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Abstract. Resource analysis aims at statically obtaining bounds on the
resource consumption of programs in terms of input parameters. A well
known approach to resource analysis is based on transforming the target
program into a set of cost relations, then solving these into a closed-form
bound. In this paper we develop a new analysis for computing upper and
lower cost bounds of programs expressed as cost relations. The analysis
is compositional : it computes the cost of each loop or function separately
and composes the obtained expressions to obtain the total cost. Despite
being modular, the analysis can obtain precise upper and lower bounds
of programs with amortized cost. The key is to obtain bounds that de-
pend on the values of the variables at the beginning and at the end of
each program part. In addition we use a novel cost representation called
cost structure. It allows to reduce the inference of complex polynomial
expressions to a set of linear problems that can be solved efficiently.
We implemented our method and performed an extensive experimental
evaluation that demonstrates its power.
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1 Introduction

Cost or resource analysis aims at statically obtaining bounds on the resource
consumption (such as time or memory consumption) of programs in terms of
their input parameters. Such bounds constitute useful feedback for developers
and help detect performance bugs. This is particularly relevant in the context of
cloud applications where one pays according to the amount of resources used.

One common approach for computing both upper and lower bounds is based
on cost relations (CRs) which are similar to recurrence equations annotated with
linear constraints [2]. In this approach, the cost analysis is carried out in two
phases: (1) given a program, for the given resource we want to measure (time,
memory, etc.), we generate a set of recursive cost relations (CRs) that represent
the cost of the program for the given resource; and (2) the CRs are then analyzed
and a closed-form upper (or lower) bound expression is computed. Here CRs
act as a language-independent intermediate representation. The second phase
of the analysis can be reused to solve CRs generated from programs written in



Program 1 Cost relations:

1{x > 0, y > 0, z > 0}
2 vo id p1 ( i n t x , y , z ) {
3 whi le ( x>0) {
4 x−−;
5 y++;
6 whi le ( y>0 && ∗)
7 y−−;//tick(2);
8 }
9 whi le ( y>0){

10 y−−;
11 i n t i =0;
12 whi le ( i<z )
13 i ++;//tick(1);
14 }}

1: p1(x, y, z) = wh3(x, y, xo, yo) + wh9(yo, z)
{x > 0, y > 0, z > 0}

2: wh3(x, y, xo, yo) = 0 {x = xo = 0, yo = y}
3: wh3(x, y, xo, yo) = wh6(y1, y2) + wh3(x′, y′, xo, yo)

{x > 0, x′ = x− 1, y1 = y + 1, y′ = y2}
4: wh6(y, yo) = 0 {y = yo}
5: wh6(y, yo) = 2 + wh6(y′, yo) {y ≥ 1, y′ = y − 1}
6: wh9(y, z) = 0 {y ≤ 0}
7: wh9(y, z) = wh12(0, z) + wh9(y′, z)

{y ≥ 1, y′ = y − 1, z > 0}
8: wh12(i, z) = 0 {i ≥ z}
9: wh12(i, z) = 1 + wh12(i′, z) {i < z, i′ = i+ 1}
Upper bound = max(2, z) ∗ (x+ y)
Lower bound = min(2, z) ∗ (x+ y)

Fig. 1. Program 1 and its cost relations

different source languages (e.g., Java bytecode [4], ABS [1,16], Llvm IR [17])
and to measure different kinds of resources such as time or memory. Our work
focuses on that second part of the analysis. Given a set of CRs, we present an
analysis that obtains closed-form upper and lower bounds of its cost.

Example 1. Consider program 1 in Fig. 1. We use tick(c) annotations to indicate
that c resource units are consumed (or released if c is negative) at an execution
point. The term ∗ (in line 6) represents an unknown value. Assuming the initial
values of x, y and z are positive, the upper and lower cost bounds of function p1

are max(2, z) ∗ (x+ y) and min(2, z) ∗ (x+ y), respectively.

In the CR representation, we have 5 cost relations: p1, wh3, wh6, wh9 and
wh12: one for the function p1 and one for each while loop located at lines 3, 6,
9 and 12. Each cost relation is composed of a set of cost equations. Each cost
equation (CE) corresponds to a path of a loop or function and defines its cost.
Each CE is annotated with set of linear constraints that model the conditions
for its applicability and its behavior.

Consider CE 8 that represents the case where the loop condition is unsatis-
fied. Its cost is 0 and its constraint set is {i ≥ z}. Conversely, CE 9 represents
the case where i < z and the loop body is executed. CE 9 defines the cost
of wh12(i, z) as the cost of one iteration plus the cost of the remaining loop
wh12(i′, z), where i′ represents the value of i after one iteration i′ = i + 1. In
loop wh6 the cost of one iteration is 2 and the final value of y (i.e., yo) is included
in the abstraction. Observe that at the base case of wh6 in CE 4 the initial and
final values of y are equal: y = yo. The inclusion of final variable values in loops
such as wh6 and wh3 is essential to compute precise bounds. Note that wh6
is non-deterministic, because the constraints of CE 4 and 5 are not mutually
exclusive (due to the unknown value ∗).
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Cost relations have several advantages over other abstract representations:
They support recursive programs naturally. In fact, loops are modelled as recur-
sive definitions and that allows us to analyze loops and recursive functions in
a uniform manner. In contrast, difference constraints do not support recursion
[25] and integer rewrite systems need to be extended [9]. More importantly, CRs
have a modular structure. Each loop or function is abstracted into a separate
cost relation. This enables a compositional approach to compute the cost of a
program by combining the costs of its parts.

In our example, we first compute the cost of entering the inner loop wh6,
then use it to compute the cost of the outer loop wh3. Similarly for loops wh12
and wh9. Finally, we combine the cost of loop wh3 with that of loop wh9 to
obtain the total cost of the program. Each relation is computed only once.

Besides being compositional, we want our analysis to be precise. This is
challenging for program 1, because it presents amortized cost: taken individually,
the cost of entering loop wh6 once is at most 2 ∗ (x+ y) (in terms of p1’s input
parameters). But the loop can be entered x times and still its total cost is at
most 2 ∗ (x+ y) and not 2 ∗ (x+ y) ∗ x as one might expect. This is even more
relevant for lower bounds. Considered individually, the cost of wh3 can be 0 (if
no iterations of the inner loop wh6 are executed) and the cost of wh9 can also
be 0 (if the inner loop wh6 iterates until y reaches 0). However, the lower cost
bound of wh3 followed by wh9 is min(2, z) ∗ (x+ y). We know of no other cost
analysis method that can infer a precise lower bound of program 1.

As noted in [8], a key aspect to obtain precise bounds for programs with
amortized cost is to take the final variable values into account. In our example,
if we infer that the cost of wh3 and wh9 is 2∗(x+y−y0) and z∗(y0), respectively
(in the context of CE 1), we can cancel the positive and negative y0 summand
and obtain the upper and lower bounds reported in Fig. 1. Unfortunately, the ap-
proach of [8] is computationally expensive and does not scale to larger programs.
We propose instead to represent cost by a combination of simple expressions and
constraints (cost structures), where the inference of complex resource bounds is
reduced to the solution of (relatively) small linear programming problems.

The contributions are: (1) A new cost representation (cost structure) that
can represent complex polynomial upper and lower bounds (Sec. 3); and (2)
techniques to infer cost structures of cost relations in terms of the initial and
final values of the variables and compose them precisely (obtaining amortized
cost) and efficiently (Secs. 4, 5); (3) the implementation of the analysis as part
of an open source cost analysis tool CoFloCo 1; (4) an extensive experimental
evaluation for both upper and lower bounds comparing our tool with other cost
analysis tools: KoAT [9], Loopus [25], C4B [10] and the previous version of
CoFloCo [14] for upper bounds and PUBS [5] for lower bounds (Sec. 7).

1https://github.com/aeflores/CoFloCo
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2 Preliminaries

In this section, we formally define the concepts and conventions used in the rest
of the paper. The symbol x represents a sequence of variables x1, x2, · · · , xn
of any length. We represent the concatenation of x and y as xy. A variable
assignment α : V 7→ D maps variables from the set of variables V to elements
of a domain D . Let t be a term, α(t) denotes the replacement of all the variables
x in t by α(x). The variable assignment α|V is the restriction of α to the domain
V . A linear expression has the form l(x) := q0 + q1 ∗ x1 + · · · + qn ∗ xn where
qi ∈ Q and x1, x2, · · · , xn are variables. A linear constraint over x is lc(x) :=
l(x) ≥ 0 where l(x) is a linear expression. For readability we often express linear
constraints as l1 ≤ l2, l1 = l2 or l1 ≥ l2. These can be easily transformed
to the form above. A constraint set ϕ(x) is a conjunction of linear constraints
lc1(x)∧ lc2(x)∧ · · · ∧ lcn(x). A constraint set ϕ(x) is satisfiable if there exists an
assignment α : V 7→ Q such that ϕ(α(x)) is valid (α satisfies ϕ(x)). We say that
ϕ(x)⇒ ϕ′(x) if every assignment that satisfies ϕ(x) satisfies ϕ′(x) as well. Next,
we define cost relations which are our abstract representation of programs:

Definition 1 (Cost relation). A cost relation C is a set of cost equations
c := 〈C(x) = q +

∑n
i=1Di(yi), ϕ(xy)〉, where q ∈ Q; C and Di are cost relation

symbols; and ϕ(xy) is a constraint set that relates the variables on the left side
C(x) and those in the Di(yi) where y = y1y2 · · · yn.

A cost equation (CE) 〈C(x) = q +
∑n

i=1Di(yi), ϕ(xy)〉 states that the cost
of C(x) is q plus the sum of the costs of each Di(yi). The constraint set ϕ(xy)
serves two purposes: it restricts the applicability of the equation with respect to
the input variables x and it relates the variables x with each yi. One can view a
CR C as a non-deterministic function that executes a cost equation in C. Given
a cost equation 〈C(x) = q +

∑n
i=1Di(yi), ϕ(xy)〉, C consumes q resources and

calls the functions D1, D2, . . . , Dn.

2.1 Cost relation refinement

In this work, we do not consider arbitrary CRs but instead CRs that are the
result of a control-flow refinement presented in [14]. This refinement produces
a set of execution patterns (called chains and denoted ch) for each CR. These
execution patterns are regular expressions of CE identifiers and represent all
possible executions of the CR. The formal definition of chains is as follows:

Definition 2 (Phase, Chain). Let C be a cost relation. A phase (ph) can be:
(1) one or more recursive CEs executed a positive number of times (c1∨· · ·∨cn)+

with ci ∈ C; or (2) a single (non-recursive) CE executed once (ci).
A chain (ch) is a sequence of phases ch := [ph1 · ph2 · · · phn] in C. A chain

can represent a terminating execution if phn contains a single non-recursive CE
(ci) or a non-terminating execution if phn has the form (c1 ∨ · · · ∨ cn)+.

For instance, the CR wh6 contains two phases (5)+ and (4) (where a number
n refers to CE n in Fig. 1). From these phases, we can have two chains ‘[4]’
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1.1: p1(x, y, z) = wh3[(3.1 ∨ 3.2)+2](x, y, xo, yo) + wh9[6](yo, z)
{x > 0, y > 0, z > 0,xo = 0,yo ≤ 0}

1.2: p1(x, y, z) = wh3[(3.1 ∨ 3.2)+2](x, y, xo, yo) + wh9[7.1+6](yo, z)
{x > 0, y > 0, z > 0,xo = 0,yo > 0,x + y ≥ yo}

3.1: wh3(x, y, xo, yo) = wh6[4](y1, y2) + wh3(x′, y′, xo, yo)
{x > 0, x′ = x− 1, y1 = y + 1, y′ = y2,y2 = y1}

3.2: wh3(x, y, xo, yo) = wh6[5+4](y1, y2) + wh3(x′, y′, xo, yo)
{x > 0, x′ = x− 1, y1 = y + 1, y′ = y2,y2 < y1}

7.1: wh9(y, z) = wh12[9+8](0, z) + wh9(y′, z) {y ≥ 1, y′ = y − 1, z > 0}

Fig. 2. Refined cost equations from Program 1

and ‘[5+4]’ that represent the case where the loop body is not executed ‘[4]’
and the case when it is executed a finite number of times ‘[5+4]’. In principle,
we could also have a non-terminating chain ‘[5+]’ but the refinement in [14]
discards non-terminating chains that can be proved terminating. Any external
reference to a CR C1 from another CR C2 is annotated with a chain: C1ch
that determines which CEs will be applied and in which order. In this manner,
the cost equations are refined. CE 3 from Fig. 1 becomes CE 3.1 and 3.2 in
Fig. 2 which contain annotated references to wh6 with the corresponding chains
wh6[4](y1, y2) and wh6[5+4](y1, y2). Similarly, CE 1 becomes 1.1 and 1.2 in Fig. 2
and CE 7 becomes 7.1. The constraint sets of the refined equations also contain
a summary of the behavior of these references (the bold constraints in Fig. 2).
Note that the refinement discards unfeasible references. For example, CR wh9
does not have a reference to wh12[8] because z is guaranteed to be positive.

