
Resource Analysis of Complex Programs with
Cost Equations

Antonio Flores-Montoya and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science
aflores|haehnle@cs.tu-darmstadt.de

Abstract. We present a novel static analysis for inferring precise com-
plexity bounds of imperative and recursive programs. The analysis oper-
ates on cost equations. Therefore, it permits uniform treatment of loops
and recursive procedures. The analysis is able to provide precise upper
bounds for programs with complex execution flow and multi-dimensional
ranking functions. In a first phase, a combination of control-flow refine-
ment and invariant generation creates a representation of the possible
behaviors of a (possibly inter-procedural) program in the form of a set
of execution patterns. In a second phase, a cost upper bound of each
pattern is obtained by combining individual costs of code fragments.
Our technique is able to detect dependencies between different pieces of
code and hence to compute a precise upper bounds for a given program.
A prototype has been implemented and evaluated to demonstrate the
effectiveness of the approach.

1 Introduction

Automatic resource analysis of programs has been subject to intensive research
in recent years. This interest has been fuelled by important advances in termina-
tion proving, including not only ranking function inference [6, 15], but complete
frameworks that can efficiently prove termination of complex programs [3, 7, 10].
Termination proving is, however, only one aspect of resource bound inference.

There are several approaches to obtain upper bounds for imperative programs
[3, 8, 9, 11–14, 16, 17]. Most pay little attention to interprocedural, in particular,
to recursive programs. Only SPEED [13] and the recent paper [8] address recur-
sive procedures. The extent to which SPEED can deal with complex recursive
procedures is hard to evaluate (they provide only one example). The approach
of [8] ignores the output of recursive calls which, however, can be essential to
obtain precise bounds (see Fig.1).

A different line of work is based on Cost Equations, a particular kind of
non-deterministic recurrence relations, annotated with constraints. This is the
approach followed by the COSTA group [1, 2, 4, 5]. One advantage of Cost Equa-
tions is that they can deal with both loops and recursion in a uniform manner.
However, the approach does not cope well with loops that exhibit multiple phases
or with programs whose termination proof requires multiple linear ranking func-
tions for a single loop/recursive procedure.

Program 1
1main (i n t m, i n t n) {
2 // assume (m>n>0)
3 boo l fwd=f a l s e ;
4 whi le (n > 0) {
5 n=move (n ,m, fwd) ;
6 i f (?) fwd=t rue ;
7 }
8}
9 i n t move (i n t n ,m, boo l fwd) {

10 i f (fwd) {
11 i f (m > n && ?) {
12 . . . ; // [Cost 2]
13 re tu rn move (n+1,m, fwd) ;
14 }
15 } e l s e {
16 i f (n > 0 && ?) {
17 . . . ; // [Cost 1]
18 re tu rn move (n−1,m, fwd) ;
19 }
20 }
21 re tu rn n ;
22}

Fig. 1. Program example

We use the program in Fig.1 to illus-
trate some of the problems we address
in this paper. The program is annotated
with structured comments containing cost
labels of the form [Cost x]. These indi-
cate that at the given program point x re-
source units are consumed. The program
consists of two methods. Method move be-
haves differently depending on the value
of boolean variable fwd. If fwd is true, it
may call itself recursively with n′ = n+ 1
and consume two resource units. If fwd is
false, it may call itself with n′ = n−1 and
consume one resource unit. Method main

has a loop that calls move and updates the
value of n with the result of the call. Ad-
ditionally, at any iteration, it can change
the value of fwd to true.

This example is challenging for several
reasons: (i) move behaves differently de-
pending on the value of fwd, so we ought
to analyse its different behaviors sepa-
rately; (ii) the return value of move influ-
ences the subsequent behavior of the main method and has to be taken into
account; (iii) the main method might not terminate and yet its cost is finite.
Moreover, the upper bound of terminating and non-terminating executions is
different. Below we present a table that summarizes the possible upper bounds
of this program.

Execution pattern (1) (2) (3)
Upper bound n+ 2m 2(m− n) n
Terminating × × X

Pattern (1) occurs when move

decrements n for a while but without
reaching 0 (the initial n is an upper
bound of the cost); then the guard in
line 6 is true and move increases n up to m, incurring a cost of 2m. The loop in
main never terminates because n does not reach 0. In pattern (2) the guard in
line 6 is true at the beginning and move increases n to m consuming 2 ∗ (m− n).
Finally, in pattern (3), the guard in line 6 is never true (or only when n = 0).
Then move decrements n to 0 and the main loop may terminate, consuming n
resource units.

The techniques presented in our paper can deal fully automatically with com-
plex examples such as the program above. Our main contributions are: first, a
static analysis for both imperative and (linearly) recursive programs that can in-
fer precise upper bounds for programs with complex execution patterns as above.
The analysis combines a control-flow refinement technique in the abstract con-
text of cost equations and a novel upper bound inference algorithm. The latter
exploits dependencies between different parts of a program during the computa-

2

tion of upper bounds and it takes into account multiple upper bound candidates
at the same time. Second, we provide an implementation of our approach. It
is publicly available (see Sec. 6) and it has been evaluated in comparison with
KoAT [8], PUBS [1] and Loopus[16]. The experimental evaluation shows how
the analysis deals with most examples presented as challenging in the literature.

2 Cost Equations

In this section, we introduce the necessary concepts for the reasoning with cost
equations. The symbol x represents a sequence of variables x1, x2, · · · , xn of any
length. The expression vars(t) denotes the set of variables in a generic term t.
A variable assignment α : V 7→ D maps variables from the set of variables V to
elements of a domain D and α(t) denotes the replacement of each x ∈ vars(t) by
α(x). A linear expression has the form q0+q1∗x1+· · ·+qn∗xn where qi ∈ Q and
x1, x2, · · · , xn are variables. A linear constraint is l1 ≤ l2, l1 = l2 or l1 < l2, where
l1 and l2 are linear expressions. A cost constraint ϕ is a conjunction of linear
constraints l1 ∧ l2 ∧ · · · ∧ ln. The expression ϕ(x̄) represents a cost constraint ϕ
instantiated with the variables x̄. A cost constraint ϕ is satisfiable if there exists
an assignment α : V 7→ Z such that α(ϕ) is valid (α satisfies ϕ).

Definition 1 (Cost expression). A cost expression e is defined as:

e ::= q | nat(l) | e+ e | e ∗ e | nat(e− e)|max(S) | min(S)

where q ∈ Q+, l is a linear expression, S is a non-empty set of cost expressions
and nat(e) = max(e, 0). We often omit nat() wrappings in the examples.

Definition 2 (Cost equation). A cost equation c has the form 〈C(x) = e +∑n
i=1Di(yi), ϕ〉 (n ≥ 0), where C and Di are cost relation symbols; all variables

x, yi, and vars(e) are distinct; e is a cost expression; and ϕ is a conjunction of
linear constraints that relate the variables of c.

A cost equation 〈C(x) = e+
∑n

i=1Di(yi), ϕ〉 states that the cost of C(x) is e
plus the sum of the costs of each Di(yi). The relation ϕ serves two purposes: it
restricts the applicability of the equation with respect to the input variables and
it relates the variables x, vars(e), and yi. One can view C as a non-deterministic
procedure that calls D1, D2, . . . , Dn.

Fig. 2 displays the cost equations corresponding to the program in Fig. 1.
To simplify presentation in the examples we reuse some variables in different
relation symbols. In the implementation they are in fact different variables with
suitable equality constraints in ϕ.

We restrict ourselves to linear recursion, i.e., we do not allow recursive equa-
tions with more than one recursive call. Our approach could be combined with
existing analyses for multiple recursion such as the one in [4]. Input and output
variables are both included in the cost equations and treated without distinction.
By convention, output variable names end with “o” so they can be easily recog-
nized. In a procedure, the output variable corresponds to the return variable (no

3

SCC Nr Cost Equation

S1 1 main(n,m) = while(n,m, 0) n ≥ 1 ∧m ≥ n + 1

S2 2 while(n,m, fwd) = 0 n ≤ 0
3 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, fwd) n > 0
4 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, 1) n > 0

S3 5 move(n,m, fwd, no) = 2 + move(n + 1,m, fwd, no) fwd = 1 ∧ n < m
6 move(n,m, fwd, no) = 0 fwd = 1 ∧ n = no
7 move(n,m, fwd, no) = 1 + move(n− 1,m, fwd, no) fwd = 0 ∧ n > 1
8 move(n,m, fwd, no) = 0 fwd = 0 ∧ n = no

Fig. 2. Cost equations of the example program from Fig. 1

in the method move). In a loop, the output variables are the local variables that
might be modified inside the loop. In the while loop from Fig.2, we would have
while(n,m, fwd, no, fwdo) where no and fwdo are the final values of n and fwd,
but the cost equations have been simplified for better readability.

Generating Cost Equations Cost equations can be generated from source code or
low level representations. Loop extraction and partial evaluation are combined
to produce a set of cost equations with only direct recursion [1]. The details
are in the cited papers and omitted for lack of space. The resulting system is a
sequence of strongly connected components (SCCs) S1, . . . , Sn such that each Si

is a set of cost equations of the form 〈C(x) = e+
∑k

j=1Dj(yj) +
∑n

j=1 C(yj), ϕ〉
with k ≥ 0 and n ∈ {0, 1} and each Dj ∈ Si′ where i′ > i. Each SCC is a
set of directly recursive equations with at most one recursive call and k calls to
SCCs that appear later in the sequence. Hence, S1 is the outermost SCC and
entry point of execution while Sn is the innermost SCC and has no calls to other
SCCs. Each resulting cost equation is a complete iteration of a loop or recursive
procedure.

Example 1. In Fig. 2, the cost equations of Program 1 are grouped by SCC.
Each SCC defines only one cost relation symbol: main, while, and move occur
in S1, S2, and S3, respectively. However, the cost equations in any SCC may
contain references to equations that appear later. For instance, equations 3 and
4 in S2 have references to move in S3.

A concrete execution of a relation symbol C in a set of cost equations is
generally defined as a (possibly infinite) evaluation tree T = node(r, {T1, . . . Tn}),
where r ∈ R+ is the cost of the root (an instance of the cost expression in C)
and T1, . . . Tn are sub-trees corresponding to the calls in C. In the following we
will not need this general definition. A formal definition of evaluation trees and
their semantics is in [1].

