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Abstract—Routing in Darknets, membership concealing over-
lays for pseudonymous communication, like for instance Freenet,
is insufficiently analyzed, barely understood, and highly in-
efficient. These systems at higher performance are promising
privacy preserving solutions for social applications. This paper
contributes a realistic analytical model and a novel routing
algorithm with provable polylog expected routing length. Using
the model, we additionally prove that this can not be achieved
by Freenet’s routing. Simulations support that our proposed
algorithm achieves a better performance than Freenet for realistic
network sizes.

I. INTRODUCTION

Darknets represent a highly promising system class to pro-
vide a communication substrate for decentralized, social appli-
cations. Such overlays offer secure and private communication,
desired by various social applications, though the term Darknet
is commonly associated with sharing of illegal content. They
implement messaging and content publication, which can
be used to model all usual social communication functions,
at very high confidentiality. The principle of only having
connections to trusted contacts is an intuitive solution for
systems dealing with sensitive and private information, such
as social network profiles, and censorship-resilient publication
of opinions and criticism. Achieving both sender and receiver
anonymity, as well as membership-concealment, they offer
high privacy guarantees, yet, their current primary drawback
is their lack of performance. This deficiency probably is the
foremost reason for their limited employment as censorship-
resistant publication systems, as well.

The foundations of Darknets to achieve privacy are the
main cause for their low performance, too. They rely on 1)
permitting connections between nodes only if the respective
individuals running them share a mutual trust relationship to
hide the participation from any untrusted, potentially malicious
party; 2) applying source rewriting on all forwarded messages
to conceal their initiator and path; and 3) encrypting requests
and content to achieve confidentiality. Given (1), the Darknet
topologies resemble the scale-free graphs of the underlying
social networks.

Considering prior results [1], it is assumed that a greedy
routing algorithm can be found that converges in an expected
polylog number of hops on those networks. Due to the
connectivity restrictions, it is a difficult problem to implement
such an efficient routing, though.

Existing proposals, such as Turtle [2] and OneSwarm [3],
use flooding, which scales linearly in the network size at

best. Creating a DHT-like system on a Darknet topology,
by establishing multi-hop tunnels to construct the necessary
neighborhood for a greedy routing, has been proposed in [4],
[5], as a more efficient solution. However, constructing and
maintaining the tunnels causes high state and maintenance
costs. Freenet, the only actually deployed Darknet using a
deterministic routing algorithm, adjusts the node identifiers to
the fixed topology [6]. These node identifiers are then used to
enable deterministic routing. For routing, Clarke et el. propose
a distance-directed depth first search (D?-DFS), to address the
fact that a perfect embedding can not be achieved.

In prior work, we proposed a simplified model and a
class of Darknet routing algorithms [7]. In this paper, we
contribute a formal model to analyze Darknets, which extends
Kleinbergs small-world model, but more accurately reflects the
imprecision of the embedding, the bidirectional links of mutual
trust relationships, and finally the scale-free character of social
graphs. Using this model, we are able to prove that the current
routing in Freenet indeed does not achieve an expected polylog
routing length, whereas our routing algorithm NextBestOnce is
shown to meet this requirement. Extensive simulation studies,
however, are inconclusive: though supporting the polylog per-
formance of NextBestOnce, they show that Freenet’s routing
algorithm actually achieves quite low absolute path lengths,
and outperforms NextBestOnce for small network sizes.

In the remainder of this paper, we first explain the founda-
tions of Freenet in higher detail and formalize model and prob-
lem description. We subsequently analyze the performance of
Freenet’s routing algorithm, introduce our routing algorithm
NextBestOnce, and prove its performance to be polylog. The
results of extensive simulations are presented thereafter, and
we close our paper with a conclusion.

II. MODELS AND PROBLEM DEFINITION

In this section, we first briefly discuss some related work
on Darknet modelling, before presenting our model.

A. Background

A Darknet is an overlay network, in which connections cor-
respond to a mutual trust relationship between the respective
participants. By this, Darknet topologies are social graphs,
induced by real-world relationships of individuals.

Social graphs are commonly assumed to be:

« scale-free, i.e. the probability that the degree D of a node
is d is given by P(D = d) - for some « € [2,3]



o small-world, i.e. the diameter of the graph is logarithmic
to the network size.

A Darknet topology model hence has to include these
characteristics of social networks. It additionally has to include
a namespace, i.e. a mapping from nodes to identifiers in a
metric space, to permit modeling the routing. Freenet chooses
the small-world topology model by Jon Kleinberg [1] as an
analytic foundation: Nodes are arranged in a multidimensional
grid, edges exist between nodes that are closest to each other,
and each node has one directed edge to a neighbor chosen
with a probability anti-proportional to the distance.

