
is evaluated to the value of valD,s,β(j + 1). Evaluation of the parallel update
i := j‖j := i in a state s leads to the successor state s′ identical to s except
that the values of i and j are swapped. The parallel update i := 3‖i := 4
has a conflict as i is assigned different values. In such a case the last occurring
assignment i := 4 overrides all previous ones of the same location. Evaluation
of {i := j}{j := i}φ in a state s results in evaluating φ in a state, where i has
the value of j, and j remains unchanged.

Remark. {i := j}{j := i}φ is the sequential application of updates i := j and
j := i on the formula φ. To ease the presentation, we overload the concept of
update and also call {i := j}{j := i} an update. In the following context, if not
stated otherwise, we use the upper-case letter U to denote this kind of update,
compared to the real update that is denoted by a lower-case letter u. An update
U could be the of form {u} and {u1} . . . {un}. Furthermore, {u1} . . . {un} can
be simplified into the form of {u}, namely the normal form (NF) of update.

Definition 5 (Normal form of update). An update is in normal form, de-
noted by Unf , if it has the shape {u1‖ . . . ‖un}, n ≥ 0, where each ui is an
elementary update and there is no conflict between ui and uj for any i 6= j.

For terms:
valD,s,β(TRUE) = True
valD,s,β(FALSE) = False, where {True,False} = D(boolean)
valD,s,β(x) = β(x), x ∈ LgV
valD,s,β(x) = s(x), x ∈ PV
valD,s,β(o.a) = s(a)(valD,s,β(o)), a ∈ Attr
valD,s,β(f(t1, . . . , tn)) = D(f)(valD,s,β(t1), . . . , valD,s,β(tn))

valD,s,β(ψ ? t1 : t2) =

{
valD,s,β(t1) if valD,s,β(ψ) = tt
valD,s,β(t2) otherwise

valD,s,β({u}t) = valD,s′,β(t), s′ = valD,s,β(u)(s)

For formulas:
valD,s,β(true) = tt
valD,s,β(false) = ff
valD,s,β(p(t1, . . . , tn)) = tt iff (valD,s,β(t1), . . . , valD,s,β(tn)) ∈ D(p)
valD,s,β(¬φ) = tt iff valD,s,β(φ) = ff
valD,s,β(ψ ∧ φ) = tt iff valD,s,β(ψ) = tt and valD,s,β(ψ) = tt
valD,s,β(ψ ∨ φ) = tt iff valD,s,β(ψ) = tt or valD,s,β(ψ) = tt
valD,s,β(ψ → φ) = valD,s,β(¬ψ ∨ φ)
valD,s,β(ψ ↔ φ) = valD,s,β(ψ → φ ∧ φ→ ψ)
valD,s,β([p]φ) = tt iff ff /∈ {valD,s′,β(φ)|s′ ∈ valD,s(p)}
valD,s,β({u}φ) = valD,s′,β(φ), where s′ = valD,s,β(u)(s)

For updates:
valD,s,β(x := t)(s) = s[x← t]
valD,s,β(o.a := t)(s) = s[(a)(valD,s,β(o))← t]
valD,s,β(u1‖u2)(s) = valD,s,β(u2)(valD,s,β(u1)(s))
valD,s,β({u1}u2)(s) = valD,s′,β(u2)(s′), where s′ = valD,s,β(u1)(s)

For expressions:
valD,s(x) = {(s, s(x))}, x ∈ PV
valD,s(o.a) = {(s′, s(a)(d)) | (s′, d) ∈ valD,s(o) ∧ d 6= null}
valD,s(e1 ◦ e2) = {(s′′, D(◦)(d1, d2)) | (s′, d1) ∈ valD,s(e1) ∧ (s′′, d2) ∈ valD,s′(e2)}

◦ ∈ {+,−, ∗, . . .}

For statements:
valD,s(x = e) = {s′[x← d] | (s′, d) ∈ valD,s(e)}, x ∈ PV
valD,s(o.a = e) = {s′′[a(do)← de] | (s′, do) ∈ valD,s(o) ∧ (s′′, de) ∈ valD,s′(e)}
valD,s(p1; p2) =

⋃
s′∈valD,s(p1)

valD,s′(p2)

valD,s(if(e) {p} else {q}) =


valD,s′,β(p), (s′,True) ∈ valD,s(e)
valD,s′,β(q), (s′,False) ∈ valD,s(e)
∅, otherwise

valD,s(while(e){p}) =


⋃
s1∈S1

valD,s1(while(e){p}) where S1 = valD,s′(p),

if (s′,True) ∈ valD,s(e)
{s′}, if (s′,False) ∈ valD,s(e)
∅, otherwise

Fig. 3. Definition of PL-DL semantic evaluation function.

Example 2 (Normal form of update). For the following updates,

– {i := j + 1} and {i := j + 1‖j := i} are in normal form.
– {i := j + 1}{j := i} is not in normal form.
– {i := j+1‖j := i‖i := i+1} is not in normal form, because there is a conflict

between i := j + 1 and i := i+ 1.

The normal form of an update U = {u1} . . . {un} can be achieved by applying
a sequence of update simplification steps shown in Fig. 4. Soundness of these rules
and that they achieve normal form are proven in [11].

{. . . ‖x := v1‖ . . . ‖x := v2‖ . . .}v {. . . ‖ . . . ‖ . . . ‖x := v2‖ . . .}v
where v ∈ t ∪ f ∪ φ

{. . . ‖x := v′‖ . . .}v {. . . ‖ . . .}v, where v ∈ t ∪ f ∪ φ, x /∈ fpv(v)

{u}{u′}v {u‖{u}u′}v, where v ∈ t ∪ f ∪ φ
{u}x x, where x ∈ LgV

{u}f(t1, . . . , tn) f({u}(t1), . . . , {u}(tn))

{u}¬φ ¬{u}φ
{u}(φ1 ◦ φ2) {u}(φ1) ◦ {u}(φ2), where ◦ ∈ {∧,∨,→,↔}
{u}(x := v) x := {u}v
{u}(o.a := v) o.a := {u}v
{u}(u1‖u2) {u}u1‖{u}u2

{x := v}x v

{o.a := v}o.a v

Fig. 4. Update simplification rules.

Finally, we give the definitions of satisfiability, model and validity of formulas.

Definition 6 (Satisfiability, model and validity). A formula φ

– is satisfiable, denoted by D, s, β |= φ, if there exists a first-order structure
D, a state s ∈ S and a variable assignment β with valD,s,β(φ) = tt.

– has a model, denoted by D, s |= φ, if there exists a first-order structure D, a
state s ∈ S, such that for all variable assignments β: valD,s,β(φ) = tt holds.

– is valid, denoted by |= φ, if for all first-order structures D, states s ∈ S and
for all variable assignments β: valD,s,β(φ) = tt holds.

3.2 Sequent Calculus

We define a sequent calculus for PL-DL. Symbolic execution of a PL-program is
performed by application of sequent calculus rules. Soundness of the rules ensures
validity of provable PL-DL formulas in a program verification setting [3].

A sequent is a pair of sets of formulas Γ = {φ1, . . . , φn} (antecedent) and
∆ = {ψ1, . . . , ψm} (succedent) of the form Γ =⇒ ∆. Its semantics is defined by
the formula

∧
φ∈Γ φ→

∨
ψ∈∆ ψ. A sequent calculus rule has one conclusion and

zero or more premises. It is applied to a sequent s by matching its conclusion
against s. The instantiated premises are then added as children of s. Our PL-DL
sequent calculus behaves as a symbolic interpreter for PL. A sequent for PL-DL
is always of the form Γ =⇒ U [p]φ,∆. During symbolic execution performed by
the sequent rules (see Fig. 5) the antecedents Γ accumulate path conditions and
contain possible preconditions. The updates U record the current symbolic value
at each point during program execution and the φ’s represent postconditions.

