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Abstract

The RS? Information-Flow Specification Language (RIFL) is a policy lan-
guage for information-flow security. RIFL originated from the need for a
common language for specifying security requirements within the DFG
priority program Reliably Secure Software Systems (RS®) [30]. In this
report, we present the syntax and informal semantics of RIFL 1.1, the
most recent version of RIFL. At this point in time, RIFL is supported
by four tools for information-flow analysis. We believe that RIFL can
also be useful as a policy language for further tools, and we encourage its
adoption and extension by the community.

1 Introduction

In the development of RIFL, our objective was to create a language for speci-
fying information-flow requirements without having to commit to a particular
information-flow analysis tool. By being tool independent, RIFL shall facilitate
the creation of case studies on information-flow security, consisting of example
programs and corresponding security requirements, that are suitable for multi-
ple tools. Figure 1 visualizes this role of RIFL. The left hand side of the figure
indicates that RIFL is suitable for expressing flow relations. Flow relations are a
common concept for the abstract definition of information-flow security require-
ments in terms of security domains. The right hand side of the figure indicates
that a RIFL specification can be provided as input to any tool supporting RIFL.

Having a common language like RIFL is helpful for comparing information-
flow analysis tools with each other in experiments and for creating benchmarks
that can be used in such comparisons. One could even envision the use of RIFL
as glue between multiple analysis tools such that they can be used collabora-
tively in the information-flow analysis of different parts of a complex program.
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Figure 1: RIFL as an Input Language for Multiple Analysis Tools

RIFL was developed as a tool-independent language. For an analysis tool
that does not yet support RIFL by construction, one can add support by devel-
oping a front-end that translates RIFL specifications into the policy language
of the tool or directly into the tool’s internal data structures used for expressing
security requirements. At this point in time, the analysis tools Cassandra [19, 8],
JoDroid [27], Joana [15], and KeY [1] already support RIFL 1.1 or the previous
version of the language, RIFL 1.0. We encourage support of RIFL as a policy
language also by further information-flow analysis tools.

In the development of RIFL we decided not to limit the use of RIFL to
analysis tools that presume one particular formal definition of information-flow
security, because this would limit the scope and, hence, the benefits of RIFL too
much. There is a wide spectrum of possible definitions of information-flow secu-
rity, but no general agreement regarding which formal definition is best. That
is, RIFL is not only a tool-independent language, but also a security-property-
independent language. As a consequence, RIFL is a semi-formal language that
provides a formally defined syntax with a particular intuition, but without a
formal semantics.

In the definition of RIFL, we distinguish between parts that are independent
from the particular language in which programs are written from parts that are
specific for each programming language.

This report defines the syntax and informal semantics of RIFL 1.1, the latest
version of RIFL. It supersedes an earlier technical report defining RIFL 1.0 [9].

RIFL 1.0. RIFL 1.0 provides the following features:

e The capability to identify parameters of methods, return values of meth-
ods, and fields of objects as sources and sinks in Java source code and
Dalvik bytecode.

e The capability to define the interface of a program in terms of sources and
sinks as well as, optionally, categories of sources and sinks.

e The capability to declare domains and to define flow relations for specify-
ing information-flow policies.

e The capability to define domain assignments to relate the specification of
the interface to the specification of the information-flow policy.



RIFL 1.1. RIFL 1.1 is an update and extension of RIFL 1.0. In comparison
to RIFL 1.0, it provides the following features:

e The capability to specify controlled declassification [20] of information in
Java source code programs.

e The capability to specify information-flow requirements for Java bytecode
programs.

e The capability to specify the content of arrays as a source or a sink in
Java source code programs and in Java and Dalvik bytecode programs.

e The capability to specify the fact that an exception is thrown by a method
as a source or a sink in Java source code programs and in Java and Dalvik
bytecode programs.

e The capability to specify fields as sources more precisely by means of access
paths in Java source code programs and in Java and Dalvik bytecode
programs.

Structure of this document. In Section 2, we describe the overall structure
of the RIFL language. We introduce the language-independent parts of RIFL
that can be used to express general concepts from information-flow security in
Section 3. We explain how RIFL can be specialized to a particular program-
ming language and used to specify information-flow requirements for a program
in such a language in Section 4. The language-specific parts of RIFL for ex-
pressing sources and sinks in a program are described in Sections 5 and 6 for
three particular target languages. Section 5 describes the specialization of RIFL
to Java source code; Section 6 describes the specialization of RIFL to Java and
Dalvik bytecode. In both sections, we illustrate the use of RIFL for these pro-
gramming languages using concrete example programs. Section 5 and Section 6
are both self-contained such that each can be read directly after reading Sections
1-4. We discuss related work in Section 7 before concluding in Section 8.