In difference to such a generative model, or to conventional
peer-to-peer systems for that matter, nodes in Darknets can
not establish connections to the nodes that are closest in the
namespace, due to the restriction to connect to trusted nodes
only. (Throughout the paper, the distance of nodes refers to
the distance in the namespace, rather than the hop distance.)
For that reason, it is not easily possible to create the com-
mon lattice structure (with additional links for performance
gains) to facilitate straight forward greedy routing along the
namespace. A routing structure can only be approximated
by assigning suitable identifiers to the nodes, thus finding a
mapping of the nodes into a metric space, which commonly
is termed embedding. Such an approximation, however, is
not well reflected by Kleinberg’s small-world model. Rather
than the lattice structure, our model assumes that nodes are
connected to some nodes in their vicinity, but not necessarily
to the closest nodes.

B. Darknet Model D(n,d,C, L)

We extend Kleinberg’s model by the two parameters C,
the maximal distance to the closest neighbor over all nodes,
and the random variable L defining the assumed degree
distribution. Each node v = (v1, ..., v4) has hence short-range
links to neighbors (with higher and lower ID) in each direction:
ay, ..., ag, by, ..., by. Here aj is chosen from the set

A;j :{u: (U1,---7U(1) GV:ui:vi fori%j,

1
1 <min{u; —v;,n+u; —v;} <C}. M
Analogously, b7 is chosen from
BY ={u=(u1,...,uq) €V :u; = v; for i # j,
j { ( 1 d) 75.7 (2)

1 <min{v; —uj,n+v; —u;} <C}

In favor of a more coherent presentation, we assume w.l.o.g.
that the neighbors are chosen uniformly at random from A}
and BY. The same results can be derived if each element in
the set is chosen with arbitrary, non-zero probability.

In addition to the short-range links, long-range links are
chosen in a two step process:

1) choose a label [, € N, distributed according to L, for

each node v € V
2) connect nodes u,v € V' with probability

dydy

P(l(u,v)|ly =di,l, =dy) =1 —e distwnTy  (3)

Basic calculations show that for a node v € V/, the expected
degree given the label [, is E(D,|l,) = ©(l,). So, a scale-
free distribution L leads to a scale-free degree distribution.
Additionally, the probability that two arbitrary nodes u,v € V
are adjacent is

P(i(u,v)) = © (W) , )

corresponding to the original (directed) small-world model by
Kleinberg.

In the following, two basic results are given. They are
essential for deriving both the lower and upper bounds on
the routing length in Sections III.

Lemma 2.1: Denote by I(u,v) the fact that v and v are
linked via a long-range link. Two arbitrary nodes u, v are long-
range neighbors with probability

P(l(u,v)) = © (W) ' ”

The probability that the distance between u and v exceeds /1
is given by

pi = Pldist(u,v) > Vill(u,0)) =©(1).  (6)

Lemma 2.2: With probability at most %

a node v with
distance at least \/n to ¢ is contained in the routing path P.
The proofs for both lemmata are omitted for lack of space,

but provided in [8].

III. PERFORMANCE OF D2-DFS

In this section we analyze the performance of D2-DFS
in the context of D(n,1,C, L), restricted to d = 1 since
Freenet uses a single dimension. D2-DFS works as follows:
Each node chooses the neighbor closest to the destination
that is not known to have received the message before (i.e.
neither predecessor nor previously contacted neighbors) as a
next hop, if such a node exists. In case that a receiving node
has previously received the message or no further neighbors
are available to contact, the message is backtracked to the
predecessor. The only requirement with regard to the degree
distribution is that the degree of a node is bounded by a
constant 7' with probability r, meaning that the degree of a
certain percentage of nodes does not increase with the network
size.

The performance is given by the expected routing length.
For two distinct nodes s,t the routing length is denoted
RPFS(s,t), and the expected routing length for the whole
graph is given as
E(RPFS) = LS E(RPFS(s,1)).