Symbolic execution of a program p works as follows:

1. Select an open proof goal with a [·] modality. If no [·] exists on any branch,
then symbolic execution is completed. Focus on the first active statement
(possibly empty) of the program in the modality.

2. If it is a complex statement, apply rules to decompose it into simple state-
ments and goto 1., otherwise continue.

3. Apply the sequent calculus rule corresponding to the active statement.
4. Simplify the resulting updates and apply first-order simplification to the

premises. This might result in some closed branches. It is possible to detect
and eliminate infeasible paths in this way. Goto 1.

Example 3. We look at typical proof goals that arise during symbolic execution:

1. Γ, i > j ⇒ U [if (i>j) {p} else {q} ω]φ: Applying rule ifElse and sim-
plification eliminates the else branch and symb. exec. continues with p ω.

2. Γ ⇒ {i := c‖ . . .}[j = i; ω]φ where c is a constant: It is sound to replace
the statement j = i with j = c and continue with symbolic execution. This
is known as constant propagation. More techniques for partial evaluation can
be integrated into symbolic execution [12].

3. Γ ⇒ {o1.a := v1‖ . . .}[o2.a = v2; ω]φ: After executing o2.a = v2, the alias
is analyzed as follows: (i) if o2 = null is true the program does not terminate;
(ii) else, if o2 = o1 holds, the value of o1.a in the update is overriden and
the new update is {o1.a := v2‖ . . . ‖o2.a := v2}; (iii) else the new update
is {o1.a := v1‖ . . . ‖o2.a := v2}. Neither of (i)–(iii) might be provable and
symbolic execution split into these three cases when encountering a possibly
aliased object access.

The result of symbolic execution for a PL program p following the sequent
calculus rules is a symbolic execution tree (SET), as illustrated in Fig. 6.

Complete symbolic execution trees are finite acyclic trees whose root is
labeled with Γ =⇒ [p]φ,∆ and no leaf has a [·] modality. Without loss of
generality, we can assume that each inner node i is annotated by a sequent
Γi =⇒ Ui[pi]φi, ∆i, where pi is the program to be executed. Every child node
is generated by rule application from its parent. A branching node represents
a statement whose execution causes branching, e.g., conditional, object access,
loops etc.

emptyBox
Γ =⇒ Uφ,∆
Γ =⇒ U []φ,∆

assignment
Γ =⇒ U{x := litV ar}[ω]φ,∆

Γ =⇒ U [x = litV ar;ω]φ,∆

assignAddition
Γ =⇒ U{x := litV ar1 + litV ar2}[ω]φ,∆

Γ =⇒ U [x = litV ar1 + litV ar2;ω]φ,∆

writeAttribute
Γ,U¬(o

.
= null) =⇒ U{o.a := se}[π ω]φ,∆

Γ =⇒ U [o.a = se; ω]φ,∆

ifElse
Γ,Ub =⇒ U [p;ω]φ,∆ Γ,U¬b =⇒ U [q;ω]φ,∆

Γ =⇒ U [if (b) {p} else {q} ω]φ,∆

loopUnwind
Γ =⇒ U [if (exp) {p; while (exp) {p}} ω]φ,∆

Γ =⇒ U [while (exp) {p} ω]φ,∆

loopInvariant

Γ =⇒ Uinv,∆ (init)
Γ,UVmod(b ∧ inv) =⇒ UVmod[p]inv,∆ (preserves)
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω]φ,∆ (use case)

Γ =⇒ U [while (b) {p} ω]φ,∆

methodInvocation

Γ,U¬(o
.
= null) =⇒ {U}[

if (o instanceof Tn) res = o.m(se)@Tn;
else if(o instanceof Tn−1) res = o.m(se)@Tn−1;
. . .
else res = o.m(se)@T1;
ω]φ,∆

Γ =⇒ U [res = o.m(se); ω]φ,∆

methodContract

Γ =⇒ U{param1 := v1‖ . . . ‖paramn := vn}pre,∆
Γ =⇒ U{param1 := v1‖ . . . ‖paramn := vn}Vmod(post→ [r =res;ω]φ),∆

Γ =⇒ U [r = m(v1, . . . , vn); ω]φ,∆

For decomposition of complex expressions:

postInc
Γ =⇒ U [Ty v1 = y; y = y + 1; x = v1;ω]φ,∆

Γ =⇒ U [x = y++;ω]φ,∆

assignAdditionUnfold
Γ =⇒ U [Texp1 v1 = exp1; Texp2 v2 = exp2; x = v1 + v2;ω]φ,∆

Γ =⇒ U [x = exp1 + exp2;ω]φ,∆

writeAttributeUnfold
Γ =⇒ U [Tnse v1 = nse; v1.a = se; ω]φ,∆

Γ =⇒ U [nse.a = se; ω]φ,∆

ifElseUnfold
Γ =⇒ U [boolean b = nse; if (b) {p} else {q} ω]φ,∆

Γ =⇒ U [if (nse) {p} else {q} ω]φ,∆

Fig. 5. Selected sequent calculus rules (for more detail see [3]).

Program

. . . ;

. . .

if (cond) {
. . . }

else {
. . . }

while (guard) {
. . . }

. . .

. . . ;

Symbolic Execution Tree (SET)

n0

cond

guard guard

n3

n4

n5

n6

bl0

bl1 then-branch bl2 else-branch

bl3 loop body
bl4

bl5 loop body
bl6

S.E.−→

Fig. 6. Symbolic execution tree with loop invariant applied.

Definition 7 (Sequential block). A sequential block (SB) is a maximal pro-
gram fragment in an SET that is symbolically executed without branching.

For instance, there are 7 sequential blocks bl0,. . . ,bl6 in the SET in Fig. 6.

Definition 8 (Child, descendent and sibling sequential block). For se-
quential blocks bl0 and bl1:

– bl1 is the child of bl0, if bl0 ends in a branching node n and bl1 starts with
n.

– bl1 is the descendant of bl0, if there exists sequential blocks bl0,. . . ,blm,0 < m
such that bl0=bl0, bl1=blm and each bli+1 is the child of bli for 0 ≤ i < m.
Intuitively when m = 1, a child is also a descendant.

– bl1 is the sibling of bl0, if both bl0 and bl1 starts with the same branching
node n .

In the SET in Fig. 6, bl3 is the child of bl0, the sibling of bl4 and the descendant
of bl0.

Definition 9 (Generalized sequential block). A generalized sequential block
(GSB) is a sequential block together with all its descendant sequential blocks.

It is a recursive definition, so a GSB always ends with leaf nodes. In the SET in
Fig. 6, we have GSB {bl1, bl3, bl4} and {bl2, bl5, bl6}. However, {bl0, bl1, bl2, bl5, bl6}
is not a GSB because bl1 does not end with leaf nodes. Another remark is that
a program is a GSB itself, which is {bl0, bl1, bl2, bl3, bl4, bl5, bl6} in this SET. For
convenience, we refer to a GSB with the father sequential block. For instance,
GSB {bl1, bl3, bl4} is denoted as GSB(bl1).

4 Sequent Calculus for Program Transformation

The structure of a symbolic execution tree makes it possible to synthesize a
program by bottom-up traversal. The idea is to apply the sequent calculus rules
reversely and generate the program step-by-step. This requires to extend the
sequent calculus rules with means for program synthesis. Obviously, the syn-
thesized program should behave exactly as the original one, at least for the
observable locations. To this end we introduce the notion of weak bisimulation
for PL programs and show its soundness for program transformation.

4.1 Weak Bisimulation Relation of Program

Definition 10 (Location sets, observation equivalence). A location set is
a set containing program variables x and attribute expressions o.a with a ∈ Attr
and o being a term of the appropriate sort.

Given two states s1, s2 and a location set obs, obs ⊆ loc. A relation ≈: loc×
S×S is an observation equivalence if and only if for all ol ∈ obs, valD,s1,β(ol) =
valD,s2,β(ol) holds. It is written as s1 ≈obs s2. We call obs observable locations.