Notation. We define each syntactic element of the RIFL language using XML
DTD [11]. In addition to this machine-readable form, we also present each
syntactic element using BNF [3], which is a more easily understandable notation
for human beings.

2 RIFL — Overview of the Language

The underlying model of RIFL is that a program is executed in an environment
from which it may obtain information via sources and to which it in turn may
pass information via sinks. The environment may consist, e.g., of the API of
the operating system, libraries used by the program, other programs running
concurrently, or the user interacting with the system. RIFL allows one to spec-
ify restrictions on the flow of information from the information sources to the
information sinks in a given program.



2.1 Specifying Restrictions on the Flow of Information

RIFL provides a syntax that can be used to identify sources and sinks of in-
formation in a program. RIFL also provides a syntax for declaring security
domains, which constitute abstractions of concrete sources and sinks, and for
defining flow relations, which specify restrictions on the flow of information be-
tween security domains. That is, information-flow restrictions are specified in
RIFL on a more abstract level than in terms of the individual sources and sinks
of a given program.

Restrictions on the flow of information from concrete sources to concrete
sinks are induced by a domain assignment, which assigns each source and each
sink to a security domain. Intuitively, information may flow from a source to
a sink if information may flow from the source’s security domain to the sink’s
security domain, where the security domains of the source and the sink are
determined by the domain assignment.

Exceptions to the restrictions on the flow of information can be specified by
escape hatches. Intuitively, an escape hatch specifies that certain information
may flow to sinks of a specific security domain, even if this is not allowed by
the flow relation.

2.2 Structure of RIFL

While sources and sinks are generic concepts, the particular sources and sinks
that may occur in programs depend on the programming language. Other RIFL
concepts, e.g., security domains, are independent of the programming language.
This distinction between language-independent and language-specific elements
is reflected in the definition of RIFL.

The definition of RIFL has a modular structure. It comprises modules that
are independent from concrete target languages and modules that are specific to
a particular language. The language-independent modules offer a uniform syn-
tax for concepts that are relevant for information-flow security across different
target languages. These concepts are easy to grasp and allow an intuitive spec-
ification of information-flow requirements at an abstract level. The language-
specific modules complement the concepts in the language-independent modules
by a syntax for identifying concrete entities in programs of a particular target
language.

The bottom part of Figure 2 gives an overview of the modules of RIFL.
Language-independent modules are represented by white boxes. Language-
specific modules are represented by light-grey boxes. A box on top of another
box indicates that the module represented by the box on top relies on the module
represented by the box underneath.

So far, language-specific modules for specifying sources and sinks in RIFL
have been defined for three programming languages, namely Java source code,
Java bytecode, and Dalvik bytecode. The language-specific modules for these
three languages are presented in Sections 5 (Java source code) and 6 (Java
bytecode and Dalvik bytecode), respectively. Specializations of RIFL for further
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Figure 2: Structure of RIFL and RIFL specifications

languages, such as JavaScript, C, or Python, are envisioned for the future.

Changes since RIFL 1.0. The changes between version 1.0 and version 1.1
of RIFL are located in the following modules of the language (as shown in
the bottom part of Figure 2): The language-independent module for specifying
flow relations has been extended by means for expressing escape hatches com-
pared to RIFL 1.0. Furthermore, the language-specific module for specifying
declassification expressions and reference points in Java source code is new in
RIFL 1.1 compared to RIFL 1.0. Moreover, there is a new language-specific
module for specifying sources and sinks in Java bytecode. Finally, the existing
language-specific modules for specifying sources and sinks in Java source code
and Dalvik bytecode have been extended by means to specify the occurrence of
exceptions as sources and sinks, and by means to specify fields as sources using
access paths. (The language-specific modules for specifying sources and sinks
in different languages are all represented by the box “sources & sinks” in the
bottom part of Figure 2.) All other modules are the same in RIFL 1.1 and in
RIFL 1.0.

2.3 Structure of a RIFL 1.1 Specification

The top part of Figure 2 gives an overview on the elements of a concrete RIFL
specification. The elements of a RIFL specification for a given program are
represented by dark-grey boxes. Again, a box on top of another box indicates
that the element represented by the box on top relies on the element represented
by the box underneath. Furthermore, a RIFL specification builds on both the
language-independent and the language-specific modules of RIFL.