The refined CRs can be ordered in a sequence 〈C1, C2 . . . Cn〉. in which a
cost equation of Ci can contain at most one recursive reference to Ci and any
number of references to Cj j > i annotated with chains of Cj . Its general form
is: 〈Ci(x) = q +

∑n
i=1Dchi(yi) + Ci(x′), ϕ(xx′y)〉 where D ∈ {Ci+1 . . . Cn} if it

is recursive or without the summand +Ci(x′) if it is non-recursive.
Most programs can be expressed as refined CRs [14]. The only current lim-

itation of this approach is the analysis of CRs with multiple recursion (when a
CE contains more than one recursive reference).

2.2 Refined cost relation semantics

Cost relations can be evaluated to a cost with respect to a variable assignment
α : V 7→ Q. We define the evaluation relation ⇓ for refined CRs. This relation is
not meant to be executed but rather to serve as a formal definition of the cost
of CRs. Fig. 3 contains the rules for evaluating chains, phases and CEs.

We write a non-recursive CE 〈C(x) = k0+
∑n

i=1Dchi(yi), ϕ(xx′y)〉 as nrc(x).
Rule (Non-recursive CE) extends the assignment α to α′ such that it is
defined for y and the constraint set of the CE is valid ϕ(α′(xy)). The cost
of nrc(x) with variable assignment α is the sum of the costs of the evalu-
ations of the chains referenced by nrc(x) plus k0. A recursive CE 〈C(x) =
k0 +

∑n
i=1Dchi(yi) +C(x′), ϕ(xx′y)〉 is written rc(xx′). Because a recursive CE
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(non-recursive CE)

α = α′|x ϕ(α′(xy))
n∧

i=1

(〈α′|yi , chi(yi)〉 ⇓ ki)

〈α, nrc(x)〉 ⇓ k0 +
n∑

i=1

ki

(recursive CE)

α = α′|xx′ ϕ(α′(xx′y))
n∧

i=1

(〈α′|yi , chi(yi)〉 ⇓ ki)

〈α, rc(xx′)〉 ⇓ k0 +
n∑

i=1

ki

(Base phase)

〈α, ci(xxf )〉 ⇓ k
〈α, (c1 ∨ · · · ∨ cn)+(xxf )〉 ⇓ k

(Rec phase)

α = α′|xxf 〈α′|xx′ , ci(xx′)〉 ⇓ k1
〈α′|x′xf

, (c1 ∨ · · · ∨ cn)+(x′xf )〉 ⇓ k2
〈α, (c1 ∨ · · · ∨ cn)+(xxf )〉 ⇓ k1 + k2

(Chain)

α = α′|x
n∧

i=1

(〈α′|xixi+1 , phi(xixi+1)〉 ⇓ ki)

〈α, [ph1 · · · phn](x)〉 ⇓
n∑

i=1

ki

Fig. 3. Semantics for the evaluation of chains, phases and cost equations

always appears within a recursive phase (c1 ∨ · · · ∨ cn)+, we will not include the
recursive reference during its evaluation. That is, (Recursive CE) does not
add the cost of the recursive reference. That will be instead considered in the
evaluation of the phase. Hence, (Recursive CE) and (Non-recursive CE)
are almost identical, but we include the variables x′ of the recursive reference in
the former so they can be matched with the initial variables of the next CE in the
phase. Rules (Rec phase) and (Base phase) define the recursive evaluation
of a phase. As before we include the variables of the last recursive reference xf
in the phase representation (c1 ∨ · · · ∨ cn)+(xxf ) so they can be matched with
the initial variables of the next phase in the chain. Finally, the evaluation of a
chain is the sum of the evaluations of its phases. If the chain is terminating, phn
will be (nrc(x)) and the sequence of variables xn+1 will be empty. If the chain
is non-terminating, phn will be (c1 ∨ · · · ∨ cn)+ and xn+1 will be undefined.

We follow the same evaluation structure to compute bounds. We also compute
bounds that depend on the variables of the recursive references for CEs (x′) and
for phases (xf ). This might seem unnecessary at first, but it allows us to compute
precise bounds in a modular way. Consider the chain ‘[5+4]’ of CR wh6. We want
to obtain the precise (upper and lower) bound 2(y − y0) but when we consider
the phase (5)+, we do not have any information about how y0 relates to y (which
is contained in CE 4). Instead, we infer the cost of (5)+ as 2(y − yf ), where yf
is the value of y in the last recursive reference of (5)+. Later we combine this
bound with the information of CE 4 {y = yo} to obtain 2(y − y0).

3 Cost Structures

In order to obtain upper and lower bounds, we developed a symbolic cost rep-
resentation that can represent the costs of chains, phases or CEs. We call this
cost representation cost structure.

We define cost structures as combinations of linear expressions in such a way
that they can be inferred and composed by merely solving problems over sets of
linear constraints. Instead of a single complex expression, we use simple linear
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Chain/Phase/CE(Variables): Cost Structure

[1.2](x, y, z) : 〈iv2 + 2iv6, {iv2 = iv3 ∗ iv4}, {iv3 + iv6 = |y + x|, iv4 = |z|}〉
[(3.1 ∨ 3.2)+2](x, y, xo, yo) : 〈2iv6, ∅, {iv6 = |y − yo + x|}〉

(3.1∨ 3.2)+(xs, ys, xos , yos , xf , yf , xof , yof ) : 〈2iv6, ∅, {iv6 = |ys +xs− yf −xf |}〉
3.2(x, y, xo, yo, x

′, y′, x′o, y
′
o) : 〈2iv5, ∅, {iv5 = |y − y′ + 1|}〉

[7.1+6](y, z) : 〈iv2, {iv2 = iv3 ∗ iv4}, {iv3 = |y|, iv4 = |z|}〉
(7.1)+(ys, zs, yf , zf ) : 〈iv2, {iv2 = iv3 ∗ iv4}, {iv3 = |ys − yf |, iv4 = |zs|}〉

7.1(y, z, y′, z′) : 〈iv1, ∅, {iv1 = |z|}〉

Fig. 4. Some of the cost structures of Program 1

cost expressions E over intermediate variables (iv) and constraints that bind the
intermediate variables to the variables of the CRs. We distinguish two kinds of
constraints. non-final constraints IC that relate intermediate variables among
each other and final constraints FC (x) that relate intermediate variables with
the variables of the CRs (x). The formal definition of cost structures is as follows:

Definition 3 (Cost Structure). A cost structure is a tuple 〈E, IC ,FC (x)〉.

– E is the main cost expression and is a linear expression l(iv) over interme-
diate variables. Intermediate variables always represent positive numbers.

– Let ./ be ≤ or ≥. IC is a set of non-final constraints of the form∑m
k=1 ivk ./ SE where SE can be SE := l(iv) | iv i ∗ iv j | max(iv) | min(iv) .

– FC (x) is a set of final constraints of the form
∑m

k=1 ivk ./ |l(x)| where
|l(x)| := max(l(x), 0) and l(x) is a linear expression over the CR variables.

Even though the constraints in IC and FC (x) are relatively simple, we can
express complex polynomial expressions by combining them. In Fig. 4 we have
some of the cost structures of program 1 that will be obtained in the following
sections (a = b stands for a ≤ b and a ≥ b). Thanks to the constraints we can
represent both upper and lower bounds with a single cost structure. Moreover,
we can have several constraints that bind the same intermediate variables and
thus represent multiple bound candidates. Finally, having multiple iv on the left
side of the constraints can represent a disjunction or choice. This is the case for
iv6 + iv3 = |y+x| of chain [1.2]. The bigger iv6 is, the smaller iv3 becomes. This
capability is key to obtain a non-trivial lower bound for program 1.

We infer cost structures incrementally. In a sequence of CRs 〈C1, C2 . . . Cn〉,
we start with Cn and proceed backwards until C1. For each Ci we compute
the cost structures of the CEs first (Sec. 4), then of the phases (Sec. 5) and
finally of the chains (Sec. 4). This way, at each step, the cost structures of all
the components have already been computed and it suffices to compose them.

Example 2. The sequence of CRs in Program 1 is 〈p1, wh3, wh6, wh9, wh12〉. We
start computing cost structures for wh12 and finish by computing cost structures
for p1. For each CR, we compute cost structures for the CEs, the phases and
the chains. Consider CR wh9 for instance. We compute the cost of CEs 7.1
and 6 first. These are 〈iv1, ∅, {iv1 = |z|}〉 which originates from its reference to
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wh12[9+8] (See Fig. 2) and 〈0, ∅, ∅〉 (See CE 6 in Fig. 1). Then, we compute the
cost of phase 7.1+. In phase 7.1+ CE 7.1 is evaluated a number of times and
each time it has a cost 〈iv1, ∅, {iv1 = |z|}〉. The cost of 7.1+ is the sum of all
these costs. In particular iv2 corresponds to the sum of all the copies of iv1 of all
the evaluations of CE 7.1. The variables iv3 and iv4 have an auxiliary role. They
maintain the two parts of the cost separated |ys − yf | and |zs| and, together
with the non-final constraint, represent a non-linear bound. Finally, the cost of
[7.1+6] is the sum of the costs of 7.1+ and 6 but expressed only in terms of the
initial variable values y and z. The process is similar for other CRs. In CR wh3,
we compute the costs for CEs 3.1 and 3.2 and 2, we combine the ones from 3.1
and 3.2 to obtain the cost of (3.1∨3.2)+ which in turn we combine with the cost
of 2 to obtain the cost of [(3.1 ∨ 3.2)+2]. Here, iv6 represents the sum of all iv5

of all the evaluations of CE 3.2 in phase (3.1 ∨ 3.2)+.

Definition 4 (Valid Cost Structure). Let T (x) be a chain, phase or CE.
The cost structure 〈E, IC ,FC (x)〉 is valid for T if for every 〈α, T (x)〉 ⇓ k, there
exists an extension of α denoted α′ (α′|x = α) that assigns all the intermediate
variables such that α′(IC ∧ FC (x)) is valid and α′(E) = k.

A valid cost structure of T (x) can be evaluated to any cost k s.t. 〈α, T (x)〉 ⇓ k.
Given a valid cost structure 〈E, IC ,FC (x)〉, we can easily obtain closed-form up-
per/lower bounds such as the ones given in Fig. 1 by maximizing/minimizing the
main cost expression E according to the constraints IC and FC (x). This is done
by incrementally substituting intermediate variables in E for their upper/lower
bounds defined in the constraints until E does not contain any intermediate vari-
able. The details on how this process is implemented can be found in App. C.

Example 3. The lower bound of chain [1.2] is computed as follows: We start
from the main cost expression iv2 + 2iv6 and we minimize each iv using the
constraints: (1) iv2 ≥ iv3 ∗ iv4 (2) iv4 ≥ |z| and (3) iv3 + iv6 ≥ y + x:
iv2 + 2iv6 ≥(1) iv3 ∗ iv4 + 2iv6 ≥(2) iv3 ∗ |z|+ 2iv6

≥(3) min((|y + x| ∗ |z|) + 0, 0 + 2|y + x|) = min(|z|, 2) ∗ |y + x|.