The semantics of a PL program p (Fig. 3) is a state transformation. Executing
p from a start state s results in a set of end states S′, where S′ is a singleton {s′}
if p terminates, or ∅ otherwise. We identify a singleton with its only member, so
in case of termination, valD,s(p) is evaluated to s′ instead of {s′}.

A transition relation −→: Π × S × S relates two states s, s′ by a program

p iff p starts in state s and terminates in state s′, written s
p−→ s′. We have:

s
p−→ s′, where s′ = valD,s(p). If p does not terminate, we write s

p−→.
Since a complex statement can be decomposed into a set of simple state-

ments, which is done during symbolic execution, we can assume that a program
p consists of simple statements. Execution of p leads to a sequence of state tran-

sitions: s
p−→ s′ ≡ s0

sSt0−→ s1
sSt1−→ . . .

sStn−1−→ sn
sStn−→ sn+1, where s = s0, s′ = sn+1,

si a program state and sSti a simple statement (0 ≤ i ≤ n). A program state
has the same semantics as the state defined in a Kripke structure, so we use
both notations without distinction.

Some simple statements reassign values (write) to a location ol in the observ-
able locations that affects the evaluation of ol in the final state. We distinguish
these simple statements from those that do not affect the observable locations.

Definition 11 (Observable and internal statement/transition). Consider

states s, s′, a simple statement sSt, a transition relation −→, where s
sSt−→ s′,

and the observable locations obs; we call sSt an observable statement and −→
an observable transition, if and only if there exists ol ∈ obs, and valD,s′,β(ol) 6=
valD,s,β(ol). We write

sSt−→obs. Otherwise, sSt is called an internal statement
and −→ an internal transition, written −→int.

In this definition, observable/internal transitions are minimal transitions that
relate two states with a simple statement. We indicate the simple statement sSt

in the notion of the observable transition
sSt−→obs, since sSt reflects the changes

of the observable locations. In contrast, an internal statement does not appear
in the notion of the internal transition.

Example 4. Given the set of observable locations obs={x, y}, the simple state-
ment “x = 1 + z;” is observable, because x’s value is reassigned. The state-
ment “z = x + y;” is internal, since the evaluation of x, y are not changed,
even though the value of each variable is read by z.

Remark. An observable transition is defined by observing the changes of obs
in the final state after the transition. For a program that consists of many
statements, the observable locations for the final state may differ from that for

some internal state. Assume an observable transition s
sSt−→obs s

′ changes the
evaluation of some location ol ∈ obs in state s′. The set of observable locations
obs1 in state s should also contain the locations ol1 that is read by ol, because
the change to ol1 can lead to a change of ol in the final state s′.

Example 5. Consider the set of observable locations obs={x, y} and program
fragment “z = x + y; x = 1 + z;”. The statement z = x + y; becomes ob-
servable because the value of z is changed and it will be used later in the ob-
servable statement x = 1 + z;. The observable location set obs1 should contain
z after the execution of z = x + y; .

Definition 12 (Weak transition). Given a set of observable locations obs,
the transition relation =⇒int is the reflexive and transitive closure of −→int:
s =⇒int s

′ holds iff for states s0,. . .,sn, n≥0, we have s = s0, s′ = sn and
s0 −→int s1 −→int · · · −→int sn. In the case of n = 0, s =⇒int s holds.

The transition relation
sSt
=⇒obs is the composition of the relations =⇒int,

sSt−→obs

and =⇒int: s
sSt
=⇒obs s

′ holds iff there are states s1 and s2 such that s =⇒int

s1
sSt−→obs s2 =⇒int s

′. The weak transition
ŝSt
=⇒obs represents either

sSt
=⇒obs, if

sSt observable or =⇒int otherwise.

In other words, a weak transition is a sequence of minimal transitions that
contains at most one observable transition.

Definition 13 (Weak bisimulation for states). Given two programs p1, p2
and observable locations obs, obs′, let sSt1 be a simple statement and s1, s

′
1

two program states of p1, and sSt2 is a simple statement and s2, s
′
2 are two

program states of p2. A relation ≈ is a weak bisimulation for states if and only
if s1 ≈obs s2 implies:

– if s1
ŝSt1=⇒obs′ s

′
1, then s2

ŝSt2=⇒obs′ s
′
2 and s′1 ≈obs′ s′2

– if s2
ŝSt2=⇒obs′ s

′
2, then s1

ŝSt1=⇒obs′ s
′
1 and s′2 ≈obs′ s′1

where valD,s1(sSt1) ≈obs′ valD,s2(sSt2).

Definition 14 (Weak bisimulation for programs). Let p1, p2 be two pro-
grams, obs and obs′ are observable locations, and ≈ is a weak bisimulation rela-
tion for states. ≈ is a weak bisimulation for programs, written p1 ≈obs p2, if for
the sequence of state transitions:

s1
p1−→ s′1 ≡ s01

sSt01−→ s11
sSt11−→ . . .

sStn−1
1−→ sn1

sStn1−→ sn+1
1 , with s1 = s01, s′1 = sn+1

1 ,

s2
p2−→ s′2 ≡ s02

sSt02−→ s12
sSt12−→ . . .

sStm−1
2−→ sm1

sStm2−→ sm+1
2 , with s2 = s02, s′2 = sm+1

2 ,

we have (i) s′2 ≈obs s′1; (ii) for each state si1 there exists a state sj2 such that

si1 ≈obs′ s
j
2 for some obs′; (iii) for each state sj2 there exists a state si1 such that

sj2 ≈obs′ si1 for some obs′, where 0 ≤ i ≤ n and 0 ≤ j ≤ m.

The weak bisimulation relation for programs defined above requires a weak
transition that relates two states with at most one observable transition. This
definition reflects the structural properties of a program and can be characterized
as a small-step semantics [13]. It directly implies the lemma below that relates
the weak bisimulation relation of programs to a big-step semantics [14].

Lemma 1. Let p, q be programs and obs the set of observable locations. It holds
p ≈obs q if and only if for any first-order structure D and state s, valD,s(p) ≈obs
valD,s(q) holds.

4.2 The Weak Bisimulation Modality

We introduce a weak bisimulation modality which allows us to relate two pro-
grams that behave indistinguishably on the observable locations.

Definition 15 (Weak bisimulation modality—syntax). The bisimulation
modality [p G q]@(obs, use) is a modal operator providing compartments for
programs p, q and location sets obs and use. We extend our definition of for-
mulas: Let φ be a PL-DL formula and p, q two PL programs and obs, use two
location sets such that pv(φ) ⊆ obs where pv(φ) is the set of all program variables
occurring in φ, then [p G q]@(obs, use)φ is also a PL-DL formula.

The intuition behind the location set usedVar(s, p, obs) defined below is to
capture precisely those locations whose value influences the final value of an
observable location l ∈ obs (or the evaluation of a formula φ) after executing a
program p. We approximate the set later by the set of all program variables in
a program that are used before being redefined (i.e., assigned a new value).

Definition 16 (Used program variable). A variable v ∈ PV is called used
by a program p with respect to a location set obs, if there exists an l ∈ obs such
that

D, s |= ∀vl.∃v0.((〈p〉l = vl)→ ({v := v0}〈p〉l 6= vl))

The set usedVar(s, p, obs) is defined as the smallest set containing all used pro-
gram variables of p with respect to obs.

The formula defining a used variable v of a program p encodes that there
is an interference with a location contained in obs. In Example 5, z is a used
variable. We formalize the semantics of the weak bisimulation modality:

Definition 17 (Weak bisimulation modality—semantics). With p, q PL-
programs, D, s, β, and obs, use as above, let valD,s,β([p G q]@(obs, use)φ) = tt
if and only if

1. valD,s,β([p]φ) = tt
2. use ⊇ usedV ar(s, q, obs)
3. for all s′ ≈use s we have valD,s(p) ≈obs valD,s′(q)

Lemma 2. Let obs be the set of all locations observable by φ and let p, q be
programs. If p ≈obs q then valD,s,β([p]φ)↔ valD,s,β([q]φ) holds for all D, s, β.