3 Control-flow Refinement of Cost Equations

As noted in Sec. 1, we have to generate all possible execution patterns and
discard unfeasible patterns that might reduce precision or even prevent us from

4

obtaining an upper bound. Our cost equation representation allows us to look
at one SCC at a time. If we consider only the cost equations within one SCC,
we have sequences of calls instead of trees (we are only considering SCCs with
linear recursion). That does not prevent each cost equation in the sequence from
having calls to other SCCs.

Example 2. Given S3 from Fig. 2, the sequence 5 · 5 · 6 represents a feasible
execution where equation 5 is executed twice followed by one execution of 6. On
the other hand, the execution 5 · 8 is infeasible, because the cost constraints of
its elements are incompatible (fwd = 1 and fwd = 0).

Given an SCC C consisting of cost equations SC , we can represent its execu-
tion patterns as regular expressions over the alphabet of cost equations in SC .
We use a specific form of execution patterns that we call chain:

Definition 3 (Phase, Chain). Let SC = c1, . . . , cr be the cost equations of an
SCC C. A phase is a regular expression (ci1 ∨ . . . ∨ cim)+ over SC (executed a
positive number of times). A special case is a phase where exactly one equation
is executed: (ci1 ∨ . . . ∨ cim).

A chain is a regular expression over SC composed of a sequence of phases
ch = ph1 · ph2 · · · phn such that its phases do not share any common equation.
That is, if c ∈ phi, then c 6∈ phj for all j 6= i.

We say that a cost equation that has a recursive call is iterative and a cost
equation with no recursive calls is final. Given an SCC C consisting of cost
equations SC , we use the name convention i1, i2 . . . in for the iterative equations
and f1, f2 . . . fm for the final equations in SC . All possible executions of an SCC
can be summarized in three basic chains: (1) chn = (i1∨ i2∨· · ·∨ in)+ · (f1∨f2∨
· · ·∨fm) an arbitrary sequence of iterations that terminates with one of the base
cases; (2) chb = (f1∨f2∨· · ·∨fm) a base case without previous iterations; (3) an
arbitrary sequence of iterations that never terminates chi = (i1 ∨ i2 ∨ · · · ∨ in)+.

Example 3. The basic chains of method move (SCC S3 of Fig.2) are: chn =
(5∨ 7)+(6∨ 8), chb = (6∨ 8) and chi = (5∨ 7)+. Obviously, these chains include
a lot of unfeasible call sequences which we want to exclude.

3.1 Chain Refinement of an SCC

Our objective is to specialize a chain into more refined ones according to the
constraints ϕ of its cost equations. To this end, we need to analyse the possible
sequences of phases in a chain. We use the notation c ∈ ch to denote that the
cost equation c appears in the chain ch.

Definition 4 (Dependency). Let c, d ∈ ch, c = 〈C(x̄c) = . . . + C(z̄), ϕc〉,
d = 〈C(x̄d) = . . . , ϕd〉; then c � d iff the constraint ϕc ∧ ϕd ∧ (z̄ = x̄d) is
satisfiable. Intuitively, c � d iff d can be executed immediately after c. The
relation �∗ is the transitive closure of �.

5

We generate new phases and chains according to these dependencies. Define
c ≡ d iff c = d (syntactic equality) or c �∗ d and d �∗ c. Each equivalence class
in [c]≡ gives rise to a new phase. If [c]≡ = {c} and c 6� c, the new phase is (c).
If [c]≡ = {c1, . . . , cn}, the new phase is (c1 ∨ · · · ∨ cn)+. To simplify notation
we identify an equivalence class with the phase it generates. Then ph ≺ ph′ iff
ph 6= ph′, c ∈ ph, d ∈ ph′ and c � d. ch′ = ph1 · · · phn is a valid chain iff for all
1 ≤ i < n: phi ≺ phi+1.

Example 4. The dependency relation of move (SCC S3 from Fig. 2) is the fol-
lowing: 5 � 5, 5 � 6, 7 � 7 and 7 � 8. This produces the following phases:
(5)+, (7)+, (6) and (8), which in turn give rise to chains: non-terminating chains
(5)+, (7)+; terminating chains (5)+(6), (7)+(8) and the base cases (6), (8). This
refinement captures the important fact that the method cannot alternate the
behavior that increases n (cost equation 5) with the one that decreases it (cost
equation 7).

Theorem 1 (Refinement completeness). Let ch1, . . . , chn be the generated
chains for a SCC S from the basic chains of S. Any possible sequence of cost
equation applications of S is covered by at least one chain chi, i ∈ 1..n (a proof
can be found in App A.1).

3.2 Forward and Backward Invariants

We can use invariants to improve the precision of the inferred dependencies and
to discard unfeasible execution patterns. Given a chain ch = ph1 · · · phn in Si

with C as cost relation symbol, we can infer forward invariants (fwdInv) that
propagate the context in which the chain is called from ph1 to the subsequent
phases. Additionally, we can propagate the relation between the variables from
the final phase phn to the previous phases until calling point ph1, obtaining
backward invariants (backInv). These invariants provide us with extra informa-
tion at each phase phi coming from the phases that appear before (fwdInv) or
after (backInv) phi.

fwdInv ch(phi) and backInv ch(phi) denote forward and backward invariants
valid at any application of the equations in the phase phi of chain ch. If it is
obvious which chain is referred to, we leave out the subscript ch. The forward
invariant at the beginning of a chain ch in an SCC Si is given by the conditions
under which ch is called in other SCCs. The backward invariant at the end of
a chain ch is defined by the constraints ϕ of the base case phn for terminating
chains. For non-terminating chains, the backward invariant at the end of a chain
is the empty set of constraints (true). The backward invariant of the first phase
of a chain ch represents the input-output relations between the variables. It can
be seen as a summary of the behavior of ch. The procedure for computing these
invariants can be found in App B.

Additionally, we define ϕph and ϕph∗ for iterative phases. The symbol ϕph

represents the relation between the variables before and after any positive num-
ber of iterations of ph, while ϕph∗ represents the relation between the variables
before and after zero or more iterations.

6

Example 5. Some of the inferred invariants for the chains of S3 of our example:
backInv (5)+(6)((5)+) = fwd = 1 ∧m > n ∧m ≥ no ∧ no > n
backInv (7)+(8)((7)+) = fwd = 0 ∧ n > 0 ∧ no ≥ 0 ∧ n > no
These invariants reflect applicability conditions (Such as fwd = 0) and the
relation between the input and the output variables. For example, no > n holds
when n is increased and n > no when it is decreased. The condition m ≥ no is
derived from the fact that at the end of phase (5)+ we have m > n, in phase (6)
n′ = no′ and the transition is n′ = n+ 1 ∧ no′ = no.

We can use forward and backward invariants to improve the precision of
the inferred dependencies. At the same time, a more refined set of chains will
allow us to infer more precise invariants. Hence, we can iterate this process
(chain refinement and invariant generation) until no more precision is achieved
or until we reach a compromise between precision and performance. We can
also use the inferred invariants to discard additional cost equations or chains.
Let c = 〈C(x̄) = . . . + C(z̄), ϕ〉 ∈ phi, if ϕ ∧ backInvch(phi) ∧ fwdInv ch(phi) is
unsatisfiable, c cannot occur and can be eliminated from phi in the chain ch. If
any invariant belonging to a chain is unsatisfiable its pattern of execution cannot
possibly occur and the chain can be discarded.

3.3 Terminating Non-termination

In our refinement procedure, we distinguish terminating and non-terminating
chains explicitly. Given a chain ph1 · · · phn, it is assumed that every phase phi
with i ∈ 1..n−1 is terminating. This is safe, because for each phi that is iterative
we generated another chain of the form ph1 · · · phi, where phi is assumed not to
terminate. That is, we consider both the case when phi terminates and when it
does not terminate. Given a non-terminating chain, if we prove termination of
its final phase, we can safely discard that chain.

Consider a phase (c1 ∨ c2 ∨ . . . ∨ cm)+, we obtain a (possibly empty) set of
linear ranking functions for each ci, denoted RFi, using the techniques of [15,
6]. A linear ranking function of a cost equation 〈C(x) = · · · + C(x′), ϕ〉 with a
recursive call C(x′) is a linear expression f such that (1) ϕ⇒ f(x) ≥ 0 and (2)
ϕ⇒ f(x)− f(x′) ≥ 1.

For each ranking function f of ci, we check whether its value can be incre-
mented in any other cj = 〈C(x) = · · ·+ C(x′), ϕj〉, j 6= i (whether ϕj ∧ f(x)−
f(x′) < 0 is satisfiable). If f can be increased in cj we say that f depends on
cj . As in [3], the procedure for proving termination consists in eliminating the
cost equations that have a ranking function without dependencies first. Then,
incrementally eliminate the cost equations that have ranking functions whose
dependencies have been already removed until there are no cost equations re-
maining. The set of ranking functions and their dependencies will be used again
later to introduce specific bounds for the number of calls to each ci.

Example 6. The ranking functions for the phases (5)+ and (7)+ are m− n and
n respectively. With such ranking functions, we can discard the non-terminating
chains (5)+ and (7)+. The remaining chains are (5)+(6), (7)+(8), (7) and (8).

7

Nr Cost Equation

3.1 while(n,m, fwd) = move(5)+(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧m > n ∧m ≥ no ∧ no > n

3.2 while(n,m, fwd) = move(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧ no = n

3.3 while(n,m, fwd) = move(7)+(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ no ≥ 0 ∧ n > no

3.4 while(n,m, fwd) = move(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ n = no

Fig. 3. Refinement of Cost equation 3 from Fig. 2

3.4 Propagating Refinements

The refinement of an SCC Si in a sequence S1, . . . , Sn can affect both prede-
cessors and successors of Si. The initial forward invariants from SCCs that are
called in Si, the forward invariants of the SCCs Si+1, . . . , Sn might be strength-
ened by the refinement of Si. The preceding SCCs that have calls to Si can
be specialized so they call the refined chains. The backward invariants can be
included in the calling cost equations thus introducing a “loop summary” of Si’s
behavior.