Theorem 3.1: Let L be such that the degree D, of node
u is bounded by a constant 7' € N with constant probability
r € Ry, ie. P(D, <T)>r>0,and C > 2. Then D?-DFS
does not have polylogarithmic expected routing length, i.e. for
any p > 0:

_
nin —1)

> E(RPTS(s,t) =Q(log’n) ()

s#LEV



The proof is split into three lemmata. The first one, Lemma
3.2, shows that a long-range link is used with constant
probability, even though the message is already very close to
the target ¢. The message can afterwards only reach ¢ during
backtracking or via a different long-range link. Furthermore, it
is shown that the average number of nodes for which this might
happen grows linearly with the network size. In the remaining
section, it is proven that the probability to find such a long-
range link within M log” n is negligible (Lemma 3.3). The
same holds for returning to the node by backtracking (Lemma
3.4). Hence, the routing length RP¥9(s,t) exceeds M log” n
with probability p > 0 for any s,¢ with dist(s,t) > S
where S; denotes the local neighborhood of ¢. So Theorem 3.1
follows because E(RPFS(s,)) > &l log? n, with M chosen
arbitrarily.

For any node v € V, let u,, be the node with ID
id(t) + m mod n. Given the target ¢, we consider a set
St ={t_m,, - ,t,-++ ,tm,} for some constants mj, mo and
show that with constant probability a message is forwarded in
such a way that ¢ can only be reached via a long-range link.

Lemma 3.2: For a set Sy = {t_p,,..., T, ..., tm, }» contain-
ing the neighborhood of ¢, the probability g¢ that all nodes in
Sy =S¢ \ {t—m,,tm, } have only short-range links to nodes
in S; depends only on C. In such a case, D?-DFS marks
both t_,,, as well as t,,, with constant probability go before
forwarding the message away from the target to a node in
V' \ S; connected through a long-range link. Consequently,
with constant probability, ¢t can only be reached via a long-
range link or during the backtracking phase.

Proof: A lower bound on the probability for an adverse
short-range link selection can be given for any S;. By example,
we show that with constant probability go, a message is
forwarded via a long-range link with the described result.

The probability that the short-range neighbor v of a node
u, i.e. the neighbor with the higher (v;") respectively lower
identifier (v, ), is contained in any subset H C V' is given as
the ratio between the nodes in H that can be chosen as v

u
and all C' nodes that can be chosen as v, i.e.

_ HN{us, - usod
= .

The probability go of having no short-range links between
S} and V'\ S; is computed as:

o1 4
g > (H C) ©)

i=1

P(vE € H) (8)

The inequality (equality holds if |S;| > 2C) follows since
at most 4(C' — 1) nodes can have a neighbor in the other
set, with a probability depending on their distance to the set.
For example, the node ¢_,,;—; chooses a neighbor within
{t—m1,t—mi141, - t—mi+c—1}, so with probability & the
neighbor is not in S7, namely if it is ¢_,,;. The same holds
for t,,041 and similarly for ¢,,14+1, tm2—1 when replacing S}
with V'\ S;. For t,,2_» the chance to choose a node not in S;
is then Z, and so on.

By this, we have shown that the lower bound on g depends
only on C, not on n and S;.

As a result of such a short-range link, the only possibility
for a node s € V' \ S to route to a node ¢ € S is to take
a path containing ¢_,,,, tm, Or using a long-range link to a
node in S;. If both ¢_,,,, t,,, are marked, backtracking has
to be used in case no long-range link is found.

Figure 1 illustrates an example of such a path. The case
Sy = {t_4..ty3} is considered. Starting from t, 3 gives
the partial path ty3,¢41,t_1, t_4,t_2. t_o’s only short-
range neighbor is ¢4, which is already on the routing path.
Hence, the message is forwarded using a long-range link. The
probability that ¢_o has at least one long-range link exceeds 0
for any non-trivial degree distribution. It is easy to show that
with probability go = ©(1), t3 is the first node in S; that is
contacted. [ ]
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Fig. 1: Exemplary adverse connectivity for D?-DFS

The destination ¢ can only be reached by long-range links
and by backtracking if the message is forwarded as in Lemma
3.2.

Next, we bound the probability for this to happen within
M log” n steps, starting with the case of finding a long-range
link to a node in S;.

Lemma 3.3: The probability that during D2-DFS no node
in S; is chosen via a long-range link is at least gp = 1 —
%p}stlTﬂsf' > 0 for n big enough and p; as in Eq. 6, assuming
that the path length is maximally M log” n.

Proof: Considering the complementary event of finding
a long-range link to a node in S;, with probability 7!t! there
are at most |S;|T long-range links into S;. All of these links
lead to nodes in at least distance /n with probability at least
p‘lst‘T, as defined in Eq. 6. The probability that |S;|T" nodes
with distance at least \/n to t are not contained in a path of
length M log” n is at least

1 Mlog"n ‘St‘T>1
Jn 2

for n big enough by Lemma 2.2. So
1 s,
ar =1— gp;" el
Lemma 3.4: With probability of at least

qB = %T -pi >0,
D?-DFS does not backtrack to a local node v., the node that
forwarded the message to a node connected through a long-
range link vy ¢ Sy, within M log” n steps.