Proof. Direct consequence of Definition 17 and Lemma 1. ut

An extended sequent for the bisimulation modality is:

Γ =⇒ U [p G q]@(obs, use)φ,∆

The following lemma gives an explicit meaning of used variable set use.

Lemma 3. An extended sequent Γ =⇒ U [p G q]@(obs, use)φ,∆ within a se-
quential block bl (see Definition 7) represents a certain state s1, where P is the
original program of bl, p is the original program to be executed in bl at state s1,
and p′ is the original program already been executed in bl; while Q is program
to be generated of bl, q is the already generated program in bl, and q′ is the
remaining program to be generated in bl. The location set use are the dynamic
observable locations that the following relations hold: (i) p ≈obs q; (ii) P ≈obs Q;
(iii) p′ ≈use q′.

Proof. The structure of this sequential block bl is illustrated in Fig. 7.
(i) p ≈obs q

It is the direct consequence of Definition 17.
(ii) P ≈obs Q

Consider the initial state s0 of this sequential block, where use = use0, p=P
and q=Q in the sequent, we have s′0 ≈use0 s0, according to Definition 17 and
Lemma 1, P ≈obs Q holds.
(iii) p′ ≈use q′

Consider the truncated sequential block bl2 starting from the current state
s1 and ending with the final state s2 According to Definition 16, if there is no
program in bl2, then we have obs = use. Now consider the truncated sequential
block bl1 starting from the initial state s0 and ending with the current state s1.
We have use = use0, p=p′, q=q′ and obs = use in the sequent, according to
Definition 17 and Lemma 1, p′ ≈use q′ holds.

s0

s1

s2

s′0

s′1

s′2

p′

p q

q′

P Q

obs

use

use0

U

bl

bl2

bl1

Fig. 7. Program in a sequential block.

4.3 Sequent Calculus Rules for the Bisimulation Modality

The sequent calculus rules for the bisimulation modality are of the following
form:

ruleName

Γ1 =⇒ U1[p1 G q1]@(obs1, use1)φ1, ∆1

. . .
Γn =⇒ Un[pn G qn]@(obsn, usen)φn, ∆n

Γ =⇒ U [p G q]@(obs, use)φ,∆

Fig. 8 shows some extended sequent calculus rules, where ω denotes the
generated program that is weak bisimilar to ω. Unlike standard sequent calculus
rules that are executed from root to leaves, sequent rule application for the
bisimulation modality consists of two phases:

Phase 1. Symbolic execution of source program p as usual. In addition, the
observable location sets obsi are propagated, since they contain the locations
observable by pi and φi that will be used in the second phase. Typically, obs
contains the return variables of a method and the locations used in the continua-
tion of the program, e.g., program variables used after a loop must be reflected in
the observable locations of the loop body. The result of this phase is a symbolic
execution tree as illustrated in Fig. 6.

Phase 2. We synthesize the target program q and used variable set use from
qi and usei by applying the rules in a leave-to-root manner. One starts with a
leaf node and generates the program within its sequential block first, e.g., bl3,
bl4, bl5, bl6 in Fig. 6. These are combined by rules corresponding to statements
that contain a sequential block, such as loopInvariant (containing bl3 and bl4).
One continues with the generalized sequential block containing the compound
statements, e.g., GSB(bl2), and so on, until the root is reached. Note that the
order of processing the sequential blocks matters, for instance, the program
for the sequential block bl4 must be generated before that for bl3, because the
observable locations in node n3 depend on the used variable set of bl4 according
to the loopInvariant rule.

Now we show the program transformation in action.

emptyBox
Γ =⇒ U@(obs,)φ,∆

Γ =⇒ U [nop G nop]@(obs, obs)φ,∆

assignment
Γ =⇒ U{l := r}[ω G ω]@(obs, use)φ,∆(

Γ =⇒ U [l = r;ω G l = r;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ U [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)

ifElse

Γ,Ub =⇒ U [p;ω G p;ω]@(obs, usep;ω)φ,∆
Γ,U¬b =⇒ U [q;ω G q;ω]@(obs, useq;ω)φ,∆

Γ =⇒ U [if (b) {p} else {q};ω G
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,∆

(with b boolean variable.)

loopUnwind

Γ =⇒ U [if (b) {p; while (b) {p}} ω G
if (b) {p; while (b) {p}} ω]@(obs, use)φ,∆

Γ =⇒ U [while(b) {p} ω G if (b) {p; while(b) {p}} ω]@(obs, use)φ,∆

loopInvariant

Γ =⇒ Uinv,∆
Γ,UVmod(b ∧ inv) =⇒ UVmod[p G p]@(use1 ∪ {b}, use2)inv,∆
Γ,UVmod(¬b ∧ inv) =⇒ UVmod[ω G ω]@(obs, use1)φ,∆

Γ =⇒ U [while(b){p}ω G while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,∆

methodContractC=(pre,post,mod)

Γ =⇒ U{prm1 := v1‖ . . . ‖prmn := vn}pre,∆
Γ =⇒ U{prm1 := v1‖ . . . ‖prmn := vn}Vmod

(post → {r := res}[ω G ω]@(obs, use)φ),∆

Γ =⇒ U [r = m(v1, . . . , vn); ω G r = m(v1, . . . , vn);ω]@(obs, use)φ,∆
(Contract C is correct)

Fig. 8. A collection of sequent calculus rules for program transformation.

Example 6. Given observable locations obs={x}, we perform program transfor-
mation for the following PL program.

y = y + z;

if (b) {

y = z++;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

In the first phase, we do symbolic execution using the extended sequent calcu-
lus shown in Fig. 8. We use spi to denote the program to be generated, and usei
to denote the used variable set. To ease the presentation, we omit postcondition
φ, as well as unnecessary formulas Γ and ∆. The first active statement is an as-
signment, so the assignment rule is applied. A conditional is encountered. After
the application of ifElse rule, the result is the symbolic execution tree shown in
Fig. 9.

U1b =⇒ U1[y = z + +; . . . G sp2]@({x}, use2) U1¬b =⇒ U1[z = 1; . . . G sp3]@({x}, use3)

=⇒ {y := y + z}[if(b){. . .}else{. . .} G sp1]@({x}, use1)

=⇒ [y = y + z; . . . G sp0]@({x}, use0)

Fig. 9. Symbolic execution tree until conditional.

Now the symbolic execution tree splits into 2 branches. U1 denotes the update
computed in the previous steps: {y := y + z}. We first concentrate on the then-
branch, where the condition b is TRUE. The first active statement y = z + +; is a
complex statement. We decompose it into 3 simple statements using the postInc
rule introduced in Fig. 5. Then after a few applications of the assignment rule
followed by the emptyBox rule, the symbolic execution tree in this sequential
block is shown in Fig. 10.

Now the source program is empty, so we can start generating a program for
this sequential block. By applying the emptyBox rule in the other direction, we
get sp8 as nop and use8={x}. The next rule application is assignment. Because
x ∈ use8, the assignment x = z; is generated and the used variable set is updated
by removing x but adding z. So we have sp7: x = z; and use7={z}. In the
next step, despite another assignment rule application, no statement is generated
because y 6∈ use7, and sp6 and use6 are identical to sp7 and use7. Following 3
more assignment rule applications, in the end we get sp2: z = z + 1;x = z; and

U1b =⇒ U1{t := z}{z := z + 1}{y := t}{x := z}@({x},)

U1b =⇒ U1{t := z}{z := z + 1}{y := t}{x := z}[G sp8]@({x}, use8)

U1b =⇒ U1{t := z}{z := z + 1}{y := t}[x = z; G sp7]@({x}, use7)

U1b =⇒ U1{t := z}{z := z + 1}[y = t; . . . G sp6]@({x}, use6)

U1b =⇒ U1{t := z}[z = z + 1; y = t; . . . G sp5]@({x}, use5)

U1b =⇒ U1[int t = z; z = z + 1; y = t; . . . G sp4]@({x}, use4)

U1b =⇒ U1[y = z + +; . . . G sp2]@({x}, use2)

Fig. 10. Symbolic execution tree of then branch.

use2={z}. So z = z + 1;x = z; is the program synthesized in this sequential
block.