4 Cost Structures of Cost Equations and Chains

We want to obtain a valid cost structure of a recursive CE rc(xx′) := 〈C(x) =
k0 +

∑n
i=1Dchi(yi) +C(x′), ϕ(xx′y)〉 (the non-recursive case is analogous). Let

ki be the cost of chi(yi), the cost of rc(xx′) is k0+
∑n

i=1 ki (See Fig. 3). Similarly,
we can obtain a valid cost structure for rc(xx′) by composing the cost structures
of each chi(yi).

Remark 1. Let 〈Echi
, IC chi

,FC chi
(yi)〉 be a valid cost structure of chi(yi), the

following cost structure is valid for rc(xx′):

〈k0 +
n∑

i=1

Echi
,

n⋃
i=1

(IC chi
),

n⋃
i=1

(FC chi
(yi))〉
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We add the main cost expressions Echi
plus k0 and join the constraint sets

IC chi
and FC chi

(yi). Note that in the base case (i.e. when n = 0), the re-
sulting cost structure is simply 〈k0, ∅, ∅〉. Unfortunately, the final constraints in⋃n

i=1(FC chi(yi)) contain variables other than xx′ and have to be transformed
to obtain a cost structure that only contains CR variables in xx′.

Transformation of final constraints We perform this transformation with the
help of the CE’s constraint set ϕ(xx′y). Recall that final constraints are of an
almost linear form (

∑m
k=1 ivk ./ |l(y)|). If we guarantee that l(y) is non-negative

(ϕ(xx′y)⇒ l(y) ≥ 0), we can simply use the linear constraint
∑m

k=1 ivk ./ l(y).
Let FC+ be the set of all constraints obtained thus from

⋃n
i=1 FC chi

(yi). We
perform (Fourier-Motzkin) quantifier elimination on ∃y.(FC+ ∧ ϕ(xx′y)) and
obtain a constraint set that relates directly the intermediate variables of FC+

with xx′. We can then extract syntactically from the resulting constraint set new
final constraints in terms of xx′.

Example 4. We combine the cost of chains [(3.1∨3.2)+2] and [7.1+6] from Fig. 4
into that of CE 1.2, instantiated according to CE 1.2 with variables (x, y, xo, yo)
and (yo, z), respectively. The resulting expression is: 〈iv2 + 2iv6, {iv2 = iv3 ∗
iv4}, {iv6 = |y − yo + x|, iv3 = |yo|, iv4 = |z|}〉. This is the cost structure of
[1.2] in Fig. 4 except for the final constraints which need to be transformed. The
constraint set of CE 1.2 from Fig. 2 (ϕ1.2) guarantees that y − yo + x, yo and
z are non-negative. Therefore, we generate a constraint set FC+ = {iv6 = y −
yo+x, iv3 = yo, iv4 = z} and perform quantifier elimination over ∃xo, yo.(FC+∧
ϕ1.2). This results in {iv6 + iv3 = y+x, iv4 = z, x > 0, y > 0, z > 0} from which
we syntactically extract the constraints iv3 + iv6 = |y + x| and iv4 = |z|. This
procedure allows us to find dependencies among constraints (iv6 = y − yo + x
and iv3 = y0) and merge them precisely (into iv3 + iv6 = |y + x|).

We transform the rest of the final constraints, i.e. the ones that cannot be
guaranteed to be positive, one by one. Let

∑m
k=1 ivk ./ |l(y)| be a constraint, if we

find l′(xx′) such that ϕ(xx′y) ⇒ l(y) ./ l′(xx′), then we have that
∑m

k=1 ivk ./
|l′(xx′)| holds as well.2 We find l′(xx′) by creating a linear template of l′(xx′) and
finding coefficients that satisfy ϕ(xx′y)⇒ l(y) ./ l′(xx′) using Farkas’ Lemma.

Chains The case of computing a cost structure 〈Ech, IC ch,FC ch(x)〉 of a chain
ch = [ph1 · ph2 · · · phn] is analogous. Let 〈Ephi , IC phi ,FC phi(xixi+1)〉 be the
cost structure of phi(xixi+1), we add the main cost expressions and join the
constraint sets to obtain: 〈

∑n
i=1Ephi

,
⋃n

i=1(IC phi
),
⋃n

i=1(FC phi
(xixi+1))〉. We

transform the final constraints FC phi
(xixi+1) to express them in terms of the

initial variables x as above. But this time we perform the transformation incre-
mentally. We transform first FC phn(xn) and FC phn−1(xn−1xn) in terms of xn−1.
Then, we transform the result together with FC phn−2(xn−2) in terms of xn−2
and so on until we reach the first phase of the chain. In each step the constraint
set used is ϕphi

(xixi+1) which is a summary of the behaviors of phi, · · · , phn.

2This can be easily seen by distinguishing cases (l(y) ≥ 0 and l(y) ≤ 0).
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5 Cost Structures of Phases

Let ph = (c1 ∨ · · · ∨ cn)+ be a phase. Our objective is to compute a valid cost
structure 〈Eph, IC ph,FC ph(xsxf )〉 for the phase ph. Such a cost structure must
be expressed in terms of initial values of the variables (xs) and the values of the
variables in the last recursive call of the phase (xf ) and must represent the sum
of all the evaluations of ci ∈ ph (according to the semantics Fig. 3). For each
evaluation of ci, we can define an instantiation of its cost structure.

Definition 5 (Cost Structure Instances). Let 〈Eci , IC ci ,FC ci(xx
′)〉 be a

valid cost structure of ci and let #ci be the number of times ci is evaluated in
ph. 〈Ecij , IC cij ,FC cij(xcijx

′
cij

)〉 represents the cost structure instance of the j-th
CE evaluation of ci for 1 ≤ j ≤ #ci. That is, the cost structure of ci instantiated
with the variables corresponding to the j-th CE evaluation of ci: xcijx

′
cij

.

Remark 2. The total cost of a phase is the sum of all the cost structure instances
for 1 ≤ j ≤ #ci and for all ci ∈ ph:

〈
n∑

i=1

#ci∑
j=1

Ecij ,
n⋃

i=1

#ci⋃
j=1

(IC cij),
n⋃

i=1

#ci⋃
j=1

(FC cij(xcijx
′
cij

))〉

Based on this, we generate a cost structure 〈Eph, IC ph,FC ph(xsxf )〉 in three

steps: (1) we transform the expression
∑n

i=1

∑#ci
j=1Ecij into a valid main cost ex-

pression Eph; (2) we generate non-final constraints IC ph using the CEs’ non-final
constraints IC ci (in Sec. 5.1); and (3) we generate final constraints FC ph(xsxf )
using the CEs’ final constraints FC ci(xcix

′
ci) and the CE definitions (in Sec. 5.2).

In order to transform
∑n

i=1

∑#ci
j=1Ecij into a valid cost expression Eph, we

have to remove the sums over the unknowns #ci. For this purpose, we define
the following new intermediate variables:

Definition 6 (Sum intermediate variables). Let iv be an intermediate vari-

able in 〈Eci , IC ci ,FC ci(xx
′)〉. The intermediate variable smiv :=

∑#ci
j=1 iv j is the

sum of all instances of iv in the different evaluations of ci in the phase.

Now, we can reformulate each
∑#ci

j=1Ecij into a linear expression in terms of
smiv . Let Eci := q0 + q1 ∗ iv1 + · · ·+ qm ∗ ivm, we have that∑#ci

j=1Ecij = q0 ∗ #ci + q1 ∗ smiv1 + · · · + qm ∗ smivm (where #ci is also an

intermediate variable). If we do this transformation for each i in
∑n

i=1

∑#ci
j=1Ecij ,

we obtain a valid cost expression for the phase Eph.

Example 5. Consider phase (3.1∨3.2)+. Let E3.1 = 0 and E3.2 = 2iv5. The main

cost expression of the phase is E(3.1∨3.2)+ =
∑#c3.1

j=1 0 +
∑#c3.2

j=1 2iv5j = 2smiv5

(where smiv5 corresponds to iv6 in Fig. 4).
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5.1 Transforming Non-final Constraints

In this section we want to generate a new set of non-final constraints IC ph

that bind the new intermediate variables (smiv) that appear in our main cost
expression Eph.

We iterate over the non-final constraints of each IC ci for ci ∈ ph. For each
constraint

∑m
k=1 ivk ./ SE ∈ IC ci , we sum up all its instances∑#ci

j=1

∑m
k=1 ivkj ./

∑#ci
j=1 SE j and reformulate the constraint using smiv vari-

ables. We reformulate the left-hand side directly:
∑#ci

j=1

∑m
k=1 ivkj =

∑m
k=1 smivk

However, the right-hand side of the constraints might contain sums over non-
linear expressions. These sums cannot be reformulated only in terms of Sum
variables. Therefore, we introduce a new kind of intermediate variable:

Definition 7 (Max/Min intermediate variables). The variables
dive := max1≤j≤#ci(iv j) and bivc := min1≤j≤#ci(iv j) are the maximum and
minimum value that an instance iv j of iv can take in a evaluation of ci in ph.

With the help of this new kind of variables we can reformulate the right hand
side of the expression:

∑#ci
j=1 SE j . We distinguish cases for each possible SE :

– SE := q0 + q1 ∗ iv1 + · · ·+ qm ∗ ivm:
We have that

∑#ci
j=1 SE j = q0 ∗#ci + q1 ∗ smiv1 + · · ·+ qm ∗ smivm.

– SE := ivk ∗ ivp: We approximate
∑#ci

j=1 SE j with the help of bivcp or divep
depending on whether ./ is ≤ or ≥:∑#ci

j=1 SE j ≤ smivk ∗ divep and
∑#ci

j=1 SE j ≥ smivk ∗ bivcp .3

– SE := max(iv) or min(iv): We reduce this to the previous case. We reformu-
late SE as 1∗SE and substitute each factor by a fresh intermediate variable:
ivk ∗ ivp. Then, we add the constraints ivk ./ 1 and ivp ./ SE to IC ci so
they are later transformed. This way, smivp is not generated (divep or bivcp
will be generated instead) and we do not have to compute

∑#ci
j=1 SE j .

In the generated constraints new variables of the form bivc and dive might
have been introduced that also need to be bound. We iterate over the constraints
in IC ci from ci ∈ ph again to generate constraints over bivc and dive variables.
Let iv ≤ SE ∈ IC ci (the ≥ case is symmetric). We distinguish cases for SE :4

– SE := q0 + q1 ∗ iv1 + · · ·+ qm ∗ ivm: Let Vk := divek if qk ≥ 0 or Vk := bivck
if qk < 0. We generate dive ≤ q0 + q1 ∗ V1 + · · ·+ qm ∗ Vm.

– SE := ivk ∗ ivp: We generate dive ≤ divek ∗ divep.
– SE := max(iv1 · · · ivn): We generate dive ≤ max(dive1 · · · diven).
– SE := min(iv1 · · · ivn): We generate dive ≤ divek (for 1 ≤ k ≤ n).

All these newly generated constraints form the non-final constraint set IC ph.

3We could also approximate to bivck ∗ smivp and divek ∗ smivp but in general the
chosen approximation works better. The variable ivk usually represents an outer loop
and ivp and inner loop (See basic product strategy in Sec. 5.2).

4This transformation is not valid for constraints with multiple variables on the
left side. The constraints with ≤ can be split (

∑m
k=1 ivk ≤ SE implies ivk ≤ SE for

1 ≤ k ≤ m). But this is not the case for the constraints with ≥.
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5.2 Transforming Final Constraints

Previously, we computed a main cost expression Eph and a set of non-final
constraints IC ph for a phase ph = (c1 ∨ · · · ∨ cn)+. We complete the phase’s cost
structure with a set of final constraints FC ph(xsxf ) (and possibly additional
non-final constraints) that bind the intermediate variables of Eph and IC ph. We
propose the following algorithm:

Algorithm initialization For each ci with cost structure 〈Eci , IC ci ,FC ci(xx
′)〉

the algorithm maintains two sets of pending constraints:
(1) Psumsci is initialized with the constraints

∑m
k=1 ivk ./ |l(xx′)| ∈ FC ci(xx

′)
such that some smivk appear in our phase cost structure (in Eph or IC ph) and
iv iti ≤ 1 and iv iti ≥ 1 if #ci appears in our phase cost structure. The variable
iv iti represents the number of times ci is evaluated and smiv iti = #ci.
(2) Pmsci is initialized with the constraints iv ./ |l(xx′)| ∈ FC ci(xx

′) such that
dive or bivc appear in our phase cost structure.