Proof: The probability that all long-range links of v. have
length at least \/n is bounded from below by 7 - p!" using
Lemma2.1. D?-DFS only considers v, a second time, when all
nodes reachable from vy have been visited, without contacting
any node already on the routing path. Consider the M log” n



nodes reachable from v following short-range links opposite
to t. By Lemma 2.2, each of these nodes is on the path with
a probability of at most 21%8"" Hence, the probability that
none of them is on the path is

| Mlogn Mlog”n 1
Jn 2

for n big enough. So with probability of at least gg = %r -t
M log” n nodes need to be considered before considering v,
a second time. ]
The proof of Theorem 3.1 merely combines Lemma 3.2,
3.3 and 3.4.
Proof: Note that showing that D?-DFS needs more than
M log” n steps is equivalent to showing that it needs % log’ n
steps for p > 0, since M can be any constant. The probability
that the short-range links are chosen in an adverse way is gc¢.
With constant probability go, the nodes are then visited in
an order, so that the message is forwarded to a long-range
neighbor of v.. The probability that at least M log”n are
needed before backtracking is gg by Lemma 3.4. Similarly,
the probability of not contacting a node in S; using a long-
range link is ¢p. Combining this, the probability that D2-DFS
needs at least M log” n is at least g¢ - qr - ¢B * ¢+3. SO,

E(RPFS(s,t)) > qc - q0 - qr - g5 - Mlog’n

Hence, for any M,p > 0, we have E(RPFS(s,t)) >
Mlog”n. Because s and ¢ are arbitrary nodes with
dist(s,t) > |Sy|, the average expected routing length over
all nodes is bounded from below:

Y EBP(s,1)

n(n - 1) s#teV

1
>~ E(RPTS (s,
st Y BRPG) o)
s#ELEV,dist(s,t)>]S¢]

n(n — |S:)

P SR S 1 P — 1 P
S TCE) Mlog’ n = Q(log” n)

|

Theorem 3.1 does not give an exact bound for D?-DFS. It
proves that even though short paths exist, D?-DFS does not
achieve polylog routing length, if the applied embedding does
not achieve that each local link has a maximum distance of 2.

IV. NEXTBESTONCE

D2-DFS has two drawbacks that can increase the routing
length. The first one is that nodes have to be contacted to
check if the message has already passed them. This results in
a message overhead, that is not necessary in case nodes are
aware if their neighbors have already seen the message. The
second drawback is that a node on the path always contacts
the neighbor that has not yet seen the message and is closest
to the destination. As we have seen in Section III, this might
cause the message to be passed along a long-range link away
from the destination, and degrade the routing performance.

The first issue can easily be solved by including information
about marked nodes, i.e. nodes that should not be contacted

again. The second drawback is harder to resolve. The main
idea of NextBestOnce is to forward the message to the neigh-
bor closest to the destination, possibly passing nodes several
times. Nevertheless, nodes have to be marked to guarantee
termination. For this reason, NextBestOnce marks nodes if they
have no neighbor that is not marked and closer to the target
t. Since neighbors farer from ¢ than the current node cannot
be marked, a node only contacts neighbors that present an
improvement or the minimal decline of all neighbors, not only
the ones that have not yet seen the message.

Algorithm 1 NextBestOnce(Node p, ID t, Node v, Set B)

# p predecessor, t target, v current, B marked nodes
# N,: neighbors of v
if id(v) ==t then
routing successful; terminate
end if
if v.predecessor == null then
v.predecessor = p;
end if
9: S ={u € N, :|B.contains(u)}
10: if S NOT EMPTY then

A A ol ey

11:  nextNode = argmin,cgsdist(u,t)

12:  if dist(nextNode,t) > dist(v,t) then
13: B.add(v)

14:  end if

15: else

16:  B.add(v)

17:  nextNode = v.predecessor; // backtracking
18: end if

19: if nextNode != null then

20: NextBestOnce(v, t, nextNode, B)
21: else

22:  routing failed; terminate

23: end if

In the context of our model, every node has a neighbor
within distance C, resulting in a maximal increase of C
in distance to the target per step, hence avoiding the large
setbacks of D2-DFS.

Indeed, NextBestOnce achieves polylog maximal expected
routing length, more precisely the maximal expected number
of hops is O(log® ' nloglogn). The proof is similar to the
one presented in [7], and omitted due to space constraints.