Each cost equation containing a call to Si, say 〈D(x̄) = . . .+Cch(z̄), ϕ〉 ∈ Sj

with j < i, can be replaced with a set of cost equations 〈D(x̄) = . . .+Cch′(z̄), ϕ
′〉,

where ch′ = ph1ph2 · · · phm is one of the refined chains of ch, and ϕ′ := ϕ ∧
backInvch′(ph1). If ϕ′ is unsatisfiable, the cost equation can be discarded.

Example 7. We propagate the refinement of method move (SCC S3) to while
(SCC S2). Fig. 3 shows how cost equation 3 is refined by substituting the calls to
move by calls to specific chains of move and by adding the backward invariants
of the callees to its cost constraint ϕ. Analogously, cost equation 4 is refined into
4.1, 4.2, 4.3, and 4.4. The only difference is that the latter have a recursive call
to while with fwd = 1. The cost equations of move are not changed because
the do not have calls to other SCCs.

The new phases are (3.1∨ 3.2∨ 4.1∨ 4.2)+, (3.3∨ 3.4)+, (4.3), (4.4) and (2).
Phase (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ represents iterations of the loop when fwd = 1.
The fact that fwd is explicitly set to 1 in 4.1 and 4.2 does not have any effect.
Phase (3.3∨ 3.4)+ represents the iterations when fwd = 0 and is kept that way
in the recursive call. Finally, (4.3) and (4.4) are the cases where fwd is changed
from 0 to 1. If we use the initial forward invariant n ≥ 1 ∧m > n of main (in
SCC S1), we obtain the following chains:

Pattern (1) Pattern (2) Pattern (3)

(3.3 ∨ 3.4)+(4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+(2)
(3.3 ∨ 3.4)+(4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+

They are grouped according to the execution patterns that were intuitively pre-
sented in Sec. 1. Note that neither (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ or (3.3 ∨ 3.4)+ are

8

always terminating as we can iterate indefinitely on 3.2, 4.2 and 3.4. These cases
correspond to a call to move that immediately returns without modifying n.
Therefore, we cannot discard any of the non-terminating chains.

4 Upper Bound Computation

4.1 Cost Structures

At this point, a refined program consists of a sequence of SCCs S1, . . . , Sn where
each SCC Si contains a set of chains. We want to infer safe upper bounds for
each chain individually but, at the same time, take their dependencies into ac-
count. The standard approach on cost equations [1] consists in obtaining a cost
expression that represents the cost of each SCC Si and substituting any call to
that Si by the inferred cost expression. That way, we can infer closed-form upper
bounds for all SCCs in a bottom up approach (From Sn to S1). This approach
turns out not to be adequate to exploit the dependencies between different parts
of the code as we illustrate in the next example.

Example 8. Let us obtain an upper bound for method main when it behaves as
in chain (3.3 ∨ 3.4)+(2). This is a simple pattern, where move only increases or
leaves n unchanged. Following the standard approach, we first obtain the upper
bound for move when called in 3.3 and 3.4, that is, when move behaves as in
(7)+(8) and (8). By multiplying the maximum number of recursive calls with the
maximum cost of each call the upper bound we obtain is n and 0, respectively.
The cost of (3.3∨3.4)+(2) is then the maximum cost of each iteration nmultiplied
by the maximum number of iterations. However, 3.4 can iterate indefinitely, so
we fail to obtain an upper bound.

If we apply the improved method of [4] after the refinement, we consider 3.3
and 3.4 independently. Phase 3.3 has zero cost and 3.4 has a ranking function
n, yielding a bound of n2 for this chain (while a more precise bound is n).

To overcome this problem, we define a new upper bound computation method
based on an intermediate structure that summarizes all the cost components
while maintaining part of the internal structure of what generated the cost.

Definition 5 (Cost Structure). A cost structure CT is a pair SE : CS.
Here SE is a cost expression of the form SE =

∑n
i=1 SEi ∗ ivi + e (n ≥ 0),

where e is a cost expression and ivi is a symbolic variable representing a natural
number. We refer to the ivi as iteration variables, to a product SEi ∗ ivi as
iteration component and to SE as structured cost expression. CS is a (possibly
empty) set of constraints of the form

∑m
j=1 ivj ≤ e (m ≥ 1), such that all its

iteration variables appear in SE. The constraints relate iteration variables with
cost expressions. We use the notation

∑
iv ≤ e when the number of iteration

variables is irrelevant.

Intuitively, a structured cost expression represents a fixed cost e plus a set
of iterative components SEi ∗ ivi, where each iterative component is executed

9

ivi times and each iteration has cost SEi. The set of constraints CS binds the
values of the iteration variables iv and can express dependencies among iteration
components. For instance, a constraint iv1 + iv2 ≤ e expresses that the iteration
components iv1 and iv2 are bound by e and that the bigger iv1 is, the smaller
iv2 must be.

We denote with IV the set of iteration variables in a cost structure. Let
val : IV → E be an assignment of the iteration variables to cost expressions,
a valid cost of a cost structure CT =

∑n
i=1 SEi ∗ ivi + e : CS is defined as

val(SE) =
∑n

i=1 val(SEi) ∗ val(ivi) + e such that val(CS) is valid.1 A cost
structure can represent multiple upper bound candidates.

Example 9. Consider a cost structure a∗ iv1 +b∗ iv2 +c : {iv1 ≤ d, iv1 + iv2 ≤ e}
where a, b, c, d, and e are cost expressions. If a > b and d < e, an upper bound is
a ∗ d+ b ∗ nat(e− d) + c (The nat() wrapping can be omitted). In case of a < b,
an upper bound is b ∗ e+ c.

We follow a bottom up approach from Sn to S1 and infer cost structures
for cost equations, phases and chains, detailed in Secs. 4.3, 4.4, and 4.5 below.
Sec. 4.2 contains a complete example. In Sec. 5, we present a technique to obtain
maximal cost expressions from cost structures. They key of the procedure is to
safely combine individual cost structures while detecting dependencies among
them. The intermediate cost structures are correct, that is, at the end of our
analysis of our example (Fig. 1) we will not only have upper bounds of main
but also a correct upper bound of move.

We define the operations that form the basis or our analysis.

Definition 6 (Cost Expression Maximization). Given a cost expression e,
a cost constraint ϕ, and a set of variables v, the operation bd(e, ϕ, v) returns a
set E of cost expressions that only contain variables in v and that are safe upper
bounds. That is, for each e′ ∈ E, we have that for all variable assignments to
integers α : vars(e′)∪vars(e)→ Z that satisfy ϕ: α(e′) ≥ α(e). It is possible that
bd(e, ϕ, v) returns the empty set. In this case, no finite upper bound is known.

For bd(e, ϕ, v̄) = {e1, . . . , en} define min(bd(e, ϕ, v̄)) = min(e1, . . . , en). Note
that if bd(e, ϕ, v̄) = ∅, min(bd(e, ϕ, v̄)) = ∞. Cost expression maximization can
be implemented using geometrical projection over the dimensions of v̄ in the
context of the polyhedra abstract domain or as existential quantification of the
variables of e and ϕ that do not appear in v̄. This operation is done independently
for each l in the cost expression. The results can be safely combined as linear
expressions appear always inside a nat() in cost expressions.

Definition 7 (Structured Cost Expression Maximization). We define
recursively the bound of a structured cost expression as Bd(

∑n
i=1 SEi ∗ ivi +

e, ϕ, v̄) =
∑n

i=1Bd(SEi, ϕ, v̄) ∗ ivi + min(bd(e, ϕ, v̄)).

1Cost structures have some similarities to the multiple counter instrumentation
described in [13]. Iteration variables can be seen as counters for individual loops or
recursive components and constraints represent dependencies among these counters.

10

SCC Chain Execution

2 (3.3 ∨ 3.4)+(2) c3.?(x1)→ · · · c3.3(xi) → · · · → c3.?(xf)→ c2(xf+1)
↓ · · · ↓ · · · ↓

3 (7)+(8) c7(y1) → · · · → c7(yf)→ c8(yf+1)

Fig. 4. Schema of executing chain (3.3 ∨ 3.4)+(2)

4.2 Example of upper bound computation

Fig. 4 represents the execution of chain (3.3 ∨ 3.4)+(2). The execution of the
phase (3.3 ∨ 3.4)+ consists on a series of applications of either 3.3 or 3.4. Each
equation application has a call to move. In particular, 3.3 calls move(7)+(8) and
3.4 calls move(8). In Fig. 4, only one call to move(7)+(8) is represented. cn(x)
represents an instance of cost equation n with variables x.

Cost of move In order to compute the cost of the complete chain, we start by
computing the cost of the innermost SCCs. In this case, the cost of move. The
cost of one application of 8 (c8(yf+1)) and 7 (c7(yi)) are 0 and 1 respectively
(taken directly from the cost equations in Fig. 2). The cost of phase (7)+ is the
sum of the costs of all applications of c7: c7(y1), c7(y2), · · · , c7(yf). If c7 is applied
iv7 times, the total cost will be 1 ∗ iv7. Instead of giving a concrete value to iv7,
we collect constraints that bind its value and build a cost structure. In Sec. 3.3
we obtained the ranking function n for 7 so we have iv7 ≤ nat(n1). Moreover,
the number of iterations is also bounded by nat(n1−nf), the difference between
the initial and the final value of n in phase (7)+ (see Lemma 1). Consequently,
the cost structure for (7)+ is 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − nf} (we omit
the nat() wrappings). If we had more ranking functions for 7, we could add
extra constraints. This is important because we do not know yet which ranking
function will yield the best upper bound. Additionally, we keep the cost per
iteration and the number of iterations separated so we can later reason about
them independently (detect dependencies). The cost of (7)+(8) is the cost of (7)+

plus the cost of (8) but expressed according to the initial variables y1. We add the
cost structures and maximize them (Bd) using the corresponding invariants. We
obtain 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − no1} (because nf > nf+1 = nof+1 = no1).

Cost of one application of 3.3, 3.4 and 2 The cost of (2) is 0. The cost of one
application of 3.4 is the cost of a call to move(8), that is, 0. Conversely, the
cost of one application of 3.3 is the cost of one call to move(7)+(8). We want the
cost of c3.3(xi) expressed in terms of the entry variables xi and the variables
of the corresponding recursive call xi+1. We maximize the cost structure of
move(7)+(8) using the cost constraints of 3.3 (ϕ3.3). This results in the cost
structure 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (the output no is ni+1 in the
recursive call).