Algorithm At each step, the algorithm removes one constraint from one of the
pending sets and applies one or several strategies to the removed constraint.
A strategy generates new constraints (final or non-final) for the phase’s cost
structure: they are added to the sets IC ph or FC ph(xsxf ). A strategy can also
add additional pending constraints to the sets Psumsci or Pmsci to be processed
later. The algorithm repeats the process until Psumsci and Pmsci are empty or
all the intermediate variables in Eph and IC ph are bound by constraints.

In principle, the algorithm can finish without generating constraints for all
intermediate variables. For instance, if the cost of the phase is actually infinite.
It can also not terminate if new constraints keep being added to the pending
sets indefinitely. This does not happen often in practice and we can always stop
the computation after a number of steps. We propose the following strategies:

Inductive Sum Strategy Let
∑m

k=1 ivk ./ |l(xx′)| ∈ Psumsci , the strategy

will try to find a linear expression that approximates the sum
∑#ci

j=1 |l(xcijx′cij)|
in terms of the initial and final variables of the phase (xsxf ).

Let us consider first the simple case where ci is the only CE in the phase. The
strategy uses the CE’s constraint set ϕi(xx′y) and Farkas’ Lemma to generate
a candidate linear expression cd(x) such that ϕi(xx′y) ⇒ (|l(xx′)| ./ cd(x) −
cd(x′) ≥ 0). If a candidate cd(x) is found, we have:∑#ci

j=1 |l(xcijx′cij)| ./
∑#ci

j=1(cd(xcij)− cd(x′cij)) = cd(xs)− cd(xf )

This is because each intermediate −cd(x′cij) and cd(xcij+1) cancel each other

(cd(x′cij) = cd(xcij+1)). Therefore, the constraint∑m
k=1 smivk ./ |cd(xs)− cd(xf )| is valid and can be added to FC ph(xsxf ).

Example 6. This is the case of phase 9+(is, zs, if , zf ) with Psums9 = {iv it9 ≤
1, iv it9 ≥ 1}. The strategy generates the candidate −i and the final constraints

12



Condition when ./ is ≤ Condition when ./ is ≥ Defines

Cnt (
m∑

k=1

ivk ./ |l′(xx′)|) ∈ Psumsce ∧ |l′(xx′)| ./ cd(x)− cd(x′) ≥ 0 cnte =
m∑

k=1

smivk

Dc 0 ≤ dce(xx′) ≤ cd(x)− cd(x′) dce(xx′) ≥ cd(x)− cd(x′) ivdce = |dce(xx′)|
Ic ice(xx′) ≥ cd(x′)− cd(x) 0 ≤ ice(xx′) ≤ cd(x′)− cd(x) iv ice = |ice(xx′)|
Rst cd(x′) ./ |rst(x)| ivrste = |rste(x)|

Fig. 5. Classes of CE ce w.r.t a candidate cd(x), their condition and defined term

smiv it9 ≤ |if − is| and smiv it9 ≥ |if − is|. Later |if − is| will become |z − i| in
[9+8] and |z| in CE 7.1. The variable smiv it9 corresponds to iv1 in Fig. 4.

If the phase contains other CEs ce (e 6= i), we have to take their behavior
into account. E.g. suppose that we have another ce (e 6= i) that increments our
candidate by two (ϕe(xx′y) ⇒ cd(x′) = cd(x) + 2). Let #ce be the number of

evaluations of ce, the sum is
∑#ci

j=1 cd(xcij)−cd(x′cij) = cd(xs)−cd(xf )+2∗#ce.
That is, the sum computed for the simple case cd(xs)− cd(xf ) plus the sum of
all the increments to the candidate 2 ∗#ce effected by CE ce.

In the general case, the strategy generates a candidate (using ci constraint
set ϕi(xx′y) and Farkas’ Lemma as before); it classifies the CEs of the phase
ce ∈ ph (including ci) according to their effect on the candidate; and it uses this
classification to generate constraints that take these effects into account.

Cost Equation Classification Each class has a condition and it defines a (linear)
term (See Fig. 5). In order to classify a CE ce into a class, its condition has to be
implied by the corresponding CE’s constraint set ϕe(xx′y). This implication can
be verified and the unknown linear expressions dce(xx′) ice(xx′) or rste(xx′) (For
the classes Dc, Ic and Rst respectively) can be inferred using Farkas’ Lemma.
The considered classes in this strategy are5:

– Cnt: ce ∈ Cnt if there is a constraint
∑m

k=1 ivk ./ |l′(xx′)| ∈ Psumsce that
can also be bound by the candidate: |l′(xx′)| ./ cd(x) − cd(x′). We can
incorporate

∑m
k=1 smivk to the left hand side of our constraint. We define

cnte :=
∑m

k=1 smivk as a shorthand. Note that ci, whose constraint was used
to generate the candidate, trivially satisfies the condition and thus ci ∈ Cnt.

– Dc: ce ∈ Dc if in each evaluation of ce the candidate is decremented by at
least dce(xx′) (or at most dce(xx′) if ./ is ≥). We assign a fresh intermediate
variable to this amount ivdce := |dce(xx′)|. To generate a valid constraint,
we will subtract the sum of all those decrements i.e. smivdce .

– Ic: ce ∈ Ic if in each evaluation of ce the candidate is incremented by at
most ice(xx′) (or at least ice(xx′) if ./ is ≥). As before, we assign a fresh
intermediate variable to that amount iv ice := |ice(xx′)|. To generate a valid
constraint, we will add the sum of all those increments i.e. smiv ice .

5The class Rst will be used and explained in the Max-Min strategy.
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Lemma 1. Let ! ./ be the reverse of ./ (e.g. ≥ if ./=≤). If we classify every
ce ∈ ph into Cnt, Ic or Dc w.r.t. cd(x), the following constraints are valid:∑

ce∈Cnt

cnte ./ iv cd+ − iv cd− +
∑

ce∈Ic
smiv ice −

∑
ce∈Dc

smivdce ,

iv cd+ ./ |cd(xs)− cd(xf )| , iv cd−! ./ | − cd(xs) + cd(xf )|

These are the constraints generated by the Inductive Sum strategy. Note that
iv cd+ and −iv cd− represent the positive and negative part of cd(xs)−cd(xf ). The
constraints bind the sum of all smiv in cnte (for each ce ∈ Cnt) to cd(xs)−cd(xf )
plus all the increments

∑
ce∈Ic smiv ice minus all the decrements

∑
ce∈Dc smivdce .

If Ic is empty, cd(xs)−cd(xf ) is guaranteed to be positive (the candidate is never
incremented) and we can eliminate the summand −iv cd− (and its corresponding
constraint iv cd−! ./ | − cd(xs) + cd(xf )|).

Finally, the strategy adds constraints for the new intermediate variables iv ice

and ivdce to the pending sets so their sums smiv ice and smivdce are bound
afterwards: iv ice ./ |ic(xx′)| is added to Psumsce for each ce ∈ Ic, and
ivdce ! ./ |dc(xx′)| is added to Psumsce for each ce ∈ Dc.

Example 7. In phase (3.1∨ 3.2)+ we have iv5 ≤ |y− y′+ 1| ∈ Psums3 .2 . A valid
candidate is y + x. The CEs are classified as follows: CE 3.2 ∈ Cnt because it
has generated the candidate (cnt3.2 := smiv5); and CE 3.1 ∈ Dc because y + x
decreases in CE 3.1 by dc3.1 = 0. The generated constraints are: smiv5 ≤ iv cd+−
iv cd−−smivdc, iv cd+ ≤ |(ys+xs)−(yf +xf )| and iv cd+ ≤ |−(ys+xs)+(yf +xf )|.
However, given that Ic is empty and dc3.1 = 0, we can simplify them to a single
constraint: smiv5 ≤ |(ys + xs)− (yf + xf )| (where smiv5 is iv6 in Fig. 4).

Example 8. The class Cnt allows us to bind Sum variables of different ci under
a single constraint. For instance, if we had 6 iv it3.1 ≥ 1 ∈ Psums3 .1 and iv it3.2 ≥
1 ∈ Psums3 .2 , the expression x would be a valid candidate with the classification
Cnt = {3.1, 3.2} with cnt3.1 := smiv it3.1 and cnt3.2 := smiv it3.2 . The strategy
would generate the (simplified) constraint smiv it3.1 + smiv it3.2 ≥ |xs−xf | which
is equivalent to #c3.1 + #c3.2 ≥ |xs − xf | and represents that wh3 iterates at
least |xs − xf | times. Without Cnt, we would fail to obtain a non-trivial lower
bound for #c3.1 or #c3.2 as they can both be 0 (if considered individually).

Basic Product Strategy Often, given a constraint
∑m

k=1 ivk ./ |l(xx′)| ∈
Psumsci , it is impossible to infer a linear expression representing

∑#ci
j=1 |l(xjx′j)|.

Example 9. Consider the cost computation of phase 7.1+. We have a constraint
iv1 ≤ |z| ∈ Psums7 .1 . The variable z does not change in CE 7.1 and #c7.1
is at most y so

∑#c7
j=1 |z| = |y| ∗ |z| which is not linear. We can obtain this

result by rewriting the constraint iv1 ≤ |z| as iv1 ≤ 1 ∗ |z|. Then, we generate
the constraint smiv1 ≤ smiv it7.1 ∗ divemz (that corresponds to iv2 ≤ iv3 ∗ iv4

6smiv it3.1 and smiv it3.2 are actually not needed for computing the cost of the pro-
gram in this case. Therefore, these constraints are never added to the pending sets.
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in Fig. 4) and add iv it7.1 ≤ 1 to Psums7 .1 and ivmz ≤ |z| to Pms7 .1 . These
constraints will be later processed by the strategies Inductive Sum and Max-Min
respectively.

In general, given a
∑m

k=1 ivk ≤ |l(xx′)| ∈ Psumsci where l(xx′) is not a constant,
the Basic Product strategy generates

∑m
k=1 smivk ≤ smiv iti ∗divep and adds the

pending constraints iv iti ≤ 1 to Psumsci and ivp ≤ |l(xx′)| to Pmsci . This way,
the strategy reduces a complex sum into a simpler sum and a max/minimization.
The strategy proceeds analogously for constraints with ≥.

Max-Min Strategy This strategy deals with constraints iv ./ |l(xx′)| ∈ Pmsci

and its role is to generate constraints for Max dive and Min bivc variables.
Similarly to the Inductive Sum strategy, it generates a candidate cd(x) using

the CE’s constraint set ϕi(xx′y) and then it classifies the CEs in the phase ac-
cording to their effect on the candidate. However, the condition used to generate
the candidate is different since we want to bind a single instance of l(xx′) instead
of the sum of all its instances. Additionally, this strategy considers the class Rst
for the classification but not the class Cnt (See Fig. 5). If ce ∈ Rst the candidate
is reset to a value of at most |rste(x)| (or at least |rste(x)| if ./ is ≥). A fresh
intermediate variable is assigned to such reset value ivrste := |rste(x)|.

Lemma 2. Let iv ≤ |l(xx′)| ∈ Pmsci and let cd(x) be a candidate such that
ϕi(xx′y) ⇒ l(xx′) ≤ cd(x). If we classify every ce ∈ ph into Dc, Ic and Rst
with respect to cd(x), the following constraints are valid:

dive ≤ ivmax +
∑
ce∈Ic

smiv ice , ivmax ≤ max
ce∈Rst

(diverste , iv cd), iv cd ≤ |cd(xs)|

These are the constraints generated by the Max-Min strategy. They bind dive
to the sum of all the increments smiv ice for ce ∈ Ic plus the maximum of all the
maximum values that the resets can take diverste . This maximum also includes
the candidate cd(xs) in case it is never reset.