Changes since RIFL 1.0. Compared to a RIFL 1.0 specification, a RIFL 1.1
specification may also define escape hatches (element “flow relation & escape
hatches” in the top part of Figure 2). Furthermore, the interface specification of



a RIFL 1.1 specification might be different from that of a RIFL 1.0 specification
because there are new ways of specifying sources and sinks in the specializations
of RIFL 1.1 (element “interface specification” in the top part of Figure 2).

The syntax of a RIFL 1.1 specification is specified by the following BNF
and DTD. Throughout this report, we define a concrete XML syntax for RIFL
using DTD to be used in tools. Additionally, we define an abstract syntax for
RIFL using BNF. The sole purpose of the abstract syntax is to ease the reader’s
understanding of the RIFL syntax. For more information on BNF, we refer
to its introduction in [3]. For more information on XML and DTDs, we refer
to [11].

BNF representation of syntactic elements

RIFL-SPEC ::= (INTERFACESPEC, DOMAINS, FLOW-RELATION
DOMAIN-ASSIGNMENT, HATCHES)

XML DTD definition of syntactic elements
<!ELEMENT riflspec (interfacespec, domains, flowrelation,
domainassignment, hatches?)>

Formally, a RIFL specification consists of definitions of an interface specification,
a list of domains, a flow relation, a domain assignment, and, optionally, a list
of escape hatches. In the BNF, these elements appear as non-terminals for
which we provide production rules later in the report. In the DTD, the element
riflspec is the root of a RIFL specification. The subsequent comma-separated
list specifies that there must be exactly one child element each of the types
interfacespec, domains, flowrelation, and domainassignment, and that
there may also be an optional child element of the type hatches.

At this point, we leave the production rules for non-terminals on the right-
hand side of the production rule in the BNF undefined. We also leave the
corresponding element type declarations in the DTD undefined. The following
table points the reader to the sections where these definitions can be found:
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INTERFACESPEC, interfacespec | Section 3.1 (p.

DOMAINS, domains | Section 3.2 (p.
FLOW-RELATION, flowrelation | Section 3.2 (p.
(
(

Q0

=)

DOMAIN-ASSIGNMENT, domainassignment | Section 3.3 (p.
HATCHES, hatches | Section 3.4 (p.

—_

3 Language-Independent Modules of RIFL

In this section, we present the language-independent modules of RIFL 1.1.
These modules support the declaration of domains and categories as well as
the definition of flow relations and domain assignments. They further define
the frame for the declaration of the interface of a program.



3.1 Interface Specification

The interface specification makes explicit where (in the program code) a pro-
gram reads input and where (in the program code) a program provides output.
Sources identify locations in the code where input is read. Sinks identify loca-
tions in the code where output is provided. Categories group sources and sinks
with respect to an intuitive similarity. For example, API calls for network com-
munication could be grouped into a category “network”. Moreover, categories
can be arranged in a tree structure, i.e., a category might have sub-categories.
Categories are an optional concept that can be used to structure the interface
specification.

The abstract syntax for specifying sources and sinks in RIFL is specified by
the following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

INTERFACESPEC ::= € | ASSIGNABLE | ASSIGNABLE :: INTERFACESPEC
ASSIGNABLE ::= (HANDLE, CATSRCSNK)
CATSRCSNK ::= CATEGORY | source SOURCE | sink SINK
CATSROSNKLIST ::= € | CATSRCSNK | CATSRCSNK :: CATSRCSNKLIST
CATEGORY ::= (NAME, CATSRCSNKLIST)

XML DTD definition of syntactic elements
<!ELEMENT interfacespec (assignable)x*>
<!ELEMENT assignable (category | source | sink)>
<!ATTLIST assignable handle ID #REQUIRED>
<IELEMENT category (category | source | sink)=*>
<IATTLIST category name ID #REQUIRED>

In the DTD the attlists assignable and category define the lists of attributes
for the elements assignable and category. The element assignable has a
mandatory attribute handle of type ID and the element category has a manda-
tory attribute name of type ID. The use of the type ID requires the value of the
attribute to be unique in an XML document.