Cost of phase (3.3 ∨ 3.4)+ The cost of phase (3.3 ∨ 3.4)+ is the sum of the cost
of all applications of c3.3 and c3.4: c3.?(x1), c3.?(x2), · · · , c3.?(xf). We group the

11

summands originating from 3.3 and from 3.4 and assume that c3.3 and c3.4 are
applied iv3.3 and iv3.4 times respectively. The sum of all applications of c3.4 is
0∗iv3.4 = 0. However, the cost of each c3.3(xi) might be different (depends on xi)
so we cannot simply multiply. Using the invariant ϕ(3.3∨3.4)∗ and ϕ3.3 we know
that n1 ≥ ni∧ni > ni+1∧ni+1 ≥ 0. Maximizing each of these constraints yields
iv7 ≤ n1 and we obtain a cost structure 1 ∗ iv7 : {iv7 ≤ n1} that is greater or
equal than all 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (because n1 ≥ ni). Therefore,
a valid (but imprecise) cost of (3.3 ∨ 3.4)+ is (1 ∗ iv7) ∗ iv3.3 : {iv7 ≤ n1, iv3.3 ≤
n1, iv3.3 ≤ n1−nf} (n is a ranking function of 3.3). If we solve the cost structure,
we will obtain the upper bound n2.

Inductive constraint compression Because we kept the different components of
the cost separated, we can easily obtain a more precise cost structure Each call
to move starts where the last one left it and all of them together can iterate
at most n times. This is reflected by the constraint iv7 ≤ ni − ni+1. We can
compress all the iterations (n1 − n2) + (n2 − n3) + · · ·+ (nf−1 − nf) ≤ n1 − nf ,
pull out the iteration component 1∗ iv7 and obtain a more precise cost structure
(1 ∗ iv7) + (0 ∗ iv3.3) : {iv7 ≤ n1 − nf , iv3.3 ≤ n1, iv3.3 ≤ n1 − nf}. Then, we can
eliminate (0 ∗ iv3.3) arriving at (1 ∗ iv7) : {iv7 ≤ n1−nf} which will result in an
upper bound n.

4.3 Cost Structure of an Equation Application

Consider a cost equation c = 〈C(x̄) =
∑n

i=1Di(ȳi)+e+C(x̄′), ϕ〉, where C(x̄′) is
a recursive call. We want to obtain a cost structure SEc : CSc that approximates
the cost of

∑n
i=1Di(ȳi) + e and we want such a cost structure to be expressed

in terms of x̄ and x̄′.

Example 10. Consider cost equation 3.3 from Fig. 3 which is part of SCC S2:
while(n,m, fwd) = move(7)+(8)(n

′′,m′′, fwd′′, no) + while(n′,m′, fwd′)
Assume ϕ contains n′′ = n∧n′ = no. The cost of one application of 3.3 is the cost
of move(7)+(8)(n,m, fwd, no) expressed in terms of n,m, fwd and n′,m′, fwd′.
Let the cost of move(7)+(8) be 1 ∗ iv7 : {iv7 ≤ n′′, iv7 ≤ n′′ − no}, then we
obtain an upper bound by maximizing the structured cost expression and the
constraints in terms of the variables n,m, fwd and n′,m′, fwd′. The obtained
cost structure is 1 ∗ iv7 : {iv7 ≤ n, iv7 ≤ n− n′}.

Let SEi : CSi be the cost structure of the chain Di, then the structured cost
expression can be computed as SEc =

∑n
i=1Bd(SEi, ϕ, x̄)+min(bd(e, ϕ, x̄)). By

substituting each call Di(ȳi) by its structured cost expression and maximizing
with respect to x̄, we obtain a valid structured cost expression in terms of the
entry variables.

A set of valid constraints CSc is obtained simply as the union of all sets
CSi expressed in terms of the entry and recursive call variables (x̄ and x̄′):
CSc ⊇ {

∑
iv ≤ e′|

∑
iv ≤ e ∈ CSi, e

′ ∈ bd(e, ϕ, x̄x̄′)}. Should the cost equation
not have a recursive call, all the maximizations will be performed only with
respect to the entry variables x̄.

12

Constraint Compression In order to obtain tighter bounds, one can try to detect
dependencies among the constraints when they have a linear cost expression. Let∑
ivi ≤ nat(li) ∈ CSi and

∑
ivj ≤ nat(lj) ∈ CSj , j 6= i. Now assume there

exist lnew ∈ bd(li + lj , ϕ, x̄x̄′), l
′
i ∈ bd(li, ϕ, x̄x̄′), and l′j ∈ bd(lj , ϕ, x̄x̄′) such that

ϕ ⇒ (lnew ≤ (l′i + l′j) ∧ lnew ≥ li ∧ lnew ≥ lj). nat(lnew) might bind nat(li)
and nat(lj) tighter than nat(l′i) and nat(l′j). Then we can add

∑
ivi +

∑
ivj ≤

nat(lnew) to the new set of constraints CSc.

Example 11. Suppose the cost equation from the previous example had two
consecutive calls to move: while(n,m, fwd) = move(7)+(8)(n1,m1, fwd1, no1) +
move(7)+(8)(n2,m2, fwd2, no2) +while(n′,m′, fwd′) with {n1 = n∧ no1 = n2 ∧
no2 = n′} ⊆ ϕ. The resulting cost structure would be 1 ∗ iv7.1 + 1 ∗ iv7.2 ∗ 2 :
{iv7.1 ≤ n, iv7.1 ≤ n−n′, iv7.2 ≤ n, iv7.2 ≤ n−n′} (iv7.1 and iv7.2 correspond to
the iterations of the two instances of phase (7)+). However, we could compress
iv7.1 ≤ n1 − no1 and iv7.2 ≤ n2 − no2 (from Ex. 10) into iv7.1 + iv7.2 ≤ n − n′
and add it to the final set of constraints. This set represents a tighter bound and
captures the dependency between the first and the second call.

4.4 Cost Structure of a Phase

Refined phases have the form of a single equation (c) or an iterative phase
(c1 ∨ c2 ∨ . . . ∨ cn)+. The cost of (c) is simply the cost of c. The cost of an
iterative phase is the sum of the costs of all applications of each ci (see Sec. 4.2).
Let CTi = SEi : CSi be the cost of one application of ci, we group the summands
according to each ci and assign a new iteration variable ivi that represents the
number of times such a cost equation is applied. The total cost of the phase is∑n

i=1(
∑ivi

j=1 SEi(xj)) where SEi(xj) is an instance of SEi with the variables
corresponding to the j-th application of ci.

For each ci in the phase (c1 ∨ c2 ∨ . . . ∨ cn)+ we obtain a structured cost
expression Bd(SEi, ϕph∗ , x̄1) where ϕph∗ is an auxiliary invariant that relates x̄1
(the variables at the beginning of the phase) to any x̄j as defined in Sec. 3.2.
That structured cost expression is valid for any application of ci during the
phase. This allows us to transform each sum

∑ivi

j=1 SEi(x̄j) into a product ivi ∗
Bd(SEi, ϕph∗ , x̄1). Similarly, we maximize the cost expressions in the constraints.
A set of valid constraints is CSph =

⋃n
i=1({

∑
ivi ≤ e′i|

∑
ivi ≤ ei ∈ CSi, e

′
i ∈

bd(ei, ϕph∗ ∧ ϕci , x̄1}) ∪ CSnew, where CSnew is a new set of constraints that
bounds the new iteration variables (iv1, iv2, · · · , ivn). The maximization of the
constraints is equivalent to the maximization of the iteration variables inside
SEi (proof in Appendix A.2).

Bounding the iterations of a phase To generate the constraints in CSnew, we use
the ranking functions and their dependencies obtained when proving termination
(see Sec. 3.3).

Example 12. Consider a phase formed by the following cost equations expressed
in compact form (we assume that all have the condition a, b, c ≥ 0):

13

1 : p(a, b, c) = p(a− 1, b, c) 2 : p(a, b, c) = p(a + 2, b− 1, c) 3 : p(a, b, c) = p(a, c, c− 1)

(3) has a ranking function c with no dependencies. We can add iv3 ≤ c to the
constraints. (2) has b as a ranking function but it depends on (3). Every time (3)
is executed, b is “restarted”. Fortunately, the value assigned to b has a maximum
(the initial c). Therefore, we can add the constraint iv2 ≤ b+ c ∗ c. Finally, (1)
has a as a ranking function that depends on (2). a is incremented by 2 in every
execution of (2) whose number of iterations is at most b + c ∗ c. We add the
constraint iv1 ≤ a+ 2 ∗ (b+ c ∗ c).

More formally, we have a set RFi for each ci in a phase. Each f ∈ RFi

has a (possibly empty) dependency set to other cj . Given a ranking function f
that occurs in all sets RFi1 , . . . , RFim for a maximal m, ik ∈ 1..n. If f has no
dependencies, then nat(f) expressed in terms of x̄1 is an upper bound on the
number of iterations of ci1 , . . . , cim and we add

∑m
k=1 ivik ≤ nat(f) to CSnew.

If f depends on cj1 , . . . , cjl (ji ∈ 1..n) and ubj1 , . . . , ubjl are upper bounds
on the number of iterations of cj1 , . . . , cjl , then we distinguish two types of
dependencies: (1) if cji increases f by a constant tji then each execution of
cji can imply tji extra iterations. We add ubji ∗ tji to f ; (2) otherwise, if f

can be “restarted” in every execution of cji , then Rf
ji
∈ bd(f(x̄3), ϕph∗(x̄1x̄2) ∧

ϕcji
(x̄2x̄3), x̄1) represents the maximum value that f can take in cji (if it exists)

and we add ubji ∗ nat(R
f
ji

). Taken together, we can add
∑m

k=1 ivik ≤ nat(f) +∑p
i=1 ubji ∗ tji +

∑l
i=p ubji ∗ nat(R

f
ji

) to CSnew where cj1 , cj2 · · · cip are the
dependencies of type (1) and cip , cip+1

· · · cil the ones of type (2).
On top of this, we add constraints that depend on the value of the variables

after the phase (see the cost of (7)+ Sec.4.2). This will allow us to perform
constraint compression afterwards.