So far we have done the program transformation for the then-branch. Anal-
ogous to this, we can generate the program for the else-branch. After the first
phase of symbolic execution, the symbolic execution tree is built as shown in
Fig. 11. In the second phase, the program is synthesized after applying a se-
quence of assignment rules. The resulting program for this sequential block is
sp3: z = 1;x = y + z; y = x;x = y + 2;, while use3={y}.

U1¬b =⇒ U1{z := 1}{x := y + z}{y := x}{x := y + 2}@({x},)

U1¬b =⇒ U1{z := 1}{x := y + z}{y := x}{x := y + 2}[G sp12]@({x}, use12)

U1¬b =⇒ U1{z := 1}{x := y + z}{y := x}[x = y + 2; G sp11]@({x}, use11)

U1¬b =⇒ U1{z := 1}{x := y + z}[y = x; . . . G sp10]@({x}, use10)

U1¬b =⇒ U1{z := 1}[x = y + z; . . . G sp9]@({x}, use9)

U1¬b =⇒ U1[z = 1; . . . G sp3]@({x}, use3)

Fig. 11. Symbolic execution tree of else branch.

Now we have synthesized the program for both sequential blocks. Back to the
symbolic execution tree shown in Fig. 9, we can build a conditional by applying
the ifElse rule. The result is sp1: if(b) {z = z + 1;x = z; } else {z = 1;x =
y + z; y = x;x = y + 2; }, and use1={b, z, y}. After a final assignment rule
application, the program generated is shown in Fig. 12.
Remark. Our approach to program transformation will generate a program
that only consists of simple statements. The generated program is optimized to
a certain degree, because the used variable set avoids generating unnecessary
statements. In this sense, our program transformation framework can be consid-
ered as program specialization. In fact, during the symbolic execution phase, we
can interleave partial evaluation actions, i.e., constant propagation, deadcode-

y = y + z;

if (b) {

z = z + 1;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

Fig. 12. The generated program for Example 6.

elimination, safe field access and type inference ([12]). It will result in a more
optimized program.

5 Soundness

Theorem 1. The extended sequent calculus rules are sound.

The deductive description of the presented program transformation rule sys-
tem enables us to reuse standard proof techniques applied in soundness proofs
for classical logic calculi.

The basic approach is to prove soundness for each rule. The soundness of
the whole method is then a consequence of the soundness theorem for classical
sequent calculi `:

Theorem 2. If all rules of the proof system ` are sound, then the proof system
is sound.

The soundness proof for the classical calculus rules remains unchanged. The
interesting part is the soundness proof for the rules dealing with the weak bisim-
ulation modality. The soundness proof of these rules requires in particular to
show, that the transformed program is equivalent to the original one up to weak
bisimulation with respect to a specified set of observable locations obs.

We need first some lemmas which establish simple properties that are mostly
direct consequences of the respective definitions given in the Section 4.2.

The following lemma allows us to extend the weak bisimulation relation for
two states when we know that they coincide on the value of x.

Lemma 4. Let s1, s2 ∈ S be observation equivalent s1 ≈obs s2 and x : T ∈ PV.
If s1(x) = s2(x) then s1 ≈obs∪{x} s2.

Proof. Direct consequence of Definition 10. ut

The next lemma states that two bisimilar states remain bisimular if both are
updated by identical assignments:

Lemma 5. Let s1, s2 ∈ S be observation equivalent s1 ≈obs s2. If s′1, s
′
2 are such

that s′1 = s1[x← d] and s′2 = s2[x← d] for a program variable x : T and domain
element d ∈ D(T) then s′1 ≈obs s′2.

Proof. Direct consequence of Definition 10. ut

We need further that the bisimulation relation is anti-monotone with respect
to the set of observable locations.

Lemma 6. Given two programs p, q and location sets loc1, loc2 with loc1 ⊆ loc2.
If p ≈loc2 q then also p ≈loc1 q.

Proof. Direct consequence of Definition 14. ut

Finally, we need the fact that changes to unobserved locations have no effect
on the bisimulation relation between two states:

Lemma 7. Let loc denote a set of locations, l : T ∈ PV and s1, s2 ∈ S.
If l 6∈ loc and s1 ≈loc s2 then for all d ∈ DT :

s1[l← d] ≈loc s2

Proof. Direct consequence of Definition 10. ut

We can now turn to the soundness proof for the calculus rules. We prove
here exemplarily that the assignment rule for local variables is sound. The rule
is central to the approach as it performs a state change.

Lemma 8. The rule

assignment

Γ =⇒ U{l := r}[ω G ω]@(obs, use)φ,∆(
Γ =⇒ U [l = r;ω G l = r;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ U [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)
with l, r local variables

is sound.

Proof. To check the soundness of the rule, we have to prove that if all premises
of the rule are valid then its conclusion is also valid.

We fix a first-order structure D, a state s and a variable assignment β.
Further, we assume that for all formulas γ ∈ Γ : valD,s,β(γ) = tt and for all
formulas δ ∈ ∆: valD,s,β(∆) = ff holds. Otherwise, the conclusion is trivially
satisfied by D, s, β. Hence, we can assume that

valD,s,β(U{l := r}[ω G ω]@(obs, use)φ) = tt

or, equivalently,

valD,ŝ,β([ω G ω]@(obs, use)φ) = tt (1)

where

sU := valD,s,β(U)(s), ŝ := valD,sU ,β(l := r)(sU) = valD,s,β(U‖U(l := r))(s)

holds.

Case 1 (l ∈ use):
We have to show that

valD,s,β(U [l = r;ω G l = r;ω]@(obs, use′)φ)

= valD,sU ,β([l = r;ω G l = r;ω]@(obs, use′)φ)

= tt

with use′ := use− {l} ∪ {r} holds.

To prove that valD,sU ,β([l = r;ω G l = r;ω]@(obs, use′)φ) = tt we need to
check the three items of Definition 17:

Item 1 is satisfied if

valD,s,β(U [l = r;ω]φ) = tt

holds. This is a direct consequence from the correctness of the sequent calculus
presented in Section 4.3.
Item 2 use′ ⊇ usedV ar(s, l = r;ω, obs) expresses that use′ captures at least all
used variables and it is a direct consequence of the definition of usedV ar. By
assumption use contains at least all variables actually read by ω. The program
l = r;ω redefines l which can be safely removed from use while variable r is read
and needs to be added.
Item 3 is the last remaining item that needs to be proven, i.e., that the two pro-
grams in the conclusion are actually weak bisimular with respect to the location
set obs.

We have to show that for all s1 ≈use′ sU :

valD,sU (l = r;ω) ≈obs valD,s1(l = r;ω)

holds. Following the semantics definitions given in Fig. 3 we get

valD,sU (l = r;ω) =
⋃
s′∈valD,sU (l=r;)

valD,s′(ω) = valD,ŝ(ω)

and

valD,s1(l = r;ω) =
⋃
s′1∈valD,s1

(l=r;) valD,s′1(ω) = valD,ŝ1(ω) with {ŝ1} =

valD,s1(l = r;)

As use′ contains r and because s1 ≈use′ sU we get

sU (r) = s1(r) (2)

and, hence,

ŝ(l) = ŝ1(l) (3)

Applying Lemma 5 we get

ŝ ≈use′ ŝ1
⇔ ŝ ≈use−{l}∪{r} ŝ1
⇒

Lemma 6 ŝ ≈use−{l} ŝ1
⇒
(3) ŝ ≈use ŝ1

With assumption (1) and Definition 15, we get valD,ŝ(ω) ≈obs valD,ŝ1(ω) and
hence

valD,sU (l = r;ω) = valD,ŝ(ω) ≈obs valD,ŝ1(ω) = valD,s1(l = r;ω)

Case 2 (l 6∈ use): As for case 1 we have to check all three items. The first item
is identical to case 1 and the second item is trivial as the transformed program
does not change. Item 3 remains to be checked, i.e., for an arbitrary s1 with

s1 ≈use′ sU (4)

we have to prove that

valD,sU (l = r;ω) ≈obs valD,s1(ω)

holds (i.e., that the final states are observation equivalent), we have to use the
fact that l 6∈ use and that item 2 holds, i.e., that use contains at least all variables
read by ω.

s1 ≈use′ sU
⇒ s1 ≈use sU

⇒
Lemma 7 s1 ≈use ŝ

⇒
(1) valD,ŝ(ω) ≈obs valD,s1(ω)
⇒
(1) valD,sU (l = r;ω) = valD,ŝ(ω) ≈obs valD,s1(ω)

ut

We conclude this section with a short discussion of the loop invariant rule. The
interesting aspect of the loop invariant rule is that the observable location set obs
of the second premise differs from the others. This allows us to establish a con-
nection to the notion of a program context as used in compositional correctness
proofs.