An interface specification is a list of assignables. An assignable is a pair of a
unique handle and a category, source, or sink. It specifies a set of sources or sinks
that shall be assigned into a particular domain. The handle of an assignable is
used to refer to the assignable in the domain assignment. A category is a tuple
comprising a name and a list of further categories, sources and sinks. That is,
a category is the root of a tree. Such a tree describes an is-a-relationship, i.e. a
child is subsumed by its parent.

For an interface specification to be well-formed there must be no two equal
sources or sinks in the specification. In the abstract syntax specified by the BNF,
we consider two sources (and sinks) equal if they are represented by identical
strings. In the concrete syntax specified by the DTD, we consider two XML
elements as equal if they have the same element name, the same attributes, the



same value for each attribute, and either are a leaf, or have the same number
of children and for each child tag of one tag there is exactly one child tag of
the other tag such that the two child tags are equal. We require that interface
specifications are well-formed.

The concepts of sources and sinks are general ones and are thus independent
of any particular programming language. However, the concrete sources and
sinks of a program and their syntactic representations in a RIFL specification
depend on the concrete programming language. Hence, the symbols SOURCE
(source) and SINK (sink) are part of the language-specific modules.

The following table points to the BNF and DTD for the definition of sources
and sinks in Java source code, Java bytecode, and Dalvik bytecode.

for Java source code
for Java bytecode
for Dalvik bytecode
for Java source code
for Java bytecode
for Dalvik bytecode

SOURCE, source | Section 5.1
Section 6.1
Section 6.1
SINK, sink | Section 5.1
Section 6.1
Section 6.1

p. 17
p- 30
p- 30
p. 17
p- 30
p- 30
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3.2 Domains and Flow Relation

Security domains model different levels of confidentiality. The flow relation
specifies between which domains information may flow. No information must
flow between two domains that are not related by the flow relation.

The abstract syntax for declaring domains and defining a flow relation is
specified by the following BNF and the concrete syntax is defined by the sub-
sequent DTD.

BNF representation of syntactic elements

DOMAINS ::= ¢ | DOMAIN | DOMAIN :: DOMAINS
FLOW-RELATION ::= ¢ | (DOMAIN, DOMAIN) |
(DOMAIN, DOMAIN) :: FLOW-RELATION

XML DTD definition of syntactic elements

<!ELEMENT domains (domain)*>

<!ELEMENT domain EMPTY>

<IATTLIST domain name ID #REQUIRED>

<!ELEMENT flowrelation (flow)*>

<IELEMENT flow EMPTY>

<IATTLIST flow from IDREF #REQUIRED to IDREF #REQUIRED>

The declaration of domains is a list of domains. For a given specification, this
list defines the domains that may be used in the specification. The production
rules for the non-terminal DOMAIN remain underspecified. The non-terminal
DOMAIN ranges over strings as names for domains.



The flow relation is a list of pairs of domains. This list of pairs defines a
binary relation on domains. In the concrete XML syntax specified by the DTD,
we use [Ds for referring to domains. We also use IDs for other language elements.
In order for a relation to be a valid flow relation, the IDs in the relation must
be names of domains. Since this requirement is not enforced by the syntax, it
must be checked additionally.

The reflexive closure of the relation that is defined by a list FLOW-RELATION
specifies the permissible information flows. That is, information may flow from
a domain d1 to a domain d2 if the pair (d1,d2) explicitly appears in the list
FLOW-RELATION or if d1 = d2 holds. Otherwise, information flow from d1 to d2
is forbidden. Similarly, the information flow permitted by an XML specification
is defined as the reflexive closure of the relation on domains that is specified by
flowrelation. Note that the reflexive closure need not be transitive, i.e. we
allow intransitive flow relations.

3.3 Domain Assignment

The domain assignment classifies the sources and sinks from the interface spec-
ification into domains.

The abstract syntax for defining a domain assignment is specified by the
following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

DOMAIN-ASSIGNMENT ::= ¢ | (HANDLE, DOMAIN) |
(HANDLE, DOMAIN) :: DOMAIN-ASSIGNMENT

XML DTD definition of syntactic elements

<!ELEMENT domainassignment (assign)x*>

<!ELEMENT assign EMPTY>

<IATTLIST assign handle IDREF #REQUIRED domain IDREF #REQUIRED>

A domain assignment is a list of pairs where the first element of each pair is
the handle of an assignable and the second element is a domain. For a domain
assignment to be well-formed, the list must define a total function from handles
to domains. This means that each handle must appear exactly once as the first
element in a tuple from the list.