Finally, the strategy adds the constraints iv ice ≤ |ice(xx′)| to Psumsci and
ivrste ≤ |rste(x)| to Pmsci so smiv ice and diverste are bound later. The strategy
proceeds analogously for constraints with ≥ but it subtracts the decrements
instead of adding the increments and takes the minimum of the resets bivcrste .

Example 10. In Example 9 we added ivmz ≤ |z| to Pms7 .1 during the compu-
tation of the cost of 7.1+. Using the Max-Min strategy, we generate a candidate
z and classify CE 7.1 in Dc with dc7.1 := 0 (z is not modified in CE 7.1).The
resulting (simplified) constraint is divemz ≤ |zs| (which corresponds to iv4 ≤ |zs|
in Fig. 4).

To summarize, we transform the complex problem of obtaining a cost struc-
ture for a phase into a set of simpler problems: computation of sums, maxi-
mization, minimization of simple constraints. These smaller problems are solved
incrementally through strategies that collaborate with each other by adding new
constraints to the pending sets. The inference problems in the strategies can be
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solved efficiently using Farkas’ Lemma as they only use the constraint set of
one CE at a time. We provide two extra strategies in App. A to obtain upper
bounds defined only in terms of xs and to obtain better bounds for sums of
expressions whose value varies in each iteration.

6 Soundness

Theorem 1. Let T (x) be a chain, a phase or a CE. Then the cost structure
〈ET , IC T ,FC T (x)〉 obtained following the algorithms of Secs. 4 and 5 is valid.

Proof sketch. The cost structures in Remarks 1 and 2 result from applying the
semantics rules to the cost structures of the components. The latter transfor-
mation of Eph is syntactic and the constraints generated in Secs. 4, 5.1 and 5.2
are implied (logical consequence) by the ones in Remarks 1 and 2 and the CEs’
constraint sets. Therefore, they can be added to the cost structures without com-
promising their validity. This implication for the constraints in Sec. 5.2 (Lemmas
1 and 2) is proved by induction on the number of CEs evaluations (App. E).

7 Related Work and Experiments

This work constitutes a significant improvement over previous techniques based
on cost relations [3,5,7,14]. It builds on the refinement in [14] but presents a new
approach for obtaining bounds that is much more powerful. We define a new cost
structure representation that has more expressive power than the cost structures
in [14] (it can represent lower bounds) and yet it can be inferred by applying
simple rules to its constraints (See Secs. 5.1 and 5.2). In [14], ranking functions
are used to bind the sums of constant expressions but the rest of the sums are
obtained using (a variant of) the Basic Product strategy. Therefore, the system
in [14] fails to obtain amortized costs except for simple cases. In particular, it
fails to infer a linear upper bound for wh3. In the work [7] Farkas’ Lemma is
used to obtain sums of linear expressions. However, it cannot infer bounds for
expressions that are incremented or reset. Also, their generated bounds do not
depend on the final variables of the phase and thus they are unable to obtain
amortized cost. Finally, neither [7] nor [14] can obtain lower bounds.

Other approaches include KoAt [9] which obtains complexity bounds of in-
teger programs by alternating size and bound analysis. Loopus [24,25] follows a
similar schema using in a representation based on difference constraints and can
compute amortized bounds. These ideas are present in how the cost is computed
in this work. Instead of sizes and bounds there is a similar interplay between the
the computation of constraints for smiv and dive/bivc variables in Sec. 5. None
of the mentioned work can compute lower bounds. It is worth to mention the
SPEED project [18,19,20,27] where different cost analyses are proposed based
on counter instrumentation [19], control flow refinement and progress invariants
[18], proof rules [20] and the size-change abstraction [27]. These approaches are
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UB 1 n n2 n3 > n3 F T

CoFloCo 3 62 33 2 1 20 1.19

Old 3 55 32 1 1 29 2.11

Loopus 2 56 27 0 2 34 0.03

KoAT 3 45 40 8 4 21 5.12

C4B 1 42 - - - 78 1.24

LB 1 n n2 n3 > n3 F T

CoFloCo 48 85 23 2 0 2 1.89

PUBS 95 38 9 4 0 14 7.58

CoFloCo KoAT Loopus Old C4B Pubs(LB)

better 28 20 12 59 60

worse 5 3 1 1 2

Fig. 6. Experimental results: The number of examples with a given complexity order
or (F)ailed for upper (UB) and lower (LB) bounds. (T) is the average time per example
in secs. On the right bottom, a comparison between CoFloCo and the other tools.

not publicly available so we cannot perform an experimental comparison. How-
ever, our experimental evaluation includes all examples from these papers.

Another active line of research is about amortized cost analysis based on the
potential method [10,21,22]. The authors of [21] present a type inference system
that is able to obtain polynomial cost upper bounds for functional programs with
data structures such as lists or trees. The key advantage of this analysis is its
ability to reduce the polynomial cost inference to a linear programming problem
(using type inference). In [22], they extend this analysis to deal with natural
numbers. The system C4B [10] (to which we compare) adapts this approach for
C programs with integers, but it can only infer linear bounds at the moment.

Based on the pioneering work of [26], several cost analyses based on recur-
rence relations were developed [11,12,23]. The authors of [5] present an analysis
which extracts recurrence relations that approximate the cost of CRs and can
later be solved by an external solver. Some of these approaches can also compute
lower bounds but are unable to find cost bounds for loops with increments or
resets or for programs that present amortized cost (such as program 1). Finally,
the technique presented in [15] infers “worst” lower bounds (a lower bound on
the derivation height) which are not comparable to our “best” lower bounds.

We perform one experimental evaluation for upper bounds and one for lower
bounds. The results of these experiments are summarized in Fig. 6. In all evalua-
tions, the tools are run with a timeout of 60 secs. per example. In the first evalua-
tion we analyze a total of 121 challenging programs written in C mainly extracted
from [6,10]. We compare our approach with Loopus [25], the previous version of
CoFloCo (called “Old” in the table) [14], KoAt [9], and C4B [10]. We use the tool
llvm2kittel [13] to transform the llvm-IR programs into integer rewrite systems
(for KoAT) which are translated to cost relations by a dedicated script. These
CRs are used by our tool, and “Old”. On Fig. 6, we can see for each tool how
many examples are reported in each complexity category and the average time in
seconds needed per program for each of the tools. The times of CoFloCo and Old
include the refinement process of [14]. On the right-bottom, we report for how
many programs CoFloCo computes a better or worse asymptotic bound that the
other tools. For instance, CoFloCo computes a better bound than KoAt in 28 ex-
amples and Loopus computes a better bound than CoFloCo in 3 examples. It can
be seen that CoFloCo computes better bounds for a higher number of examples
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than any other tool. The second evaluation compares CoFloCo and PUBS [5] for
computing lower bounds. We analyze a total of 160 examples. The 121 examples
from the first evaluation plus the examples of PUBS’s evaluation. CoFloCo ob-
tains a better result (a higher complexity order) in 60 examples. In contrast
PUBS obtains better bounds in 2 examples. A detailed experimental report is
online: http://cofloco.se.informatik.tu-darmstadt.de/experiments.
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14. A. Flores Montoya and R. Hähnle. Resource analysis of complex programs with
cost equations. In J. Garrigue, editor, 12th Asian Symposium on Programming
Languages and Systems (APLAS’14), volume 8858 of Lecture Notes in Computer
Science, pages 275–295. Springer, Nov. 2014.

15. F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl. Lower runtime
bounds for integer programs. In Proceedings of IJCAR’16. Springer, June 2016.

16. A. Garcia, C. Laneve, and M. Lienhardt. Static analysis of cloud elasticity. In
Proceedings of the 17th International Symposium on Principles and Practice of
Declarative Programming, Siena, Italy, July 14-16, 2015, pages 125–136. ACM,
2015.

17. N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. Static
analysis of energy consumption for llvm ir programs. In Proceedings of the 18th In-
ternational Workshop on Software and Compilers for Embedded Systems, SCOPES
’15, pages 12–21, New York, NY, USA, 2015. ACM.

18. S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invari-
ants for bound analysis. In PLDI, 2009.

19. S. Gulwani, K. K. Mehra, and T. Chilimbi. Speed: Precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139, New
York, NY, USA, 2009. ACM.

20. S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI’10, pages
292–304, New York, NY, USA, 2010. ACM.

21. J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource anal-
ysis. SIGPLAN Not., 46(1):357–370, Jan. 2011.

22. J. Hoffmann and Z. Shao. Type-based amortized resource analysis with integers
and arrays. In M. Codish and E. Sumii, editors, Functional and Logic Programming,
volume 8475 of LNCS, pages 152–168. Springer International Publishing, 2014.

23. A. Serrano, P. López-Garćıa, and M. V. Hermenegildo. Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP, 14(4-5):739–
754, 2014.

24. M. Sinn, F. Zuleger, and H. Veith. A simple and scalable approach to bound
analysis and amortized complexity analysis. In CAV, volume 8559 of LNCS, pages
743–759. Springer, 2014.

25. M. Sinn, F. Zuleger, and H. Veith. Difference constraints: An adequate abstraction
for complexity analysis of imperative programs. In Formal Methods in Computer-
Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015., pages
144–151, 2015.

26. B. Wegbreit. Mechanical Program Analysis. Communications of the ACM,
18(9):528–539, September 1975.

19



27. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In E. Yahav, editor, Static Analysis,
volume 6887 of LNCS, pages 280–297. Springer, 2011.

20



A Additional Strategies

In this section we provide additional strategies for transforming final constraints
during the computation of cost structures of phases.

A.1 Inductive Sum Strategy (with resets)

This variant of the Inductive Sum strategy allows us to obtain upper bounds of
sums in terms of the initial variables of the phase only (xs). Such bounds are not

only valid for
∑#ci

j=1 |l(xjx′j)| but also for any partial sum
∑p

j=1 |l(xjx′j)| with
p ≤ #ci and they are valid for non-terminating phases where xf is not defined.

In order to compute such a bound, the strategy proceeds as before: Let∑m
k=1 ivk ≤ |l(xx′)| ∈ Psumsci , it generates a candidate cd(x) using the con-

straint set of ci ϕi(xx′y) and Farkas’ Lemma. However, This time the strategy
uses the condition |l′(xx′)| ≤ cd(x) − cd(x′) ∧ |l′(xx′)| ≤ cd(x). This condition
contains the extra conjunction |l′(xx′)| ≤ cd(x) which allows us to ignore the fi-
nal value of the candidate cd(xf ) and guarantee that the generated constraint is
valid for any partial sum. This strategy considers the class Cntr, instead of Cnt,
which incorporates the extra conjunction as well (See Fig. 7). It also considers
the Rst class to support phases where the candidate is reset.

Lemma 3. If we classify every ce ∈ ph into Cntr, Ic, Dc and Rst with respect
to a candidate cd(x), the following constraints are valid:∑

ce∈Cntr

cntre ≤ iv cd +
∑

ce∈Ic
smiv ice +

∑
ce∈Rst

smiv rste , iv cd ≤ |cd(xs)|

For each ce ∈ Ic, the strategy adds the pending constraints iv ice ≤ |ic(xx′)| to
Psumsce and for each ce ∈ Rst, it adds ivrste ≤ |rst(x)| to Psumsce . Note that
this strategy adds the sum of all the resets instead of considering the maximum.
In addition to that, it ignores the decrements of ce ∈ Dc. This is necessary to
guarantee that the constraints are also valid for partial evaluations of the phase.