Lemma 1. Given a sequence of r calls ci1(x̄1) · ci2(x̄2) · · · cir (x̄r) · c′(x̄r+1),
during which ci occurred p times and f ∈ RFi, and for all 〈cij (x̄j) = · · · +
cij+1

(x̄j+1), ϕ〉, ϕ⇒ (f(x̄j)− f(x̄j+1) ≥ 0). We have that f(x̄1)− f(x̄r+1) ≥ p.

If f is a ranking function in RFi1 , . . . , RFim as above, if f has no depen-
dencies, we can use Lemma 1 (proof in Appendix A.2) to add

∑m
k=1 ivik ≤

nat(f(x̄1)−f(x̄f)) to CSnew where x̄f are the variables at the end of the phase.

Inductive constraint compression We generalize the constraint compression pre-
sented in Sec. 4.3. Instead of compressing two constraints, we compress an arbi-
trary number of them inductively. This is the mechanism used to obtain a linear
bound for the chain (3.3 ∨ 3.4)+ at the end of Sec. 4.2.

When a constraint is compressed, its iteration variables should be removed
from constraints that cannot be compressed. Removing an iteration variable
from a constraint is always safe but can introduce imprecision.

Given a cost expression ei that we want to compress to
∑
iv ≤ ei, we start

with a copy e′i of e1 as our candidate. First, prove the base case ϕi ⇒ e′i ≥ ei
(which is trivial given that ei and e′i are equal). Then prove the induction step
ϕph(x̄1x̄2)∧ϕph∗(x̄2x̄3)∧ϕi(x̄3x̄4)⇒ e′i(x̄1x̄4) ≥ e′i(x̄1x̄2)+ei(x̄3x̄4). Assuming e′i

14

is valid for a number of iterations (represented as ϕph(x̄1x̄2)), this shows that it is
valid for one more iteration (ϕi(x̄3x̄4)) even if there are interleavings with other
cj (ϕph∗(x̄2x̄3)). Once we proved that, we can add the constraint

∑
iv′ ≤ e′i and

pull the corresponding iteration components out of the corresponding product
(proof in App A.2).

If we can prove the stronger inequality e′i(x̄1x̄4) ≥ e′i(x̄1x̄2) + ei(x̄3x̄4) + 1,
then we know that e′i also decreases with the iterations of ci. In this case we derive
a new constraint

∑
iv′+ ivi ≤ e′i. We can generalize this procedure to compress

constraints that originate from different equations. This is demonstrated by the
following example.

Example 13. Consider the phase (3.1∨3.2∨4.1∨4.2)+. Both 3.1 and 4.1 have a
call to move(5)+(6) and their cost structures are iv5.1 ∗ 2 : {iv5.1 ≤ n′−n, iv5.1 ≤
m − n} and iv5.2 ∗ 2 : {iv5.2 ≤ n′ − n, iv5.2 ≤ m − n}. We can compress both
iteration variables obtaining iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n′ − n} (3.2
and 4.2 have zero cost) that when maximized will give us iv5.1 ∗ 2 + iv5.2 ∗ 2 :
{iv5.1 + iv5.2 ≤ m− n} which represents the upper bound 2(m− n).

4.5 Cost Structure of a Chain

Given a chain ch = ph1 · · · phn whose phases have cost structures CT1, . . . CTn,
we want to obtain a cost structure CTch = SEch : CSch for the total cost of
the chain. This is analogous to computing the cost structure of an equation in
Sec. 4.3. One constructs a cost constraint ϕch relating all variables of the calls
to the entry variables and to each other: ϕch = ϕph1

(x1x2) ∧ ϕph2
(x2x3) ∧ · · · ∧

ϕphn(xn). This cost constraint can be enriched with the invariants of the chain.
The structured cost expression is SEch =

∑n
i=1Bd(SEi, ϕch, x̄) and the con-

straints are CSc ⊇ {
∑
iv ≤ e′|

∑
ivi ≤ e ∈ CSi, e

′ ∈ bd(e, ϕch, x̄)}. Again, we
can apply constraint compression to combine constraints from different phases.

Example 14. The cost of patterns (2) and (3) in Ex. 7 derive directly from the
cost of their phases (see Sec. 4.2 and Ex. 13). We examine the cost of pattern
(1), that is, (3.3∨3.4)+(4.3)(3.1∨3.2∨4.1∨4.2)+. Considering that variables are
subscripted with 1, 2 and 3 for their value before the first, second and third phase,
the cost structures of the phases are: 1∗iv7.1 : {iv7.1 ≤ n1−n2}, 1∗iv7.2 : {iv7.2 ≤
n2 − n3} and iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n4 − n3}. The joint invariants
guarantee that n3 ≥ 0∧n4 ≤ m. We can compress the constraints iv7.1 ≤ n1−n2
and iv7.2 ≤ n2−n3 and maximize with respect to the initial variables obtaining
1 ∗ iv7.1 + 1 ∗ iv7.2 + 2 ∗ iv5.1 + 2 ∗ iv5.2 : {iv7.1 + iv7.2 ≤ n1, iv5.1 + iv5.2 ≤ m1}.
Such a cost structure represents the bound n+ 2m as expected.

5 Solving Cost Structures

Solving a cost structure SE : CS means to look for a maximizing assignment
valmax from iteration variables to cost expressions (without iteration variables)
such that CS ⇒ valmax(SE) ≥ SE is valid. Even though iteration variables

15

range over natural numbers, we consider a relaxation of the problem where
iteration variables can take any non-negative real number. The maximization of
valmax(SE) represents the cost structure SE where each iv has been substituted
by valmax(iv) and valmax(SE) is an upper bound of the cost structure SE : CS.

Let SE =
∑n

i=1 SEi∗ivi+e, The maximization of each SEi can be performed
independently, because its iteration variables depend neither on other iteration
variables of SEj for j 6= i nor on any ivi. Let ei be the maximization of SEi,
then we obtain

∑n
i=1 ei ∗ ivi + e as well as a set of constraints over the ivi. As

the ei’s can be symbolic expressions, not necessarily comparable to each other,
we need a procedure to find an upper bound independently of the ei.

We group iteration components (Def. 5) based on dependencies. Two iteration
components depend on each other if their iteration variables appear together in
a constraint. An iteration group IG is a partial cost structure

∑m
i=1 eji ∗ivji : CS

(1 ≤ ji ≤ n for i ∈ 1..m) where its iteration components depend on each other.
A constraint

∑m
i=1 ivji ≤ e is active for assignment val iff

∑m
i=1 val(ivji) = e.

Let C =
∑m

i=1 ivji ≤ e, C ′ =
∑m+k

i=1 ivji ≤ e′ be constraints such that C ⊆ C ′

and val any assignment: (i) If C is active for val, then C = e and we substitute∑m+k
i=m+1 ivji ≤ nat(e′ − e) for C ′ making the two constraints independent; (ii)

If C is not active, we ignore C and consider the rest of the constraints.
Consider an IG SE : CS that we want to maximize. For each C,C ′ ∈

CS with C ⊆ C ′, we use the observation in the previous paragraph to derive
simplified constraints CS1, CS2. We solve both constraints and obtain val1, val2.
The maximum cost of IG is min(val1(SE), val2(SE)). Constraints with only one
iv can always be reduced. We repeat the procedure until the constraints cannot
be further simplified. The constraints can now be grouped into irreducible IGs.
A trivial IG is one with a single iv constraint iv ≤ e whose maximal assignment
is val(iv) = e. All constraints in an irreducible, non-trivial IG have at least two
iteration variables.

Example 15. Consider the following cost structure iv1∗1+iv2∗(b)+iv3∗(iv4∗2) :
{iv1 + iv2 + iv3 ≤ a+ b, iv1 + iv2 ≤ c, iv4 ≤ d}. First, we maximize the internal
iteration component iv4∗2 which contains a trivial IG iv4 ≤ d. The result is iv1∗
1+iv2∗(b)+iv3∗(2d) : {iv1+iv2+iv3 ≤ a+b, iv1+iv2 ≤ c}. This cost structure
forms a single IG with two constraints one contained in the other. (1) We assume
iv1 + iv2 ≤ c is active. Then we have {iv3 ≤ nat(a+ b− c), iv1 + iv2 ≤ c} which
contains two irreducible IG. The first one is iv3 = nat(a+ b− c) and the second
one has two possibilities iv1 = c, iv2 = 0 or iv1 = 0, iv2 = c (Thm. 2 below). The
result is then nat(a+b−c)+max(b∗c, 2d∗c). (2) If iv1+iv2 ≤ c is not active, we
have only iv1+iv2+iv3 ≤ a+b which yields max(a+b, b∗(a+b), 2d∗(a+b)). The
cost is min(nat(a+ b− c) +max(b ∗ c, 2d ∗ c),max(a+ b, b ∗ (a+ b), 2d ∗ (a+ b))).

We could have dropped the second constraint from the beginning and obtain
a less precise bound max(a + b, b ∗ (a + b), 2d ∗ (a + b)). We can even split the
constraint iv1 + iv2 + iv3 ≤ a+ b into iv1 ≤ a+ b, iv2 ≤ a+ b and iv3 ≤ a+ b and
obtain (1+b+2d)∗(a+b). That way we can balance precision and performance.

Definition 8 (IG dependency graph). Let IG = SE : CS. Its dependency
graph G(IG) is defined as follows: for each C ∈ CS G has a node C. For each

16

C ∩C ′ such that C,C ′ ∈ CS and C ∩C ′ 6= ∅ G has a node d(C ∩C ′), and edges
from C to d(C ∩ C ′) and from d(C ∩ C ′) to C ′.

Example 16. Given the IG {iv1 + iv2 ≤ a, iv2 + iv3 ≤ b, iv2 + iv4 ≤ c}, its
dependency graph contains the nodes n1 = ”iv1+iv2 ≤ a”, n2 = ”iv2+iv3 ≤ b”,
n3 = ”iv2+ iv4 ≤ c” and n4 = ”d(iv2)”. The edges are (n1, n4), (n2, n4), (n3, n4).

Theorem 2. Given an irreducible, non-trivial IG. If G(IG) is acyclic there
exists a maximizing assignment valmax such that there is an active constraint
with only one non-zero iteration variable.