Compositional compiler correctness proofs consider the context C(◦) in which
the compiled entity p is used. A context C is a description contain the placeholder
◦ which can be instantiated by ’any’ program entity q.

The idea is to formalize a stable interface on which p can rely on and with
which p interacts. A compositional compiler must now be able to compile p such
that a given correctness criteria are satisfied for the compilation pcompiled with
respect to C.

The observable location set obs in the presented approach is similar to the
context as described above. It specifies which effects must be preserved by the
compiler (program transformer). E.g., when the program p to be transformed is
a method body, then the observable set contains only the location which refers
to the result value of the method and implicitly, all heap locations.

If the effect on these locations produced by the transformed program is indis-
tinguishable from the respective effect of the original program, then the program
transformer is considered correct. In case of the loop invariant rule, the loop body
is transformed independently in the second branch. It would not be enough to
just use the original context instead, we must demand that all effects on local
variables used by the code following the loop statement as well as the loop guard
variable are preserved.

6 Optimization

The previously introduced program transformation technique generates a pro-
gram that consists only of simple statements. With the help of the used variable
set, we avoid generating unnecessary statements, so the program is optimized
to a certain level. An optimization can be made to interleave partial evaluation
actions with symbolic execution in the first phase.

6.1 Sequentialized Normal Form of Updates

Updates reflect the state of program execution. In particular, the update in a
sequential block records the evaluation of the locations in that sequential block.
We can involve updates in the second phase of program generation, which leads to
further optimization opportunities. As defined in Definition 5, updates in normal
form are in the form of single static assignment (SSA). It is easy to maintain
normal form of updates in a sequential block when applying the extended sequent
calculus rules of Fig. 8. This can be used for further optimization of the generated
program.

Take the assignment rule for example: after each forward rule application,
we do an update simplification step to maintain the normal form of the update
for that sequential block; when a statement is synthesized by applying the rule
backwards, we use the update instead of the executed assignment statement, to
obtain the value of the location to be assigned; then we generate the assignment
statement with that value.

Example 7. Consider the following program:

i = j + 1;

j = i;

i = j + 1;

After executing the first two statements and update simplification, we obtain
the normal form update Unf2 = {i := j + 1‖j := j + 1}. Doing the same with

the third statement results in Unf3 = {j := j+ 1‖i := j+ 2}, which implies that
in the final state i has value j + 2 and j has value j + 1.

Let i be the only observable location, for which a program is now synthesized
bottom-up, starting with the third statement. The rules in Fig. 8 would allow to
generate the statement i = j + 1;. But, reading the value of location i from
Unf3 as sketched above, the statement i = j + 2; is generated. This reflects the
current value of j along the sequential block and saves an assignment.

A first attempt to formalize our ideas is the following assignment rule:

Γ =⇒ Unf1 [ω G ω]@(obs, use)φ,∆(
Γ =⇒ Unf [l = r;ω G l = r1;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ Unf [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)
with Unf1 = {. . . ‖l := r1} being the normal form of Unf{l := r}

However, this rule is not sound. If we continue Example 7 with synthesizing
the first two assignments, we obtain j = j + 1; i = j + 2; by using the new
rule, which is clearly incorrect, because i has final value j + 3 instead of j +
2. The problem is that the values of locations in the normal form update are
independently synthesized from each other and do not reflect how one statement
is affected by the execution of previous statements in sequential execution. To
ensure correct usage of updates in program generation, we introduce the concept
of a sequentialized normal form (SNF) of an update. Intuitively, it is the update
of the normal form in which every involved assignment statement is independent
of each other.

Definition 18 (Elementary update independence). An elementary update
l1 := exp1 is independent from another elementary update l2 := exp2, if l1 does
not occur in exp2 and l2 does not occur in exp1.

Definition 19 (Sequentialized normal form update). An update is in se-
quentialized normal form, denoted by Usnf , if it has the shape of a sequence of
two parallel updates {ua1‖ . . . ‖uam}{u1‖ . . . ‖un}, m ≥ 0, n ≥ 0.
{u1‖ . . . ‖un} is the core update, denoted by Usnfc , where each ui is an ele-

mentary update of the form li := expi, and all ui, uj (i 6= j) are independent
and have no conflict.
{ua1‖ . . . ‖uam} is the auxiliary update, denoted by Usnfa , where (i) each uai is

of the form lk := l (k ≥ 0); (ii) l is a program variable; (iii) lk is a fresh program
variable not occurring anywhere else in Usnfa and not occurring in the location
set of the core update lk /∈ {li|0 ≤ i ≤ n}; (iv) there is no conflict between uai
and uaj for all i 6= j.

Any normal form update whose elementary updates are independent is also
an SNF update that has only a core part.

Example 8 (SNF update). For the following updates,

– {i0 := i‖i1 := i}{i := i0 + 1‖j := i1} is in sequentialized normal form.

– {i0 := j‖i1 := i}{i := i0+1‖j := i1} and {i0 := i+1‖i1 := i}{i := i0+1‖j :=
i1} are not in sequentialized normal form: i0 := j has different base variables
on the left and right, while i0 := i+ 1 has a complex term on the right, both
contradicting (i).

– {i0 := i‖i1 := i}{i := i0 + 1‖j := i} is not in sequentialized normal form,
because i := i0 + 1 and j := i are not independent.

To compute the SNF of an update, in addition to the rules given in Fig. 4
we need two more rules shown in Fig. 13.

(associativity) {u1}{u2}{u3} {u1}({u2}{u3})
(introducing auxiliary) {u} {x0 := x}({x := x0}{u}), where x0 /∈ pv

Fig. 13. Rules for computing SNF updates.

Lemma 9. The associativity rule and introducing auxiliary rule are sound.

Proof. We use the update simplification rules defined in Fig. 4 to prove these
two rules.

Associativity

The left hand side:

{u1}{u2}{u3}
 {u1‖{u1}u2}{u3}

 {u1‖{u1}u2‖{u1‖{u1}u2}u3}

The right hand side:

{u1}({u2}{u3})
 {u1}{u2‖{u2}u3}

 {u1‖{u1}(u2‖{u2}u3)}
 {u1‖{u1}u2‖{u1}{u2}u3}
 {u1‖{u1}u2‖{u1‖{u1}u2}u3}

So, {u1}{u2}{u3} = {u1}({u2}{u3}). We have proved the associativity rule.

Introducing auxiliary

The right hand side:

{x0 := x}({x := x0}{u})
 {x0 := x}{x := x0}{u} (associativity)
 {x0 := x‖{x0 := x}x := x0}{u}

 {x0 := x‖x := x}{u}
 {x := x}{u} (since x0 /∈ pv)

 {u}

So the introducing auxiliary rule is proven. ut

We can maintain the SNF of an update on a sequential block as follows:
after executing a program statement, apply the associativity rule and compute
the core update; if the newly added elementary update l := r is not independent
from some update in the core, then apply introducing auxiliary rule to introduce
{l0 := l}, then compute the new auxiliary update and core update.