Condition when ./ is ≤ Defines

Cntr
(
∑m

k=1 ivk ≤ |l′(xx′)|) ∈ Psumsce∧
|l′(xx′)| ≤ cd(x)− cd(x′) ∧ |l′(xx′)| ≤ cd(x)

cntre =
m∑

k=1

smivk

Condition when ./ is ≤ Condition when ./ is ≥ Defines

CntTri
(
∑m

k=1 ivk ./ |l′(xx′)|) ∈ Psumsce∧
(l′(xx′) ./ cd(x) ≥ 0 ∧ cd(x′)− cd(x) ./ qe)

cntTrie =
m∑

k=1

smivk

qe ∈ Q
NoCnt cd(x′)− cd(x) = 0

Fig. 7. Additional Classes of CE ce with respect to a candidate cd(x), their condition
and defined term
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Program 2 Refined cost relations

1 f o r ( i n t x=0;x<n ; x++)
2 f o r ( i n t y=x ; y<n ; y++)
3 ; //tick(1);

1: for1(x, n) = for2[3+4](y, n)+ : for1(x′, n)
{y = x, x < n, x′ = x+ 1}

2: for1(x, n) = 0 {x ≥ n}
3: for2(y, n) = 1 + for2(y′, n) {y < n, y′ = y + 1}
4: for2(y, n) = 0 {y ≥ n}
Lower bound=|n|2/2 + |n|/2

Fig. 8. Program 2 and its refined cost relations

A.2 Triangular Sum Strategy

This strategy represents an alternative to the Basic Product strategy for dealing
with constraints

∑m
k=1 ivk ./ |l(xx′)| ∈ Psumsci where |l(xx′)| varies in each

iteration by a constant amount.

Example 11. A typical example is program 2 in Fig. 8. In this example, cost
equations 1 and 2 represent the outer loop and 3 and 4 the inner loop. The chain
that represents the total cost of the program is ‘[1+2]’. We did not include the
final values of the variables xo, yo and no in the CRs to simplify the presentation.
Let us consider obtaining the lower bound of such example.

We consider that the cost of the inner loop (chain ‘[3+4]’) is 〈iv1, ∅, {iv1 =
|n− y|}〉 which yields a cost of 〈iv1, ∅, {iv1 = |n− x|}〉 for CE 1. The main cost
expression of the phase 1+ is E1+ := smiv1, no constraints are generated from the
non-final constraints and the pending sets are: Psums1 = {iv1 ≤ |n − x|, iv1 ≥
|n−x|} and Pms1 = ∅. If we apply the basic product strategy to iv1 ≥ |n−x|, we
would obtain smiv1 ≥ smiv it1 ∗dive2 and later smiv it1 ≥ |ns−xs| and dive2 ≥ 1
(the minimum value of |n − x| is 1 in the last iteration) which represents the
imprecise lower bound |n− x| ∗ 1.

Instead, we consider that |n− x| decreases by at most 1 in each iteration so
we can reformulate:∑#c1

j=1 |nj − xj | ≥
∑#c1

j=1(|ns − xs| − (j − 1))

= |ns − xs| ∗#c1 −
∑#c1−1

j=0 j = |ns − xs| ∗#c1 − (#c1 ∗#c1 −#c1)/2

This expression can be represented with constraints as follows:

smiv1 ≥ ivp1 − 1
2 ivp2 + 1

2smiv it1 , ivp1 ≥ iv ini ∗ smiv it1

ivp2 ≤ smiv it1 ∗ smiv it1 , iv ini ≥ |ns − xs|

Note that the constraint over ivp2 has ≤ instead of ≥. This is because ivp2

appears as a negative summand in the first constraint and it has to be maxi-
mized. Later, applying the Inductive Sum strategy to iv it1 ≤ 1 and iv it1 ≥ 1 (in
Psums1 ), we generate smiv it1 = |(ns − xs)− (nf − xf )|. Once we compute the
cost of the complete chain ‘[1+2]’, we will transform |(ns− xs)− (nf − xf )| into
|ns − xs| (Because nf − xf must be 0 in chain ‘[1+2]’). If we minimize the cost
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of the resulting cost structure, we obtain:

|ns − xs|2 − |ns − xs|2/2 + |ns − xs|/2
= |ns − xs|2/2 + |ns − xs|/2 =
=(1) |ns|2/2 + |ns|/2 (because xs = 0)

In general, given a constraint
∑m

k=1 smivk ./ |l(xx′)| ∈ Psumsci , the strategy
generates a candidate cd(x) that approximates the cost of one instance of |l(xx′)|,
it is positive and it varies by a constant amount qi ∈ Q. That is:

ϕi(xx′y)⇒ (l(xx′) ./ cd(x) ≥ 0 ∧ cd(x′)− cd(x) ./ qi)

This strategy considers the classes CntTri and NoCnt (See Fig. 7). If ce ∈
CntTri, there exists a constraint (

∑m
k=1 ivk ./ |l′(xx′)|) ∈ Psumsce that is

bound by the candidate and the candidate varies by an amount qe. As in previous
strategies, this condition coincides with the one used to generate the candidate
and ci ∈ CntTri. The CEs ce ∈ NoCnt do not modify the candidate.

Lemma 4. If we classify every ce ∈ ph into CntTri and NoCnt with respect to
a candidate cd(x). Let q be q := max

ce∈CntTri
(qe) when ./ is ≤ or q := min

ce∈CntTri
(qe)

when ./ is ≥. The following constraints are valid:∑
ce∈CntTri

cntTrie ./ ivp1 + q
2 ivp2 − q

2 iv its , ivp1 ./ iv ini ∗ iv its

ivp2 = iv its ∗ iv its, iv its =
∑

ce∈CntTri

smiv ite , iv ini ./ |cd(xs)|

The constraints of the form iv = x stand for iv ≤ x and iv ≥ x. The intermediate
variable iv its represents the sum of all the iterations #ce of ce ∈ CntTri. The
constraints iv ite ≤ 1 and iv ite ≥ 1 are added to each Psumsce such that ce ∈
CntTri (if they are not in the set yet).

B Complete Example of Phase Cost Structure

In this section we present a complete example of the computation of a cost
structure for a phase to illustrate how the different strategies work together.
Fig. 9 contains program 3 and its refined cost relations (Note that we reused
the cost relations of program 1 for the inner loop). This example has 5 cost
equations. CE 10 and 11 represent the loop paths that reach the inner loop. In
CE 10 the body of the inner loop is executed at least once and in CE 11 the
body of inner loop is not executed. CE 12 corresponds to the loop path that
visits line 5 in which y is incremented. CE 13 corresponds the loop path that
visits line 6. There y is reset to z. Finally, CE 14 is the exit path of the loop.

We will compute the cost structure of the phase (10 ∨ 11 ∨ 12 ∨ 13)+ based
on the cost structures of CEs 10 − 13. We assume we have the cost structure
〈2iv5, ∅, iv5 ≤ |y − y′|〉 for CE 10 and the cost structures of CEs 11 − 13 are
empty. For simplicity, we only consider constraints for upper bounds (with ≤).
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Program 3 Refined cost relation of the outer loop:

1whi le ( x>0){
2 i f (∗ )
3 whi le ( y>0 && ∗)
4 y−−;//tick(2);
5 e l s e i f (∗ ) y++;
6 e l s e y=z ;
7 x−−;}

10: p3(x, y, z) = wh6[5+4](y, y′) + p3(x, y′, z)
{x > 0, y > y′ ≥ 0, x′ = x− 1}

11: p3(x, y, z) = wh6[4](y, y′) + p3(x, y′, z)
{x > 0, y = y′ ≥ 0, x′ = x− 1}

12: p3(x, y, z) = p3(x′, y′, z) {x′ = x− 1 ≥ 0, y′ = y − 1}
13: p3(x, y, z) = p3(x′, y′, z) {x > 0, x′ = x− 1, y = z}
14: p3(x, y, z) = 0{x ≤ 0}
Upper bound= 2(|y|+max(|x|,|x|*|z|))

Fig. 9. Program 3 and its refined cost relations

The main cost expression of the phase is 2smiv5. Fig. 10 contains all the
steps of constraint generation from final constraints of the CEs. Each step has
four parts:

1. State: The state of each of the pending sets Psumsci and Pmsci .
2. SelConstr: The constraint selected from one of the pending sets
3. Strategy: The strategy applied to the selected constraint: ISR (Inductive

Sum with Resets), BP (Basic Product) or MM (Max-Min). Additionally we
express the classification of the ce ∈ ph and the related defined terms cntre,
ice, etc.

4. NewCs: The constraints generated by the applied strategy. The constraints
added to the pending sets are not included here but they can be seen in the
state of the next step.

We apply 4 steps until all the intermediate variables are bound. The resulting
cost structure 〈E, IC ,FC (x)〉 contains all the generated constraints (NewCs):

E = 2smiv5

IC = {smiv5 ≤ iv1 + smiv ic12 + smivrst13 , smivrst13 ≤ smiv it13 ∗ dive2}
FC = {iv1 ≤ |y|, dive2 ≤ |z|, smiv ic12 + smiv it13 ≤ |x|}

This cost structure represents the upper bound 2(|y|+max(|x|, |x| ∗ |z|)).

C Solving Cost Structures

In this section, we detail how upper and lower bound expressions can be ob-
tained from a given cost structure. In order to compute upper bounds of a cost
structure 〈E, IC ,FC (x)〉, we maximize the positive summands and minimize the
negative summands of the main expression E. Conversely, we minimize positive
summands and maximize negative ones to obtain lower bounds. This is done by
assigning symbolic expressions over x to the intermediate variables according to
the constraints in IC and FC (x). In general this is immediate for constraints
that contain a single iv on their left side. If we have iv ≤ x we simply assign x
to iv .
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State Psums10 = {iv5 ≤ |y − y′|}
SelConstr iv5 ≤ |y − y′|
Strategy ISR : cd = y, Cntr = {10}, Dc = {11}, Ic = {12}, Rst = {13}

cntr10 = smiv5, dc11 = 0, ic12 = 1, rst13 = |z|
NewCs smiv5 ≤ iv1 + smiv ic12 + smivrst13 , iv1 ≤ |y|
State Psums12 = {iv ic12 ≤ 1},Psums13 = {ivrst13 ≤ |z|}
SelConstr ivrst13 ≤ |z|
Strategy BP

NewCs smivrst13 ≤ smiv it13 ∗ dive2
State Psums12 = {iv ic12 ≤ 1},Psums13 = {iv it13 ≤ 1},Pms13 = {iv2 ≤ |z|}
SelConstr iv2 ≤ |z|
Strategy MM : cd = z, Dc = {10, 11, 12, 13}, dc10,11,12,13 = 0

NewCs dive2 ≤ |z|
State Psums12 = {iv ic12 ≤ 1},Psums13 = {iv it13 ≤ 1}
SelConstr iv ic12 ≤ 1

Strategy ISR : cd = x, Cntr = {12, 13}, Dc = {10, 11}
cntr12 = smiv ic12 , cntr13 = smiv it, dc10,11 = 1

NewCs smiv ic12 + smiv it13 ≤ |x|
Done

Fig. 10. Computation of cost structure of phase (10 ∨ 11 ∨ 12 ∨ 13)+ of program 3.

If we have constraints with several iv on the left side, it is less straightforward
how to obtain a maximizing/minimizing assignment. Consider a constraint iv1+
iv2 ≤ x. For upper bound constraints, a simple but imprecise alternative is to
assign α(iv1) = x and α(iv2) = x. This is equivalent to splitting the constraint
into two weaker constraints iv1 ≤ x and iv2 ≤ x. Unfortunately, this is not
possible for lower bound constraints like iv1 + iv2 ≥ x. Another possibility is
to consider the extreme cases, when α(iv1) = x and α(iv2) = 0 and vice-versa
α(iv1) = 0 and α(iv2) = x. If we have a cost of the form c1 ∗ iv1 + c2 ∗ iv2 then
max(c1 ∗ x + c2 ∗ 0, c1 ∗ 0 + c2 ∗ x) is a valid upper bound and min(c1 ∗ x +
c2 ∗ 0, c1 ∗ 0 + c2 ∗ x) is a valid lower bound. This approach allows us to obtain
upper and lower bounds that are more precise but it is limited to intermediate
variables that only appear linearly. That is, if we have an expression like iv1∗iv2,
max(iv1, iv2) or min(iv1, iv2), the extreme cases do not represent the maximum
or minimum cost. For example, the maximum cost of iv1 ∗ iv2 would correspond
to assigning α(iv1) = x/2 and α(iv2) = x/2. In those cases we can resort to
assigning the maximal cost to both variables for upper bounds (α(iv1) = x and
α(iv2) = x) and assign both variables to zero for lower bounds (α(iv1) = 0 and
α(iv2) = 0). Fortunately, in most cases where we have constraints with multiple
variables on the left side, these variables appear only linearly in the rest of the
cost structure.