In the concrete XML syntax specified by the DTD, we use IDs instead of
handles and domains. We also use IDs for other language elements. In order for
a list to be a valid domain assignment, all IDs that appear as first elements of
a tuple in the list must be handles and all IDs that appear as second elements
of a tuple in the list must be names of domains.

A well-formed domain assignment maps the handle of each assignable to a
domain. If the assignable refers to a single source or sink, then this source or
sink is classified into the given domain. If the assignable refers to a category,
then all sources and sinks grouped in the category, including those recursively
grouped in sub-categories, are classified into the given domain.



3.4 Escape Hatches

Controlled declassification allows for exceptions to the strict information-flow
restrictions specified by a flow relation and a domain assignment. Three dimen-
sions of declassification have been identified and considered in the literature, viz.
what information may be declassified (e.g. [20, 31]), where it may be declassified
(e.g., [25, 26]), and who may declassify it (e.g., [21, 35]).

RIFL 1.1 allows for the specification of controlled declassification of informa-
tion, specifically for the what aspect of declassification. Declassification can be
expressed in a RIFL specification by means of a list of escape hatches [31]. An
escape hatch specifies that certain information may flow to a given domain ex-
ceptionally, even though this might not be permitted by the flow relation. That
is, an escape hatch expresses an exception to the flow relation. An escape hatch
consists of a declassification expression, an explicit reference point [20], and the
domain to which information may be declassified according to the escape hatch.

The abstract syntax for defining a list of escape hatches is specified by the
following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

HATCHES ::= € | HATCH | HATCH :: HATCHES
HATCH ::= (EXPRESSION, REFERENCE-POINT, DOMAIN)

XML DTD definition of syntactic elements
<!ELEMENT hatches (hatch)*>

<!ELEMENT hatch (expression, referencepoint)>
<IATTLIST hatch to IDREF #REQUIRED>

According to the DTD, an escape hatch is expressed in a RIFL specification
by an element of type hatch. This element has a mandatory attribute to that
refers to the domain the information may be declassified to. The declassification
expression and the reference point are specified by the two children elements of
the types expression and referencepoint, respectively.

What information may be declassified by the escape hatch is determined
by the declassification expression and the reference point. The reference point
specifies a set of states during the execution of a program. The declassification
expression associates each state during the execution of a program with a value.
The information that may be declassified by a program according to a given
escape hatch are the values of the declassification expression in the states that
are specified by the reference point. The information that may be declassified
according to a RIFL specification is any information that may be declassified
according to at least one of the escape hatches of the specification.

The syntax for specifying declassification expressions and reference points
depends on the concrete programming language. Hence, the non-terminals
EXPRESSION (expression) and REFERENCE-POINT (referencepoint) are part
of the language-specific modules. In RIFL 1.1, only the language-specific mod-
ule for Java source code provides definitions for expressions and reference points.
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These definitions are given in Section 5.2 (p. 24). Providing these definitions
for instantiations of RIFL to other languages is left for the future.

An example of a RIFL specification that describes controlled declassification
by means of escape hatches can be found in Section 5.3.2.

Remark 1. RIFL specifications generally take a black-box view of the program
for which information-flow requirements are being specified. The requirements
are specified in terms of sources and sinks belonging to the interface between
the program and its environment. Consequently, no knowledge of the code of a
program is required to write a RIFL specification for it.

In contrast to this, the specification of controlled declassification in RIFL
may require to partially take a white-box view of the program. It may require to
refer to parts of the program in the declassification expression that are not part
of the interface to its environment, e.q., local variables. Furthermore, specifying
the reference point of an escape hatch may require indicating a specific location
in the program. Hence, knowledge of the program’s code is required when writing
a specification for it that involves controlled declassification.

This change of perspective is intentional, as declassification is used for con-
trolled release of information in special cases. To ensure that only the intended
information is declassified, knowledge of the code of the program is necessary.

3.5 Informal Semantics of a RIFL Specification

A complete RIFL specification expresses the following information-flow policy:
Information is allowed to flow in a program from a source to a sink only if the
source is assigned to a domain d1 and the sink is assigned to a domain d2 such
that d1 and d2 are related by the flow relation. In addition, information about
a value may flow to a sink assigned to the domain d2 if the value is declassified
by an escape hatch to a domain d1 such that d1 and d2 are related by the flow
relation — even if the value depends on sources classified into a domain d3 such
that d3 and d2 are not related by the flow relation.