NextBestOnce, described in Algorithm 1, takes as input the
predecessor p of the current node, the identifier of the target
node ¢, the current node v, and a set B of marked nodes. In
each non-terminal step of the algorithm, there are basically two
possibilities: The node forwards the message to the neighbor
closest to the destination that is not yet marked (Il. 9-14).
If this closest neighbor actually is not closer than the current
node, the node adds its identifier to B (1. 13, . 16 respectively
if all neighbors are contained in B). It subsequently is not
selected as next hop on the path again, unless the message
is backtracked. Only during backtracking, other nodes than
those closer to the destination and the neighbor with the least
increase in distance can be contacted. Backtracking happens
in case a node only has neighbors closer to the destination,
because otherwise there is an unmarked neighbor, by the
condition that nodes are marked only after their neighbors
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closer to ¢ have been marked.

The routing fails if the current node is the initiator and all
of its neighbors have been contacted (1. 22, this only happens
if ¢ does not exist in the connected component).

V. SIMULATIONS

Although Sections III and IV give an asymptotic analysis of
the routing algorithm, it is unclear how this asymptotic bounds
relate to the performance on graphs of a realistic size. We
hence perform simulations compare NextBestOnce and D?-
DFS for realistic network sizes.

Setup: The simulations were performed using GTNA [9],
all code is available online'. The graphs were generated as
follows: For each «, and n, a graph consisting of the nodes
with respective long-range links was generated first. In a sec-
ond step, one graph with short-range links was generated for
each value of C. The routing algorithms then were evaluated
by creating routing requests to 5 randomly chosen destinations
for each node, so 5n source-destination-pairs were taken as a
sample.

C was chosen to be 1 to 10, 16 and 32, « between 2.1 and
2.5, in steps of 0.05, and n was varied between 1k and 100k.
In real-world social networks a value of o between 2.2 and 2.3
has been observed, hence these values are preferably chosen
for exemplary evaluation. Please note that « is an artefact of
the social graph and cannot be altered in the system design.
The results were averaged over 30 to 100 runs.

Results: Indeed, NextBestOnce has a lower average routing
length than the original D?-DFS for all considered settings
in our simulations. Figure 2 displays this performance for
network sizes between 1000 and 100000, using o = 2.3 and
C = 4,16. The performance is very similar for C' = 4. Nev-
ertheless, NextBestOnce has a slightly lower average routing
length for all considered network sizes. In case of C' = 16,
the difference between the algorithms is clearly noticeable,
with NextBestOnce performing over 10% better than D2-
DFS. Because the standard deviation of D2-DFS is generally
higher than for NextBestOnce at C = 16, the presented
results for D2-DFS are averaged over 100 runs instead of 30.
Remarkably, there still are some cases in which the standard
deviation is extremely high, indicating several incidents of
adverse node placements as described in Section III, which
cause the average routing length to increase drastically (n.b.

Uhttp://www.p2p.tu-darmstadt.de/research/gtna/

n € 20k, 50k, 100k). This happens only in a small number
of runs, so the probability of such a situation to happen at
smaller network sizes is low. Considering each single node,
it remains constant and hence overall is increasing with the
network size. Nevertheless, the average maximal number of
routing steps over 100 runs increases at least linearly with the
network size, from about 270 steps for 10k and C' = 16 to
more than 10,000 steps for 100k. This shows clearly that such
unbeneficial scenarios exist.

VI. CONCLUSION

This paper deals with routing on connection restricted
topologies, especially Darknets. This represents a difficult
problem, due to the restriction to establish connections
solely between nodes if the respective owners share a trust
relationship in real life. The paper introduces a new formal
model, which extends the small-world model of Kleinberg
to better reflect the realistic properties of Darknets. Both
D?-DFS, the routing of Freenet, which is the only cur-
rently deployed Darknet, and the newly proposed algorithm
NextBestOnce are analyzed in the context of the model. The
complexity analysis shows that while NextBestOnce has an
expected polylog routing length, D2-DFS is unable to achieve
this performance asymptotically. A simulation study exhibits
the polylog performance of NextBestOnce The simulations
additionally show that situations exist that are highly adverse
for D2-DFS. This leads us to the conclusion that NextBestOnce
is the better choice if either guaranteed polylog routing length
are required, or the systems may grow to large network sizes.

In summary, we are positive that the new model will prove
to be a useful asset for future analyses of routing protocols
on connection restricted topologies, and that NextBestOnce
represents a promising intermediate step towards enhancing
routing in such networks.
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