6.2 Sequent Calculus Rules Involving Updates

With the help of the SNF of an update, a sound assignment rule can be given
as follows:

assignment

Γ =⇒ Usnf1 [ω G ω]@(obs, use)φ,∆(
Γ =⇒ Usnf [l = r;ω G l = r1;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ Usnf [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)
where Usnf1 = Usnfa1 {. . . ‖l := r1} is the SNF ofUsnf{l := r}).

Whenever the core update is empty, the following auxAssignment rule is used,
which means the auxiliary assignments are always generated in the beginning of
a sequential block.

auxAssignment

Γ =⇒ Usnfa1 [ω G ω]@(obs, use)φ,∆(
Γ =⇒ Usnfa [ω G Tl l

0 = l;ω]@(obs, use− {l0} ∪ {l})φ,∆ if l0 ∈ use
Γ =⇒ Usnfa [ω G ω]@(obs, use)φ,∆ otherwise

)
where Usnfa = {u} and Usnfa1 = {u‖l0 := l} being the auxiliary update

Most of the other rules are obtained by replacing U with Usnf . Some are
shown in Fig. 14.

Example 9. We demonstrate that the program from Example 7 is now handled
correctly. After executing the first two statements and simplifying the update,
we get the normal form update Unf2 = {i := j+1‖j := j+1}. Here a dependency
issue occurs, so we introduce the auxiliary update {j0 := j} and simplify to the

sequentialized normal form update Usnf2 = {j0 := j}{i := j0 + 1‖j := j0 +
1}. Continuing with the third statement and performing update simplification

results in the SNF update Usnf3 = {j0 := j}{j := j0 + 1‖i := j0 + 2}. By
applying the rules above, we synthesize the program int j0= j; i = j0+2;, which
still saves one assignment and is sound.

emptyBox
Γ =⇒ Usnf@(obs,)φ,∆

Γ =⇒ Usnf [nop G nop]@(obs, obs)φ,∆

assignment

Γ =⇒ Usnf1 [ω G ω]@(obs, use)φ,∆(
Γ =⇒ Usnf [l = r;ω G l = r1;ω]@(obs, use− {l} ∪ {r})φ,∆ if l ∈ use
Γ =⇒ Usnf [l = r;ω G ω]@(obs, use)φ,∆ otherwise

)
(with Usnf1 = Usnfa1 {. . . ‖l := r1} the SNF of Usnf{l := r})

auxAssignment

Γ =⇒ Usnfa1 [ω G ω]@(obs, use)φ,∆(
Γ =⇒ Usnfa [ω G l0 = l;ω]@(obs, use− {l0} ∪ {l})φ,∆ if l0 ∈ use
Γ =⇒ Usnfa [ω G ω]@(obs, use)φ,∆ otherwise

)
(with Usnfa = {u} and Usnfa1 = {u‖l0 := l} being the auxiliary update)

ifElse

Γ,Usnfb =⇒ Usnf [p;ω G p;ω]@(obs, usep;ω)φ,∆

Γ,Usnf¬b =⇒ Usnf [q;ω G q;ω]@(obs, useq;ω)φ,∆

Γ =⇒ Usnf [if (b) {p} else {q};ω G
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,∆

(with b boolean variable.)

loopUnwind

Γ =⇒ Usnf [if (b) {p; while (b) {p}} ω G
if (b) {p; while (b) {p}} ω]@(obs, use)φ,∆

Γ =⇒ Usnf [while(b) {p} ω G if (b) {p; while(b) {p}} ω]@(obs, use)φ,∆

loopInvariant

Γ =⇒ Usnf inv,∆
Γ,UsnfVmod(b = TRUE ∧ inv) =⇒ UsnfVmod

[p G p]@(use1 ∪ {b}, use2)inv,∆

Γ,UsnfVmod(b = FALSE ∧ inv) =⇒ UsnfVmod[ω G ω]@(obs, use1)φ,∆

Γ =⇒ Usnf [while(b){p}ω G while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,∆

methodContractC=(pre,post,mod)

Γ =⇒ Usnf{prm1 := v1‖ . . . ‖prmn := vn}pre,∆
Γ =⇒ Usnf{prm1 := v1‖ . . . ‖prmn := vn}Vmod

(post → {r := res}[ω G ω]@(obs, use)φ),∆

Γ =⇒ Usnf [r = m(v1, . . . , vn); ω G r = m(v1, . . . , vn);ω]@(obs, use)φ,∆
(Contract C is correct)

Fig. 14. A collection of sequent calculus rules for program transformation using
SNF update.

Remark. Remember that the program is synthesized within a sequential block
first and then constructed. The SNF updates used in the above rules are the
SNF updates in the current sequential block. A program execution path may
contain several sequential blocks. We do keep the SNF update for each sequential
block without simplifying them further into a bigger SNF update for the entire
execution path. For example in Fig. 6, the execution path from node n0 to n4
involves 3 sequential blocks bl0, bl1 and bl4. When we synthesize the program in
bl4, more precisely, we should write Usnf0 Usnf2 Usnf4 to represent the update used
in the rules. However, we just care about the SNF update of bl4 when generating
the program for bl4, so in the above rules, Usnf refers to Usnf4 and the other
SNF updates are omitted.

Theorem 3. The extended sequent calculus rules involving updates are sound.

Proof. Follows from the soundness of the extended sequent calculus rules (The-
orem 1), the update simplification rules (Fig. 4) and Lemma 9. ut

Now we revisit Example 6 and show how to generate a more optimized pro-
gram.

Example 10. Given observable locations obs={x}, specialize the following PL
program by the approach involving updates in the program generation phase.

y = y + z;

if (b) {

y = z++;

x = z;

}

else {

z = 1;

x = y + z;

y = x;

x = y + 2;

}

In the first phase, we do symbolic execution using the extended sequent
calculus rules involving updates given in Fig. 14. We ignore the postcondition φ
and unnecessary formulas Γ and ∆. To ease the presentation, we do not mention
the update simplification step all the time, but keep in mind that updates within
a sequential block are always simplified after each rule application. Also, we just
show the sequents computed after sequent calculus rule application and update
simplification, but hide the intermediate ones before simplifying the updates.
As usual, spi denotes the program to be generated, and usei denotes the used
variable set.

The first active statement is an assignment, we apply the assignment rule.
After the application of the ifElse rule, the result is the symbolic execution tree
shown in Fig. 15. Here, Usnf1 denotes the sequentialized normal formed update
{y := y + z}. Note that in the path condition, now we only have b (or ¬b) instead

b =⇒ Usnf1 [y = z + +; . . . G sp2]@({x}, use2) ¬b =⇒ Usnf1 [z = 1; . . . G sp3]@({x}, use3)

=⇒ {y := y + z}[if(b){. . .}else{. . .} G sp1]@({x}, use1)

=⇒ [y = y + z; . . . G sp0]@({x}, use0)

Fig. 15. Symbolic execution tree until conditional.

of Usnf1 b (or Usnf1 ¬b). It is the result of update simplification after applying the
ifElse rule.

Now the symbolic execution tree splits into 2 branches.
We symbolically execute the then-branch first. The complex statement y = z + +;

is decomposed into 3 simple statements using the postInc rule. After the ap-
plication of the assignment rule on t = z;, the resulting update is {t := z}.
It is an SNF update that only contains the core part. Then we apply the
assignment rule on z = z + 1;. The update we get before simplification is
{t := z}{z := z + 1}. To simplify this update, we first transform it into parallel
form {t := z‖z := z + 1} using the rules given in Fig. 4. Notice that z, on the
left hand side of z := z + 1, occurs on the right hand side of t := z, so the ele-
mentary updates t := z and z := z + 1 are not independent. To obtain an SNF
update, we use the introducing auxiliary rule defined in Fig. 13. So the update
is rewritten as {z0 := z}({z := z0}{t := z‖z := z + 1}), where z0 is a fresh
variable and the auxiliary update {z0 := z} is introduced. After simplifying the
core part, we finally get the SNF update {z0 := z}{t := z0‖z := z0 + 1}. From
now on, after a few steps application of assignment rule followed by the emptyBox
rule, the symbolic execution tree in this sequential block is shown in Fig. 16.