If G(IG) is acyclic, we apply Thm. 2 to solve IG incrementally. Let Ci =∑r
j=1 ivij ≤ e ∈ CS: we obtain a partial assignment valik such that valik(ivk) =

e for some ivk ∈ Ci and all other iteration variables in Ci being assigned 0. We
update CS with valik and obtain a constraint system with less iteration variables
and constraints whose graph is still acyclic, and so on. Once no iteration variable
is left, we end up with a set of assignments MaxV al. The maximum cost of
IG = SE : CS is maxval∈MaxV alval(SE).

Example 17. We obtain one of the assignments in MaxV al for the IG of Ex. 16.
We take the constraint iv1 + iv2 ≤ a and assign iv1 = a and iv2 = 0. The
resulting constraints are iv3 ≤ b and iv4 ≤ c that are trivially solved. The
resulting assignment is iv1 = a, iv2 = 0, iv3 = b and iv4 = c.

The requirement of G(IG) being acyclic can be relaxed. A discussion and the
proof of Thm. 2 is in App A.3. One can always obtain an acyclic IG by dropping
constraints or by removing iteration variables from a given constraint. Such
transformations are safe since they only relax the conditions imposed on the
iteration variables. In practice, we perform a pre-selection of the constraints to
be considered based on heuristics to improve performance.

6 Related Work and Experiments

This work builds upon the formalism developed in the COSTA group [1, 2, 4,
5], however, the are important differences in how upper bounds are inferred. In
[1], upper bounds are computed independently for each SCC and then combined
without taking dependencies into account. The precision of that approach is im-
proved in [2] for certain kinds of loops. The paper [5] presents a general approach
for obtaining amortized upper bounds that, although powerful, does not scale
well. In [4] SCCs are decomposed into sparse cost equations systems. Then it is
possible to use the ideas of [5] to solve the sparse cost equations precisely.

In our work, we also decompose programs, but driven by possible sequences
of cost applications. This technique, known as control-flow-refinement, has been
applied to the resource analysis of imperative programs in [12, 9]. In addition,
our refinement technique can deal with programs with linear recursion (non nec-
cessarily tail recursive) and multiple procedures. In our analysis we do not refine
the whole program at once. Instead, we refine each SCC and then propagate

17

the changes. Our technique allows to leave parts of the program unrefined to
increase performance. Paper [14] uses disjunctive invariants to summarize inner
loops instead of control-flow-refinement. This technique can also deal with some
kinds of non-terminating programs. However, it can only bound the number of
visits to a single location in a single procedure. In contrast, our tool can count
the number of visits to several locations in multiple procedures derived from cost
annotations. The tool Loopus [17] uses disjunctive invariants, collects the inner
paths of each loop and also uses contextualization which is a form of control-flow
refinement. Both [14, 17] obtain ranking functions based on given patterns and
combine them using proof rules. Instead, we infer linear ranking functions us-
ing linear programming [15, 6] and combine them to form lexicographic ranking
functions (see Sec. 4.4).

SPEED [13] makes use of multiple counters to bound and detect dependen-
cies of different loops. SPEED computes cost summaries for the (non-recursive)
procedure calls. Therefore, it cannot detect dependencies among different pro-
cedure calls. KoAT [8] adopts an iterative approach, where size analysis and
complexity analysis are interleaved and improve each other. That paper also ex-
tends transitions systems to deal with inter-procedural and recursive programs.
Very recently, a new version of Loopus has been released [16]. They use a simple
abstraction and achieve very high performance and great effectiveness. They can
also obtain amortized cost for complex nested loops. However, their analysis is
limited to imperative programs and cannot deal with recursion.

1 log n n n log n n2 n3 > n3 No res.
CoFloCo 115 0 141 0 52 2 3 318

KoAT 117 0 120 0 51 0 4 339
PUBS 90 2 85 5 37 3 3 406

Loopus3 128 0 140 0 73 11 4 275

CoFloCo 1 0 16 0 14 7 0 1
PUBS 1 2 13 3 12 6 0 2

Loopus3 2 0 11 0 7 4 0 15

For our experimen-
tal evaluation we took
the problem set used by
KoAT’s evaluation2 [8],
except those with multi-
ple recursion (670 prob-
lems). We executed each
problem with PUBS [1],
KoAT, and our tool Co-
FloCo (SPEED and the first version of Loopus [17] are not publicly available).
The problems are taken from the literature on resource analysis [3, 12–14, 17]
and include most of the problems used in the evaluation of [7] (631 problems
in the first part of the table) and the ones of the evaluation of PUBS [1] (39
problems in the second part).

The problems of the first part were automatically translated from KoAT’s
input format to cost equations. That includes performing loop extraction (and
generating invariants for PUBS). No slicing took place so the input cost equations
might have many more variables than needed. For the second set we used the
original cost equations for PUBS and CoFloCo. We decided not to include these
problems for KoAT as the translation generated in [8] is not sound (we found
several problems where KoAT yields an incorrect upper bound). We summarize
the number of problems solved by each tool in different complexity categories.

2http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/

18

Each problem was run with a time-out of 60 secs. The same set of problems3

has been used to evaluate the new version of Loopus [16]. We include the results
of their evaluation4 in a shaded row to emphasize that we did not run the
experiments ourselves.

CoFloCo obtains a bound asymptotically better than KoAt in 60 problems
and better than PUBS in 109 problems. Conversely, KoAt obtains a better bound
than CoFloCo in 23 problems and PUBS is better than CoFloCo in 11 prob-
lems. CoFloCo obtains better results than Loopus in 48 of the problems analyzed
by both. Loopus obtains better results than CoFloCo in 93 problems. How-
ever, in 51 of these problems, Loopus reports an upper bound as a function of
call to nondet line X where X is a line number. It seems that Loopus assumes
a specific symbolic value whenever a non-deterministic assignment is executed
whereas CoFloCo does not make such an assumption and fails to provide a
bound. The complete experimental data and the implementation are available.5

At this time, CoFloCo is just prototype and can be greatly improved. It
fails on 27 problems because of irreducible loops. Irreducible loops can be trans-
formed and the approach could be extended to handle other domains including
non-linear constraints, logarithmic bounds, etc. The invariants could also be im-
proved with the termination information of Sec.3.3 following the ideas of [8].
CoFloCo had 94 time-outs. Most occurred with problems with many variables
where slicing could be applied. In some occasions, the control-flow-refinement of
cost equations can generate exponentially many chains. However, these chains
have many fragments in common and part of the invariant and upper bound com-
putation can be reused. Moreover, some SCCs can be left unrefined to achieve
a compromise between performance and precision.

We presented a control-flow-refinement algorithm that can be applied to lin-
ear recursive programs (other approaches do not support recursion). The algo-
rithm distinguishes terminating and non-terminating executions explicitly which
allows obtaining better invariants for the terminating executions. This also al-
lows to have intermediate cost expressions depending on the output variables
(see the cost of (7)+(8)) and thus obtain amortized cost bounds. We obtain
an upper bound for each execution pattern (chain), which often provides more
precise information than a generic upper bound for any possible execution. The
upper bounds are also precise because cost structures allow us to maintain several
upper bound candidates, detect dependencies among different parts of the code
(using constraint compression) and obtain complex upper bound expressions.

Acknowledgements Research partly funded by the EU project FP7-610582 EN-
VISAGE: Engineering Virtualized Services. We thank the anonymous reviewers
for their careful reading which resulted in numerous improvements. We thank
S. Genaim for valuable discussions and help with the experiments.

318 problems included here were left out of the evaluation of Loopus.
4http://forsyte.at/static/people/sinn/loopus/CAV14/
5www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/

cofloco

19

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. J. of Automated Reasoning, 46(2):161–203, Feb. 2011.

2. E. Albert, S. Genaim, and A. N. Masud. More precise yet widely applicable cost
analysis. In VMCAI, Austin, TX, volume 6538 of LNCS, pages 38–53. Springer,
2011.

3. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In SAS, volume
6337 of LNCS, pages 117–133. Springer, 2010.

4. D. E. Alonso-Blas, P. Arenas, and S. Genaim. Precise cost analysis via local
reasoning. In ATVA, LNCS. Springer, oct 2013.

5. D. E. Alonso-Blas and S. Genaim. On the limits of the classical approach to cost
analysis. In SAS, volume 7460 of LNCS, pages 405–421. Springer, Sept. 2012.

6. R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the
automatic synthesis of linear ranking functions. Information and Computation,
215(0):47 – 67, 2012.

7. M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through
cooperation. In Computer Aided Verification, volume 8044 of LNCS, pages 413–
429. Springer, 2013.

8. M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating runtime
and size complexity analysis of integer programs. In TACAS, 2014.

9. H. Chen, S. Mukhopadhyay, and Z. Lu. Control flow refinement and symbolic
computation of average case bound. In Automated Technology for Verification and
Analysis, volume 8172 of LNCS, pages 334–348. Springer, 2013.

10. B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination proving. In
Tools and Algorithms for the Construction and Analysis of Systems, volume 7795
of LNCS, pages 47–61. Springer, 2013.

11. B. S. Gulavani and S. Gulwani. A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In Computer
Aided Verification, volume 5123 of LNCS, pages 370–384. Springer, 2008.

12. S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invari-
ants for bound analysis. In PLDI, 2009.

13. S. Gulwani, K. K. Mehra, and T. Chilimbi. Speed: Precise and efficient static
estimation of program computational complexity. In POPL, pages 127–139, New
York, NY, USA, 2009. ACM.

14. S. Gulwani and F. Zuleger. The reachability-bound problem. In PLDI’10, pages
292–304, New York, NY, USA, 2010. ACM.

15. A. Podelski and A. Rybalchenko. A Complete Method for the Synthesis of Linear
Ranking Functions. In VMCAI, volume 2937 of LNCS, pages 239–251, 2004.

16. M. Sinn, F. Zuleger, and H. Veith. A simple and scalable approach to bound
analysis and amortized complexity analysis. In CAV, volume 8559 of LNCS, pages
743–759. Springer, 2014.

17. F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative
programs with the size-change abstraction. In E. Yahav, editor, Static Analysis,
volume 6887 of LNCS, pages 280–297. Springer, 2011.