Example 12. Consider the cost structure of chain [1.2] of program 1: 〈1iv2 +
2iv6, {iv2 = iv3 ∗ iv4}, {iv3 + iv6 = |y + x|, iv4 = |z|}〉. Let us obtain an upper
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bound of chain [1.2]. First, we solve the constraints with a single variable on
the left side and we obtain: 1(iv3 ∗ |z|) + 2iv6 such that iv3 + iv6 = |y + x|.
Then, we check that iv6 and iv3 do not appear multiplied by each other (or
inside the same max or min expression) and we consider the extreme cases: (1)
iv6 = |y + x| and iv3 = 0; and (2) iv6 = 0 and iv3 = |y + x|. For obtaining an
upper bound, we take the maximum of both cases and simplify:

max((|y + x| ∗ |z|) + 2 ∗ 0, 1(0 ∗ |z|) + 2|y + x|) = max(|y + x| ∗ |z|, 2|y + x|)
= max(|z|, 2) ∗ |y + x|

For obtaining a lower bound, we consider the minimum of both cases:

min((|y + x| ∗ |z|) + 2 ∗ 0, 1(0 ∗ |z|) + 2|y + x|) = min(|z|, 2) ∗ |y + x|

Example 13. Consider now the cost structure of phase (10 ∨ 11 ∨ 12 ∨ 13)+ of
program 3:

E = 2 ∗ smiv5

IC = {smiv5 ≤ iv1 + smiv inc12 + smivrst13 , smivrst13 ≤ smiv it13 ∗ dive2}
FC = {iv1 ≤ |y|, dive2 ≤ |z|, smiv inc12 + smiv it13 ≤ |x|}

As in the previous example, we solve all the constraints with only one variable
on the left side first and obtain: 2 ∗ (|y|+ smiv inc12 + (smiv it13 ∗ |z|)) such that
smiv inc12 +smiv it13 ≤ |x|. Also in this case, smiv inc12 and smiv it13 do not appear
multiplying each other (or inside the same max or min expression). Therefore,
we consider the extreme cases and take their maximum and simplify:

max(2 ∗ (|y|+ |x|), 2 ∗ (|y|+ (|x| ∗ |z|))) = 2(|y|+max(|x|, |x| ∗ |z|))

If we split smiv inc12 + smiv it13 ≤ |x| into smiv inc12 ≤ |x| and smiv it13 ≤ |x| the
resulting upper bound is less precise but still valid: 2 ∗ (|y|+ |x|+ (|x| ∗ |z|)).

Note that given a cost structure, there might be multiple bound expressions
that can be extracted depending on which constraints are considered. Moreover,
the different possible bound expressions are often not comparable among each
other. For instance, given a cost structure 〈iv , ∅, {iv ≤ |x|, iv ≤ |y|}, both |x|
and |y| are valid upper bounds. These upper bounds are not comparable (we
do not know whether x is bigger that y or not) and actually the best upper
bound is min(|x|, |y|). In our implementation, we prioritize efficiency and do not
try to obtain the best bound. Instead we select the constraints that we con-
sider heuristically trying to obtain a simple bound with the best the asymptotic
complexity.

D Additional Experiments

In the recent work of [25], an extensive experimental evaluation is presented. In
that evaluation 1659 functions from a compiler optimization benchmark (cBench)
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UB 1 n n2 ≥ n3 Failed # Timeouts Avg. Time

CoFloCo 216 152 39 0 1113 105 3.76

Old 213 149 38 0 1109 116 4.89

Loopus 204 487 97 14 806 17 0.37

KoAT 204 138 38 1 1104 140 5.58

Loopus* 197 142 40 0 1226 20 0.42

CoFloCo KoAT Loopus Old Loopus*

better 35 24 8 40

worse 5 416 2 12

Fig. 11. Replication of experimental evaluation of [25]. Complexity, Failed, Timeouts
and average Time in seconds

are evaluated. We replicated this evaluation (with 1625 examples)7 with our tool,
the previous version of CoFloCo and KoAt. The results are provided in Fig. 11.
However, we realized that our tool fails to compute a bound in many examples
because the translation using llvm2kittel does not consider structs, arrays and
simple pointer references that are better handled by Loopus. In order to get
a measure of this, we transformed the examples generated by llvm2kittel back
into C programs8 and run Loopus on the resulting programs. This corresponds
to the row Loopus* in Fig. 11. The results indicate that the translation plays a
major role on the results. Factoring out the translation, all tools report similar
results in terms of number of examples analyzed successfully (Loopus is still
much faster).

E Soundness Proofs

Theorem 1. Let T (x) be a chain, a phase or a CE. Then the cost structure
〈ET , IC T ,FC T (x)〉 obtained following the algorithms of Secs. 4 and 5 is valid.

For the cost structures generated in Sec. 4 (For CEs and chains), the main
cost expression ET was derived following the semantic rules in Fig. 3 and the
validity of the constraints IC T and FC T (x) follows directly from the validity of
the cost structures of its components and, in the case of chains, also from the
validity of the summaries ϕph used in the quantifier elimination.

For the cost structures generated in Sec. 5 (For phases), The validity of
the main cost expression ET is immediate given the definition of smiv . The
constraints generated in Sec. 5.1 are generated directly from the non-final con-
straints of the cost structures of the CEs in the phase and their validity follows
directly from the definitions of smiv , dive and bivc. In what follows, we prove
that the constraints generated by the different strategies in Sec. 5.2 and App. A
are also valid.

7We excluded some examples where the translation tools failed
8Using the script available at https://github.com/s-falke/kittel-koat
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E.1 Soundness of Constraints Generated from Final Constraints

An evaluation of a phase ph = (c1∨· · ·∨cn)+ consist on a sequence of evaluations
of CEs 〈α, ci(xjxj+1)〉 ⇓ kj for 1 ≤ j < f and ci ∈ ph.

We define the auxiliary function CE? that given an index j tell us which CE
of the phase has been evaluated in the j− th position. That is CE?(j) = ci such
that the j−th CE evaluation within the phase evaluation is: 〈α, ci(xjxj+1)〉 ⇓ kj .
Additionally, we define the following auxiliary notion:

Definition 8 (Partial sum). Let iv be an intermediate variable defined in CE
ci, we define the partial sum psmivci [a..b] as the sum of all the instances of iv
in the CE evaluations such that CE?(j) = ci in the segment a < j < b of the
phase evaluation:

psmivci [a..b] =
∑

a≤j<b∧CE?(j)=ci

iv j

It follows from the definition that psmivci [a..b] ≤ smiv for every 1 ≤ a ≤ b <
f and in particular psmivci [1..f ] = smiv . Also psmivci [a..b+1] = psmivci [a..b]+
iv b if CE?(b) = ci (where iv b is an instance of iv) and psmivci [a..b + 1] =
psmivci [a..b] otherwise.

Soundness of Inductive Sum Strategy (Lemma 1) We have to prove
that, given a candidate cd(x) such that we could classify every ce ∈ ph into the
classes Cnt, Dc and Ic according to their definitions in Sec. 5.2. The following
constraints are valid.∑

ce∈Cnt

cnte ./ iv cd+ − iv cd− +
∑

ce∈Ic
smiv ice −

∑
ce∈Dc

smivdce ,

iv cd+ ./ |cd(xs)− cd(xf )| , iv cd−! ./ | − cd(xs) + cd(xf )|

These constraints involve additional intermediate variables iv ice and ivdce for
each ce ∈ Ic and ce ∈ Dc whose value is defined as iv ice := |ice(xx′)| and
ivdce := |dce(xx′)|. The addition of iv ice ./ |ic(xx′)| and ivdce ! ./ |dc(xx′)| to
Psumsce follows directly from these definitions.

In this setting, we are not restricted by the format of the cost structures and
we can merge the three constraints into one:∑

ce∈Cnt

cnte ./ cd(xs)− cd(xf ) +
∑
ce∈Ic

smiv ice −
∑

ce∈Dc

smivdce

Then, we can define a generalized constraint that holds for a segment of the eval-
uation [1..n]. The constraint above corresponds to the case where consider the
complete phase evaluation (n = f). The generalized constraint has the following
form:∑

ce∈Cnt

(
∑

smivk∈cnte
psmivce

k[1..n]) ./ cd(x1)− cd(xn) +
∑

ce∈Ic
(psmivce

ice [1..n])

−
∑

ce∈Dc

(psmivce
dce [1..n])

We prove that the generalized constraint holds for all n by induction.
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Base Case For n = 1 we have 0 ./ 0 because the intervals for all psmivce are
empty and cd(x1)− cd(x1) = 0.

Inductive Case For the inductive case, we assume the expression holds for n and
prove it for n+ 1. We distinguish cases depending on which CE is evaluated in
the (n)-th place. In particular, whether CE?(n) belongs to Cnt, Dc or Ic. In
each case, we reduce the n+ 1 case to the n case and prove that the additional
summands maintain the inequality.

– If CE?(n) = ci ∈ Cnt, the left hand side of the constraint is:∑
ce∈Cnt

(
∑

smivk∈cnte
psmivce

k[1..n+ 1]) =∑
ce∈Cnt

∑
smivk∈cnte

psmivce
k[1..n] +

∑
smivk∈cnti

ivkn

Where ivkn are the instances of the variables ivk in the n-th CE evaluation
of the phase. The right hand side of the constraint is:

cd(x1)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n+ 1])

−
∑

ce∈Dc

(psmivce
dce [1..n+ 1]) =

cd(x1)− cd(xn) + cd(xn)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n])

−
∑

ce∈Dc

(psmivce
dce [1..n])

If we apply the induction hypothesis, we are left to prove:∑
smivk∈cnti

ivkn ./ cd(xn)− cd(xn+1)

This constraints is directly guaranteed by the classification condition of Cnt:∑
smivk∈cnti

ivk ./ |l′(xx′)|) ∈ Psumsci ∧ |l′(xx′)| ./ cd(x)− cd(x′)

which is valid for any evaluation of a ce ∈ Cnt and in particular for the
evaluation of ci in the n-th place.

– If CE?(n) = ci ∈ Dc, the left side of the constraint does not change with
respect to the case with n:∑

ce∈Cnt

(
∑

smivk∈cnte
psmivce

k[1..n+ 1]) =
∑

ce∈Cnt

∑
smivk∈cnte

psmivce
k[1..n]

And the right hand side is:

cd(x1)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n+ 1])

−
∑

ce∈Dc

(psmivce
dce [1..n+ 1]) =

cd(x1)− cd(xn) + cd(xn)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n])

−
∑

ce∈Dc

(psmivce
dce [1..n])− ivdcin
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Where ivdcin is the instance of ivdci in the n-th CE evaluation. We have to
prove:

0 ./ cd(xn)− cd(xn+1)− ivdcin

By definition of Dc we have cd(xn) − cd(xn+1) is positive and ivdcen =
|dce(xnxn+1)| ./ cd(xn)− cd(xn+1) which guarantees the condition that we
want to prove.

– If CE?(n) = ci ∈ Ic, the left side of the constraint does not change with
respect to the case of n as in the previous case. The right hand side of the
constraint can be decomposed as follows:

cd(x1)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n+ 1])

−
∑

ce∈Dc

(psmivce
dce [1..n+ 1]) =

cd(x1)− cd(xn) + cd(xn)− cd(xn+1) +
∑

ce∈Ic
(psmivce

ice [1..n]) + iv icin

−
∑

ce∈Dc

(psmivce
dce [1..n])

Therefore, we have to prove:

0 ./ cd(xn)− cd(xn+1) + iv icin

This is directly guaranteed by the definition of Ic (given that |ici(xnxn+1)| =
iv icin).

Soundness of Inductive Strategy with Resets (Lemma 3) We have to
prove that, given a candidate cd(x) such that we could classify every ce ∈ ph
into the classes Cntr,Dc, Ic and Rst according to their definitions in Secs. 5.2
and A.1. The following constraints are valid:∑

ce∈Cntr

cntre ≤ iv cd +
∑

ce∈Ic
smiv ice +

∑
ce∈Rst

smivrste , iv cd ≤ |cd(xs)|

These constraints involve additional intermediate variables iv ice and ivrste for
each ce ∈ Ic and ce ∈ Rst whose value is defined as iv ice := |ice(xx′)| and
ivrste := |rste(x)|. The addition of iv ice ≤ |ic(xx′)| and ivrste ≤ |rst(xx′)| to
Psumsce follows directly from these definitions.