¬b =⇒ Usnf1 {z0 := z}{t := z0‖z := z0 + 1‖y := z0‖x := z0 + 1}@({x},)

b =⇒ Usnf1 {z0 := z}{t := z0‖z := z0 + 1‖y := z0‖x := z0 + 1}[G sp8]@({x}, use8)

b =⇒ Usnf1 {z0 := z}{t := z0‖z := z0 + 1‖y := z0}[x = z; G sp7]@({x}, use7)

b =⇒ Usnf1 {z0 := z}{t := z0‖z := z0 + 1}[y = t; . . . G sp6]@({x}, use6)

b =⇒ Usnf1 {t := z}[z = z + 1; y = t; . . . G sp5]@({x}, use5)

b =⇒ Usnf1 [int t = z; z = z + 1; y = t; . . . G sp4]@({x}, use4)

b =⇒ Usnf1 [y = z + +; . . . G sp2]@({x}, use2)

Fig. 16. Symbolic execution tree of then branch.

Now we start generating the program for this sequential block. By applying
the emptyBox rule in the other direction, we get sp8 as nop and use8={x}. In
the next step, since x ∈ use8, the assignment x = z0 + 1; is generated according
to the assignment rule involving SNF update. The used variable set is updated

by removing x but adding z0. So we have sp7: x = z0 + 1; and use7={z0}.
The application of 4 more assignment rules generates no more new statement.
Now the core update is empty and we can generate the auxiliary assignment
according to the auxAssignment rule. In the end, we get for this sequential branch
sp2 : int z0 = z;x = z0 + 1; and use2={z}.

Analogous to this, we can generate the program for the else-branch. Af-
ter the first phase of symbolic execution while maintaining the SNF update,
Fig. 17 shows the resulting symbolic execution tree. In the second phase, the
program is synthesized after applying a sequence of assignment rules and a final
auxAssignment rule. The result program for this sequential block is int y0 =
y;x = y0 + 2;, and use3={y}.

¬b =⇒ Usnf1 {y0 := y}{z := 1‖y := y0 + 1‖x := y0 + 3}@({x},)

¬b =⇒ Usnf1 {y0 := y}{z := 1‖y := y0 + 1‖x := y0 + 3}[G sp12]@({x}, use12)

¬b =⇒ Usnf1 {y0 := y}{z := 1‖x := y0 + 1‖y := y0 + 1}[x = y + 2; G sp11]@({x}, use11)

¬b =⇒ Usnf1 {z := 1‖x := y + 1}[y = x; . . . G sp10]@({x}, use10)

¬b =⇒ Usnf1 {z := 1}[x = y + z; . . . G sp9]@({x}, use9)

¬b =⇒ Usnf1 [z = 1; . . . G sp3]@({x}, use3)

Fig. 17. Symbolic execution tree of else branch.

Now the programs for both sequential blocks are synthesized. We can gen-
erate the whole program by applying the ifElse rule and assignment rule. The
specialized program is shown in Fig. 18.

y = y + z;

if (b) {

int z0 = z;

x = z0 + 1;

}

else {

int y0 = y;

x = y0 + 3;

}

Fig. 18. The generated program for Example 10.

Compared to the specialization results from Example 6, we get a more op-
timized program by involving SNF updates during the generation phase. The
specialized program introduces auxiliary variables and is not necessarily con-

taining only simple statements (although there are only simple statements in
this example). This is more like a real-world program compared to the programs
only containing simple statements.

7 Related Work

JSpec [15] is a state-of-the-art program specializer for Java. It uses an offline
partial evaluation technique that depends on binding time analysis. Our work is
based on symbolic execution to derive information on-the-fly, similar to online
partial evaluation [16], however, we do not generate the program during symbolic
execution, but synthesize it in the second phase. In principle, our first phase
can obtain as much information as online partial evaluation, and the second
phase can generate a more precise optimized program. A major advantage of
our approach is that the generated program is guaranteed to be correct. There
is work on proving the correctness of a partial evaluator by [17], but they need
to encode the correctness properties into a logic programming language.

Verifying Compiler [18] project aims at the development of a compiler that
verifies the program during compilation. On contrast, our work might be called
Compiling Verifier, since the optimized program is generated on the basis of
a verification system. Recently, compiler verification became possible [19], how-
ever, it aims at verifying a full compiler with fixed rules, which is very expensive,
while our approach works at a specific target program and is fully automatic.

The product program technique [20] can be used to verify that two closely
related programs preserve behavior, but the programs must be given and loop
invariants must be supplied. This has been applied for loop vectorization [21],
where specific heuristics do away with the need for invariants and target program
is synthesized. The main differences to our work are that we aim at general
programs and we use a different synthesis principle.

8 Conclusions and Future Work

We presented a sound framework for program transformation and optimization.
It employs symbolic execution, deduction and bisimulation to achieve a precise
analysis of variable dependencies and aliasing, and yields an optimized program
that has the same behavior as the original program with respect to the observable
locations. We presented also an improved and sound approach to obtain a more
optimized program by involving updates into the program generation.

The language PL in this paper is a subset of Java, but our technique is valid
in general. We intend to extend our approaches to full Java. Observable locations
need not be restricted to return variables as in here, but, for example, could be
publicly observable variables in an information flow setting. We plan to apply
our approaches to language-based security. Finally, the bisimulation modality is
not restricted to the same source and target programming language, so we plan
to generate Java bytecode from Java source code which will result in a deductive
Java compiler that guarantees sound and optimizing compilation.

References

1. Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated verification of
a small hypervisor. In: VSTTE. Volume 6217 of LNCS. (2010) 40–54

2. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification – specification is the new bottleneck. In: SSV. Volume 102 of
EPTCS. (2012) 18–32

3. Beckert, B., Hähnle, R., Schmitt, P., eds.: Verification of Object-Oriented Software:
The KeY Approach. Volume 4334 of LNCS. Springer-Verlag (2007)

4. Bubel, R., Hähnle, R., Ji, R.: Program specialization via a software verification
tool. In: FMCO. Volume 6957 of LNCS. (2011)

5. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. (2011)
6. King, J.C.: Symbolic execution and program testing. Communications of the ACM

19(7) (July 1976) 385–394
7. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,

Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool: integrating
object oriented design and formal verification. SoSyM 4(1) (2005) 32–54

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
9. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-

grams. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. POPL ’88, New York, NY, USA, ACM (1988)
1–11

10. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant
computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. POPL ’88, New York, NY, USA, ACM
(1988) 12–27

11. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: LPAR. Volume 4246 of LNCS., Springer (2006) 422–436

12. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial evalua-
tion. In: FMCO. (2009) 125–146

13. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61 (2004) 17–139

14. Kahn, G.: Natural semantics. In: STACS. (1987) 22–39
15. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.

ACM-TPLS 25(4) (2003) 452–499
16. Ruf, E.S.: Topics in online partial evaluation. PhD thesis, Stanford University,

Stanford, CA, USA (1993) UMI Order No. GAX93-26550.
17. Hatcliff, J., Danvy, O.: A computational formalization for partial evaluation. Math-

ematical Structures in Computer Science 7(5) (1997) 507–541
18. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.

ACM 50 (2003) 63–69
19. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7) (2009) 107–115
20. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.

In: FM. Volume 6664 of LNCS. (2011) 200–214
21. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational

verification to SIMD loop synthesis. In: PPOPP, ACM (2013) 123–134

	Program Transformation Based on Symbolic Execution and Deduction (Technical Report)
	Ran Ji and Reiner Hähnle and Richard Bubel