20

A Proofs

A.1 Proof of Refinement Completeness

Proof (of Thm. 1).
Let ca1 · ca2 · · · be a sequence of cost equation applications, and consider

the basic definition of dependency (without taking invariants into account). By
definition we have that cai � cai+1 for all i.

For the proof we use two consequences of the definition of phases. The phases
ph1, . . . , phn resulting from a refinement determine a partition of the set of cost
equations. Whenever cai, caj ∈ phr (r ∈ 1..n) such that i < j, all cak i ≤ k ≤ j
belong to phr as well. This is because of cai �∗ cai+1 · · · caj−1 �∗ caj and, by
definition of a phase, cai = caj or caj �∗ cai. In either case we conclude that
cai+1, cai+2, · · · caj−1 ∈ ph.

Let ph be the phase where ca1 occurs, we distinguish two cases: (i) for all
cai ∈ ph there is at least one caj with j > i such that caj ∈ ph. This implies
that ph is a valid chain that matches the sequence of cost equation applications.
(ii) There exists a cai ∈ ph such that for all caj with j > i it is the case
that caj 6∈ ph. If cai is the final equation application in the sequence, ph is a
valid chain that matches the complete sequence. If cai has a successor cai+1 we
know that cai � cai+1, but cai+1 ∈ ph′ 6= ph. By definition, ph ≺ ph′, so our
sequence matches a chain ph·ph′ · · · . Now we can apply the same reasoning to the
remaining subsequence cai+1 → cai+2 → · · · and phases {ph1, . . . , phn} − {ph}.
This is guaranteed to terminate, because the set of phases is finite.

If we want to refine a specific chain ch, we can take its invariants into account.
The reasoning is the same but it is only applicable as long as the invariants are
correct, that is, for any sequence of cost equations that matches ch.

Any sequence of cost equation applications s of S matches a basic chain
ch of S. We have proved that if s matches ch, s matches one of its refined
chains ch1, . . . , chn. Therefore, any sequence of cost equation applications s of
S matches one of the refined chains of the basic chains of S. ut

A.2 Cost Structure of a Phase

Given a sequence of cost equation applications ca1(x̄1) · ca2(x̄2) · · · cam(x̄m) of
phase ph, where m ∈ N∪{∞}. Let for all i ∈ 1..m: cai ∈ {c1, . . . , cn} and x̄i are
the entry variables at the i-th cost equation application.

Let CTi = SEi : CSi be the cost of one application of ci, then the total cost
of the phase is

∑n
i=1(

∑ivi

j=1 SEij) where SEij is an instance of SEi with the
variables corresponding to the j-th application of ci.

Claim. The expression SEph : CSph, where SEph =
∑n

i=1 ivi∗Bd(SEi, ϕph∗ , x̄1),
is a valid cost structure for phase ph, where ivi is a new iteration variable that
represents the number of applications of equation ci and the constraints are given
as CSph =

⋃n
i=1({

∑l
k=1 ivik ≤ e′i|

∑l
k=1 ivik ≤ ei ∈ CSi, e

′
i ∈ bd(ei, ϕph∗ , x̄1}) ∪

CSnew.

21

Proof. Consider
∑iv

j=1 SE(x̄j). Structured cost expressions are defined recur-

sively (SE =
∑n

i=1 SEi ∗ ivi + e), so we prove correctness by induction:

Base case:
∑iv

j=1 SE(x̄j) =
∑iv

j=1 e(x̄j). By definition of Bd and bd

Bd(SE(x̄j), ϕph∗(x̄1x̄j), x̄1)) = min(bd(e(x̄j), ϕph∗(x̄1, x̄j), x̄1)) ≥ e(x̄j)

yields the same result in terms of x̄1 for every j. Therefore,
∑iv

j=1 e(x̄j) ≤∑iv
j=1Bd(SE,ϕph∗ , x̄1). We pull out the common factor Bd(SE,ϕph∗ , x̄1) ∗∑iv
j=1 1 = Bd(SEi, ϕph∗ , x̄1) ∗ iv.

Inductive case:
∑iv

j=1 SE(x̄j) =
∑iv

j=1

∑r
k=1 SEk(x̄j)∗ivkj+e(x̄j). For each k

we have
∑iv

j=1 SEk(x̄j) ∗ ivkj ≤
∑iv

j=1Bd(SEk, ϕph∗ , x̄1) ∗ ivkj by the induc-

tion hypothesis. We pull out the factor Bd(SEk, ϕph∗ , x̄1) ∗
∑iv

j=1 ivkj . Now,

for each constraint
∑p

l=1 ivlj ≤ e(x̄j), we have
∑p

l=1 ivlj ≤ e(x̄j) ≤ e′ where
e′ ∈ bd(e(x̄j), ϕph∗ , x̄1). If we add all the constraints of the different j we ob-

tain
∑iv

j=1

∑p
l=1 ivlj ≤

∑iv
j=1 e

′ which is
∑p

l=1

∑iv
j=1 ivlj ≤ iv∗e′. Finally, we

perform a variable substitution iv′l for each
∑iv

j=1 ivlj such that
∑iv

j=1 ivlj =

iv ∗ iv′l. The remaining constraints
∑p

l=1 iv ∗ iv′l ≤ iv ∗ e′ can be simplified to∑p
l=1 iv

′
l ≤ e′ as claimed (with each iteration variable renamed to its primed

version). The structured cost expression Bd(SEk, ϕph∗ , x̄1) ∗
∑iv

j=1 ivkj for

each k becomes Bd(SEk, ϕph∗ , x̄1) ∗ iv ∗ iv′k. Finally,
∑iv

j=1

∑r
k=1 SEk(x̄j) ∗

ivkj + ek ≤
∑r

k=1Bd(SEk, ϕph∗ , x̄1) ∗ iv′k ∗ iv + bd(ek, ϕph∗ , x̄1) ∗ iv =
iv ∗Bd(SE,ϕph∗ , x̄1).

ut

Inductive constraint compression. To prove correctness of inductive constraint
compression, start as in the inductive case above:∑iv

j=1 SE(x̄j) =
∑iv

j=1

∑r
k=1 SEk(x̄j)∗ ivkj + e(x̄j). For each k,

∑iv
j=1 SEk(x̄j)∗

ivkj ≤
∑iv

j=1Bd(SEk, ϕph∗ , x̄1) ∗ ivkj by induction hypothesis. We pull out the

factor Bd(SEk, ϕph∗ , x̄1)∗
∑iv

j=1 ivkj . Now, for each constraint
∑p

l=1 ivlj ≤ e(x̄j)
that we want to compress, we add all its instances

∑p
l=1

∑iv
j=1 ivlj ≤

∑iv
j=1 e(x̄j).

If we find e′ ≥
∑iv

j=1 e(x̄j) we have
∑p

l=1

∑iv
j=1 ivlj ≤ e′. We perform a variable

substitution such that iv′l =
∑iv

j=1 ivlj . The new constraint is
∑p

l=1 iv
′
l ≤ e′ and

the structured cost expression Bd(SEk, ϕph∗ , x̄1)∗ iv′k. Therefore, for each itera-
tion component k whose ivkj are compressed into iv′k, the maximized structured
cost expression is not multiplied by iv.

Bounding the iterations of a phase.

Proof (of Lemma 1). By induction:

Base case: let m = 1, the sequence is ci1(x̄1)ċ′(x̄2) and we have two cases: if f is
a ranking funcion of ci1 (f ∈ RFi1), then p = 1 and f(x̄1)−f(x̄2) ≥ 1 by the

22

definition of ranking function; if f 6∈ RFi1 , then p = 0 and f(x̄1)−f(x̄2) ≥ 0
for all the applications of the equations considered (it is a condition of the
lemma).

Inductive case: the induction hypothesis is that f(x̄1)− f(x̄m) ≥ p where p is
the number of applications of the cost equations ci such that f ∈ RFi. Here
we have also two cases: if f is a ranking funcion of cim (f ∈ RFim), then
the number of applications is p + 1 and f(x̄m) − f(x̄m+1) ≥ 1. By adding
the induction hypothesis, we obtain f(x̄1) − f(x̄m) + f(x̄m) − f(x̄m+1) ≥
p+ 1 which simplifies to f(x̄1)− f(x̄m+1) ≥ p+ 1. Otherwise, if f 6∈ RFim ,
the number of applications is p and f(x̄m) − f(x̄m+1) ≥ 0. By adding the
induction hypothesis, we obtain f(x̄1)−f(x̄m)+f(x̄m)−f(x̄m+1) ≥ p, hence
f(x̄1)− f(x̄m+1) ≥ p. ut

A.3 Solving cost structures

We prove Thm. 2 in two steps. We define a general property of a set of con-
straints, called well-behaved constraints, under which the property of interest,
i.e “there exists a maximizing assignment valmax such that there is an active
constraint with only one non-zero iteration variable”, holds. Then we prove that
the constraints of an irreducible, non-trivial IG whose graph is acyclic, are well-
behaved.

Definition 9 (Assignment val[ivi+]). Let val be an assignment to iteration
variables such that val(ivi) > 0. Then val[ivi+] must have the following form:

– if val(iv) = 0, then val[ivi+](iv) = 0.
– val[ivi+](ivi) = val(ivi) + εi for some positive εi ∈ R+.
– val[ivi+](ivj) = val(ivj) + εj for some εj ∈ R for j 6= i

Each val[ivi+] uniquely determines an assignment val[ivi−] with the same ε for
each variable:

– if val(iv) = 0, val[ivi−](iv) = 0.
– val[ivi−](ivi) = val(ivi)− εi where εi ∈ R+.
– val[ivi−](ivj) = val(ivj)− εj where εj ∈ R for j 6= i

Definition 10 (Well-behaved constraint). A set of constraints CS is well-
behaved iff for any given assignment val and every active constraint C that
contains at least two non-zero variables, there exist an assignment val[ivi+] for
a non-zero variable ivi such that the active constraints under val are also active
under val[ivi+] (and, of course, val[ivi−]).

Example 18. An example of an IG that is not well-behaved is 3 ∗ iv1 + 2 ∗ iv2 +
2 ∗ iv3 : {iv1 + iv2 ≤ 10, iv2 + iv3 ≤ 10, iv1 + iv3 ≤ 10}. For an assignment
val = iv1 → 5, iv2 → 5, iv3 → 5, we have that all constraints are active but if
we increase any iteration variable, not all constraints can remain active. In fact,
val is a maximizing assignment for this IG.