Similarly to the previous proof, we merge the constraints in a single one:∑
ce∈Cntr

cntre ≤ |cd(xs)|+
∑
ce∈Ic

smiv ice +
∑

ce∈Rst

smivrste

Then, we can define a generalized constraint that holds for a segment of the eval-
uation [1..n]. The constraint above corresponds to the case where consider the
complete phase evaluation (n = f). The generalized constraint has the following
form:∑

ce∈Cntr

(
∑

smivk∈cntre
psmivce

k[1..n]) ≤ |cd(x1)| − |cd(xn)|+

+
∑

ce∈Ic
(psmivce

ice [1..n]) +
∑

ce∈Rst

(psmivce
rste [1..n])
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Note that |cd(q1)| − |cd(qn)| ≤ |cd(q1)| for all n so our constraint is a safe
over-approximation of the generalized constraint. We prove that the generalized
constraint holds for all n by induction.

Base Case For n = 1 (the empty sequence) we have 0 ≤ |cd(x1)| − |cd(x1)| = 0
which is trivially true.

Inductive Case For the inductive case, we assume the expression holds for n and
prove it for n+ 1. We distinguish cases depending on which CE is evaluated in
the (n)-th place. In particular, whether CE?(n) belongs to Cntr, Dc, Ic or Rst.
In each case, we reduce the n+1 case to the n case and prove that the additional
summands maintain the inequality.

– If CE?(n) = ci ∈ Cntr, the left hand side of the constraint is:∑
ce∈Cntr

(
∑

smivk∈cntre
psmivce

k[1..n+ 1]) =∑
ce∈Cntr

∑
smivk∈cntre

psmivce
k[1..n] +

∑
smivk∈cntri

ivkn

Where ivkn are the instances of the variables ivk in the n-th CE evaluation
of the phase. The right hand side of the constraint is:

|cd(x1)| − |cd(xn+1)|+
∑

ce∈Ic
(psmivce

ice [1..n+ 1])

+
∑

ce∈Rst

(psmivce
rste [1..n+ 1]) =

|cd(x1)| − |cd(xn)|+ |cd(xn)| − |cd(xn+1)|+
∑

ce∈Ic
(psmivce

ice [1..n])

+
∑

ce∈Rst

(psmivce
rste [1..n])

If we apply the induction hypothesis, we are left to prove:∑
smivk∈cntri

ivkn ./ |cd(xn)| − |cd(xn+1)|

According to the definition of Cntr, we have:

(1)
∑

smivk∈cntri
ivkn ≤ |l′(xnxn+1)| ≤ cd(xn)− cd(xn+1)

(2)
∑

smivk∈cntri
ivkn ≤ |l′(xnxn+1)| ≤ cd(xn)

The property (2) implies that cd(xn) is positive (cd(xn) = |cd(xn)|).
• If cd(xn+1) is positive, cd(xn+1) = |cd(xn+1)| and we apply (1):∑

smivk∈cntri
ivkn ≤ cd(xn)− cd(xn+1) = |cd(xn)| − |cd(xn+1)|

• If cd(xn+1) is negative, |cd(xn+1)| = 0 and we apply (2):∑
smivk∈cntri

ivkn ≤ |l′(xnxn+1)| ≤ cd(xn) ≤ |cd(xn)| = |cd(xn)| − |cd(xn+1)|
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– If CE?(n) = ci ∈ Dc, the left side of the constraint does not change with
respect to the case with n and the right side is:

|cd(x1)| − |cd(xn+1)|+
∑

ce∈Ic
(psmivce

ice [1..n+ 1])

+
∑

ce∈Rst

(psmivce
rste [1..n+ 1]) =

|cd(x1)| − |cd(xn)|+ |cd(xn)| − |cd(xn+1)|+
∑

ce∈Ic
(psmivce

ice [1..n])

+
∑

ce∈Rst

(psmivce
rste [1..n])

Therefore, we have to prove:

0 ≤ |cd(xn)| − |cd(xn+1)|

Because CE?(n) = ci ∈ Dc, we have:

(1) 0 ≤ dci(xnxn+1) ≤ cd(xn)− cd(xn+1)

• if cd(xn+1) is positive, cd(xn) is also positive and 0 ≤ cd(xn)−cd(xn+1) =(1)

|cd(xn)| − |cd(xn+1)|.
• if cd(xn+1) is negative, |cd(xn)| − |cd(xn+1)| = |cd(xn)| ≥ 0 (by defini-

tion of |x| = max(x, 0)).

– If CE?(n) = ci ∈ Ic, the left side of the constraint does not change with
respect to the case with n. We can decompose the right side as before and
as a result we have to prove:

0 ≤ |cd(xn)| − |cd(xn+1)|+ iv icin

From the definition of Ic, we know:

(1) 0 ≤ cd(xn)− cd(xn+1) + |ice(xnxn+1)|

We distinguish cases:
• If cd(xn+1) is negative, |cd(xn+1)| = 0 and we have 0 ≤ |cd(xn)|+ iv icin

which is trivially true (both summands are positive).
• If cd(xn+1) is positive, we know: |cd(xn+1)| = cd(xn+1) ≤(1) cd(xn) +
|ice(xnxn+1)| = cd(xn) + iv icin ≤ |cd(xn)|+ iv icin.

– If CE?(n) = ci ∈ Rst, the left side of the constraint does not change with
respect to the case with n. We can decompose the right side as before and
as a result we have to prove:

0 ≤ |cd(xn)| − |cd(xn+1)|+ ivrstin

By the definition of Rst we have ivrstin = |rsti(xn)| ≥ |cd(xn+1)| which is
sufficient to prove that |cd(xn)| − |cd(xn+1)|+ ivrstin is positive.

Note that the generated constraint does not contain variables from the end
of the phase (xf ). Moreover, we did not use the fact that the execution is finite
at any point of the proof. Therefore, this constraint is also valid for infinite
executions.
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Soundness of Max and Min Strategy for ≤ (Lemma 2) Given a constraint
iv ≤ |l(xx′)| ∈ Pmsci , if we manage to classify all the ce ∈ ph into Dc, Ic, and
Rst, we generate:

dive ≤ ivmax +
∑
ce∈Ic

smiv ice , ivmax ≤ max
ce∈Rst

(diverste , iv cd), iv cd ≤ |cd(xs)|

We will prove that for any instance iv j of iv , either:

– iv j ≤ |cd(xs)|+
∑

ce∈Ic
smiv ice ;

– or there is a ce ∈ Rst such that:
iv j ≤ diverste +

∑
ce∈Ic

smiv ice .

If all instances iv j are smaller or equal than an amount. dive (which is the
biggest instance) is also smaller or equal than such amount. Note that if we
generated a constraint, we have that for every ce ∈ ph, ce belongs to Dc, Ic or
Rst. Given an instance iv j occurring a the j-th evaluation of a CE, CE?(j) = ci
(we extracted the constraint from Pmsci ) and it is bounded by the candidate
at that point iv j ≤ |l(xjxj+1)| ≤ |cd(xj)|. We consider the CE evaluations that
happen before. Consider the last CE evaluation such that it belongs to Rst
CE?(l) = cr ∈ Rst. The sequence of evaluations from the index l to j contains
only CE evaluations of ce ∈ Dc or ce ∈ Ic.

– For each evaluation such that CE?(k) = ce ∈ Dc, we have |cd(xk+1)| ≤
|cd(xk)|.

– For each evaluation such that CE?(k) = ce ∈ Ic, we have |cd(xk+1)| ≤
|cd(xk)|+ iv icek*.

* (cd(xk+1) ≤ cd(xk)+ice(xkxk+1) implies |cd(xk+1)| ≤ |cd(xk)|+|ice(xkxk+1)| =
|cd(xk)|+ iv icek).

This way, we have:

iv j ≤ |cd(xl+1)|+
∑
ce∈Ic

(psmivce
ice [l + 1..j])

Given that CE?(l) = cr ∈ Rst, we have that |cd(xl+1)| ≤ |rstr(xl)| = ivrstrl

which by definition is ivrstrl ≤ diverstr . Therefore, we conclude:

iv j ≤ diverstr +
∑
ce∈Ic

(psmivce
ice [l + 1..j]) ≤ diverstr +

∑
ce∈Ic

smiv ice

If there is no l ≤ j such that CE?(l) = cr ∈ Rst, we can carry the transformation
up to the beginning of the phase execution and obtain:

iv j ≤ |cd(xs)|+
∑
ce∈Ic

(psmivce
ice [1..j]) ≤ |cd(xs)|+

∑
ce∈Ic

smiv ice

The maximum of the different cases for the different ce ∈ Rst corresponds to
the constraint generated. The proof for bivc ≥ |l(xx′)| ∈ Pmsci is analogous.
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Soundness of Triangular Sum Strategy (Lemma 4) We prove that, given
a candidate cd(x) such that we could classify every ce ∈ ph into the sets CntTri
and NoCnt according to their definitions in Sec. A.2. The following constraints
are valid:∑
ce∈CntTri

cntTrie ./ |cd(xs)| ∗ iv its + q
2 iv2

its −
q
2 iv its , iv its =

∑
ce∈CntTri

smiv it

Which is a merged version of the constraints stated in Sec. A.2. Here q =
max

ce∈CntTri
(qe) if ./ is ≤ or q = min

ce∈CntTri
(qe) otherwise. The variable iv its repre-

sents the number of evaluations of CE in the phase evaluation s.t. ce ∈ CntTri.
We introduce the following auxiliary notion:

Definition 9 (Partial count). iv its[1..n] is the partial count of CntTri in
[1..n] and it represents the number of CE evaluations of ce ∈ CntTri in the
segment 1 ≤ j ≤ n of the phase evaluation. Note that we have iv its = iv its[1..f ].

Then, we define the following lemma:

Lemma 5. For all n in the phase evaluation cd(xn) ./ cd(x1) + q ∗ iv its[1..n].

Proof. we prove it by induction over n.

– Base case: For n = 1, the interval in iv its[1..1] is empty, iv its[1..1] = 0 and
cd(x1) ./ cd(x1) + 0.

– Inductive case: We assume cd(xn) ./ cd(x1) + q ∗ iv its[1..n] and prove it for
n+ 1. We distinguish two cases:

• If CE?(n) ∈ CntTri, we have:

cd(xn+1) ./ cd(xn) + q ./ cd(x1) + q ∗ iv its[1..n] + q
=(IH) cd(x1) + q ∗ (iv its[1..n] + 1) = cd(x1) + q ∗ (iv its[1..n+ 1])

• If CE?(n) ∈ NoCnt, we have:

cd(xn+1) = cd(xn) =(IH) cd(x1) + q ∗ iv its[1..n]
= cd(x1) + q ∗ iv its[1..n+ 1]

According to the definition of CntTri, we have:∑
ce∈CntTri

cntTrie ./
∑

1≤j<f∧CE?(j)∈CntTri

cd(xj)

We prove that the left side of the constraint that we generate is a valid approx-
imation of such constraint:
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∑
1≤j<f∧CE?(j)∈CntTri

cd(xj)

./(1)
∑

1≤j<f∧CE?(j)∈CntTri

(cd(x1) + q ∗ iv its[1..j])

=(2) iv its[1..f ] ∗ cd(x1) +
∑

1≤j<f∧CE?(j)∈CntTri

(q ∗ iv its[1..j])

=(3) iv its[1..f ] ∗ cd(x1) + q
ivits[1..f ]∑

j=0

j

=(4) iv its ∗ cd(x1) +
ivits∑
j=0

j

=(5) cd(x1) ∗ (iv its) + q
2 ∗ (iv2

its − iv its)

1. Because of Lemma 5.
2. Definition of iv its[1..n] and distributivity.
3. Express sum as indexed sum.
4. Definition of iv its[1..n]: iv its = iv its[1..f ].
5. Solve arithmetic sequence.
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