23

Theorem 3. Given a well-behaved set of constraints CS, there exists a maxi-
mizing assignment valmax such that there is one active constraint with only one
non-zero iv.

Proof. Assume the contrary. All maximizing valuations cause every active con-
straint to have at least two non-zero iteration variables. Take such a maximizing
valuation val (there must be at least one) with n active constraints and m zero
iteration variables.

By definition of well-behaved, there is an assignment val[ivi+] such that the
active constraints remain active. The ε in val[ivi+] can be as small as needed, in
particular, we can choose them small enough so as not to violate any non-active
constraint render iteration variables negative. We have that

val[ivi+](

r∑
k=1

ek ∗ ivk) = val(

r∑
k=1

ek ∗ ivk) +

r∑
k=1

ek ∗ εk .

Therefore, there are three possibilities:

1. If
∑r

k=1 ek ∗εk > 0, then val(
∑r

k=1 ek ∗ ivk) < val[ivi+](
∑r

k=1 ek ∗ ivk). This
would contradict our assumption that val is maximizing.

2. If
∑r

k=1 ek ∗ εk < 0, then val(
∑r

k=1 ek ∗ ivk) < val[ivi−](
∑r

k=1 ek ∗ ivk).
Again, this contradicts our assumption that val is maximizing.

3. If
∑r

k=1 ek ∗ εk = 0, then val(
∑r

k=1 ek ∗ ivk) = val[ivi] + (
∑r

k=1 ek ∗ ivk). We
focus on this case. Now val[ivi+] is another maximizing valuation. Iterating
this process gives val[ivi+][ivi+], val[ivi+][ivi+][ivi+], . . . until one of four
things happens:

– A constraint that was inactive becomes active and it has at least two
non-zero iteration variables. We repeat the process with n + 1 active
constraints and m zero iteration variables.

– A constraint that was inactive becomes active and it has only one non-
zero iteration variable. This valuation is maximizing.

– A non-zero iv whose ε is negative becomes 0 but all constraints still
have at least two non-zero iteration variables. We repeat the process
(select a new val[ivi+]) with n active constraints and m+1 zero iteration
variables.

– A non-zero iv whose ε is negative becomes 0 and there is one constraint
with only one non-zero iteration variable. This valuation is maximizing.

The second and fourth case conclude the proof. For the first and third
case, we repeat the process (the condition for well-behaved is still true)
with strictly more zero iteration variables or more active constraints. As the
number of both is finite, the process is bound to terminate.

ut

The next lemma that completes the proof of Thm. 2. We need one more defi-
nition: an iteration variable iv is independent with respect to a set of constraints
CS iff it appears in only one constraint. Otherwise, it is dependent.

24

Lemma 2. Let IC = SE : CS If the dependency graph G(IC) is acyclic and
all C ∈ CS have at least two iteration variables, then CS is well-behaved.

Proof. For a given assignment val such that every active constraint contains
at least two non-zero iteration variables, we need to construct an assignment
val[ivi+] for a non-zero ivi such that the active constraints under val are also
active under val[ivi+].

To build val[ivi+] we need to make sure that for each constraint, the increase
of an iteration variable is compensated by the decrease of another iteration
variable. We adopt a simple approach where each non-zero iteration variable is
either increased by ε, decreased by ε or left the same. Let Inc be the set of
non-zero iteration variables being increased, Dec the ones that are decreased;
val[ivi+] is defined in terms of these sets:

val[ivi+](iv) = val(iv) + ε if iv ∈ Inc
val[ivi+](iv) = val(iv)− ε if iv ∈ Dec
val[ivi+](iv) = val(iv) if iv 6∈ Inc ∪Dec
0 < ε ≤ miniv∈Inc∪Decval(iv)

An assignment val[ivi+] is valid if ivi ∈ Inc and for every constraint C,
|C∩Inc| = |C∩Dec|. Moreover, we add the restriction |C∩Inc| = |C∩Dec| ≤ 1.
That is, in a constraint C, at most one iv is increased and one decreased.

Given an assignment val and the set of constraints CS′, which is obtained
from CS by removing all iteration variables iv such that val(iv) = 0. We pick
a suitable constraint and prove by induction over the structure of G(IC) (built
over CS′) that for any adjacent constraint one can modify the sets Inc and Dec
in such a way that the property still holds. The induction claim says that for
any Cs ⊆ CS′ with k constraints there exists a valid assignment val[ivk+].

Base case: There is at least one constraint C =
∑n

j=1 ivj = e in CS′ with
n ≥ 2. We set Inc = {iv1} and Dec = {ivj} such that 1 < j ≤ n. Now
val[iv1+] is valid because iv1 ∈ Inc and |C ∩ Inc| = |C ∩Dec| ≤ 1.

Inductive case: Let Cs ⊆ CS′ with k constraints. The induction hypothesis
gives an assignment val[ivk+] and sets Inc, Dec such that for each C ∈ Cs
|C ∩ Inc| = |C ∩ Dec| ≤ 1. Now we add a new adjacent constraint C ′. If
there are no adjacent constraints to Cs we are done and val[ivk+] is a valid
assignment. Denote with itDeps(C ′) the set of dependent iteration variables
with respect to {C ′} ∪ Cs. The definition of a dependency graph ensures
that itDeps(C ′) has at least one iteration variable. There are two cases:
1. itDeps(C ′) has more than one iteration variable. We claim: for every
C ∈ Cs either itDeps(C ′) ⊆ C or itDeps(C ′)∩C = ∅. Using this claim,
we take iv, iv′ ∈ itDeps(C ′) and set Inc′ = {iv} and Dec′ = {iv′}. Now
val[iv+] constructed with Inc′ and Dec′ is valid, because iv ∈ Inc′ and
for each C ∈ Cs, either C contains iv and iv′ (|C∩Inc′| = |C∩Dec′| = 1)
or neither (|C ∩ Inc′| = |C ∩Dec′| = 0).
To prove the claim, assume the contrary: there exists a C1 ∈ Cs such
that itDeps(C ′) ∩ C1 = J 6= ∅ and itDeps(C ′) − C1 = D 6= ∅. There

25

exists a C2 ∈ Cs with D∩C2 6= ∅, because the iteration variables in D are
dependent. By definition, there are different nodes d(J) and d(C ′ ∩ C2)
as well as paths C ′ − d(J) − C1 and C ′ − d(C ′ ∩ C2) − C2. Hence, the
graph has a cycle as C1 and C2 are connected in Cs by construction.

2. If itDeps(C ′) has only one iteration variable iv, we know there is a
iv′ ∈ C ′ that is independent with respect to {C ′}∪Cs (there are at least
two non-zero iteration variables).
– If iv ∈ Inc, Inc′ = Inc and Dec′ = Dec ∪ {iv′};
– if iv ∈ Dec, Inc′ = Inc ∪ {iv′} and Dec′ = Dec;
– otherwise, Inc′ = Inc and Dec′ = Dec.

In all cases Inc and Dec are valid for all C ∈ Cs since iv′ does not appear
in any C ∈ Cs and they are also valid for C ′. In addition, ivk ∈ Inc and
therefore val[ivk+] constructed with Inc′ andDec′ is valid for Cs∪{Cs′}.

ut

B Invariant Computation

The invariants are generated using the polyhedra abstract domain. The opera-
tions π(ϕ, x̄) and ϕ1 t ϕ2 correspond to the projection of ϕ over the variables x̄
and the convex hull (least upper bound) of ϕ1 and ϕ2 respectively.

The forward invariant at the beginning of a chain ch = ph1 · · · phn in an SCC
Si is given by the conditions under which the chain is called in other SCCs.

fwdInv (|ph1) = t{π(ϕ, z̄)|〈C ′(x̄) = . . .+ Cch(z̄), ϕ〉 ∈ Sj , j < i}

It represents the join of all possible calling contexts of the chain ch. The
backward invariant at the end of the chain is defined as

backInv (phn|) = t{π(ϕ, x̄)|〈C(x̄) = . . . , ϕ〉 ∈ phn}

Once these two cases are defined, we can infer the invariants at intermediate
points by propagating them through phases. First, we define τ1phi

(a(x̄)) as a
function that abstractly executes one iteration of phi over an abstract state a(x̄),
i.e., a state is a predicate over the variables x̄. Conversely, τ−1phi

(a(x̄)) represents
a backwards step in the execution.

τ1phi
(a(x̄)) = t{π(a(x̄) ∧ ϕ, z̄)|〈C(x̄) = . . .+ C(z̄), ϕ〉 ∈ phi}

τ−1phi
(a(z̄)) = t{π(a(z̄) ∧ ϕ, x̄)|〈C(x̄) = . . .+ C(z̄), ϕ〉 ∈ phi}

Additionally, τ iphi
(a(x̄)) means to apply τ1phi

(a(x̄)) i times and τ−iphi
(a(x̄)) to

apply τ−1phi
(a(x̄)) i times. Now define fwdInv (|phi) = τ1phi

(fwdInv (phi−1)(x̄)) and

backInv (phi|) = τ−1phi
(backInv (phi+1)(x̄)). Each phase is guaranteed to iterate at

least once.
The definitions above take a single iteration through a phase into account. For

computing invariants valid for all iterations of a phase, we distinguish whether

26

the phase iterates once or several times. For the latter, we do not assume any
specific number of iterations.

fwdInv (phi) = fwdInv (|phi)(x̄) when phi = (i1 ∨ . . . ∨ im)

fwdInv (phi) = t{τ iphi
(fwdInv (|phi)(x̄))|i ∈ 0..∞} when phi = (i1 ∨ . . . ∨ im)+

The case of the backward invariant is symmetric but using τ−1phi
(a(x̄)).

Progressive refinement. When computing invariants, we can use additional in-
formation from the invariants that have been previously computed. Forward
invariants can be taken into account when computing backward invariants and
vice-versa. We can adapt the definition of τ for this purpose:

τphi
(a(x̄)) = t{π(a(x̄) ∧ ϕ ∧ b(x̄), z̄)|〈C(x̄) = . . .+ C(z̄), ϕ〉 ∈ phi} ,

where b(x̄) = backInv (phi). We can adapt the definition of τ−1phi
with the

forward invariant fwdInv (phi) in the same way.

27