The informal semantics of a RIFL specification is closely related to the in-
tuition behind noninterference [13, 24]. That is, if no information is allowed to
flow from certain sources to certain sinks according to the specification, then
the output to these sinks must be independent of the input from these sources.

As an example, consider the RIFL specification in Figure 3. Since the syntax
for specifying sources and sinks depends on the concrete programming language,
we use a simplified syntax in the example: We specify sources and sinks only
by names without any further details. The actual syntax of sources and sinks
for Java source code is defined in Section 5 and for Java bytecode and Dalvik
bytecode in Section 6. Note that the example in Figure 3 does not demonstrate
the features of RIFL that allow for the specification of controlled declassification.
Such an example can be found in Section 5.3.2.

The example specification expresses that no information about the location
shall be stored to files or sent via an unencrypted HTTP connection, but location

11



<riflspec>
<interfacespec>
<assignable handle="locationhandle">
<category name="location">
<source name="getGPS" />
<source name="getNetworkLocation" />
</category>
</assignable>
<assignable handle="fileshandle">
<category name="files">
<sink name="storeToFile" />
</category>
</assignable>
<assignable handle="HTTPhandle">
<sink name="sendViaHTTP" />
</assignable>
<assignable handle="HTTPShandle">
<sink name="sendViaHTTPS" />
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="locationhandle" domain="high" />
<assign handle="HTTPShandle" domain="high" />
<assign handle="fileshandle" domain="low" />
<assign handle="HTTPhandle" domain="low" />
</domainassignment>

</riflspec>
Figure 3: An Example of a RIFL Specification
[sendViaHTTP] [sendeHTTPS] getNetworkLocation
storeToFile getGPS

Figure 4: Visualization of the Example RIFL Specification

12



information may be sent via an encrypted HTTPS connection. That is, the
output to files and HTTP connections must be independent of the input received
from the location providers.

The interface specification defines the four assignables locationhandle,
fileshandle, HTTPhandle and HTTPShandle. The handle locationhandle
refers to the category location. This category contains the sources getGPS
and getNetworkLocation. The handle fileshandle refers to the category
files. This category contains the sink storeToFile. The handle HTTPhandle
refers to the sink sendViaHTTP. The handle HTTPShandle refers to the sink
sendViaHTTPS.

The RIFL specification declares two domains, high and low. The flow rela-
tion specifies that information may flow from low to high and within each of
these domains. This means that no information must flow from high to low.

The domain assignment maps the handles locationhandle and HTTPShandle
to the domain high, and the handles fileshandle and HTTPhandle to the do-
main low. This means that information may flow from the sources identified
by the handle locationhandle to sinks identified by the handle HTTPShandle,
because both handles are assigned to the domain high and the flow relation
is reflexive. Moreover, no information must flow from the sources identified by
the handle locationhandle to sinks identified by the handles fileshandle and
HTTPhandle.

Categories, sources, and sinks inherit the domains assigned to their parents.
Thus, they also inherit the permitted flow of information. For example, informa-
tion may flow from getGPS to sendViaHTTPS. This is because getGPS inherits
the domain high from the category location (identified by locationhandle).
Since the handle of sendViaHTTPS is assigned to high, too, and the flow relation
is reflexive, information may flow from getGPS to sendViaHTTPS.

Similarly, since categories, sources and sinks inherit the domains assigned to
their parents, they also inherit the constraints on the permitted flow of infor-
mation. For example, no information must flow from getGPS to storeToFile.
This is because getGPS inherits the domain high from the category location
(identified by locationhandle) and storeToFile inherits the domain low from
the category files (identified by fileshandle). Since the pair (high, low) is
not in the flow relation and no escape hatch is defined, information flow from
getGPS to storeToFile is not permitted.

Figure 4 visualizes the example policy. The circles represent the domains
specified with the domain elements. The double arrows between the circles
represent the permitted information flows according to the flow relation specified
with the flow element. The boxes with rounded corners represent assignables.
The assignables enclose the categories specified with the category elements
(represented by text in italics) as well as the sinks specified with the sink
elements (represented by regular text). The arrows with the open arrow head
represent the grouping of sources and sinks specified with the source and sink
elements (representeed by regular text) into categories. Finally, the arrows
with the closed arrow head represent the domain assignment as specified by the
assign elements.
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Categories allow very concise definitions of the domain assignment even for
larger specifications, because they group sources and sinks with respect to some
notion of similarity, e.g., all API calls for accessing files. We also envision a
library of specifications of sources and sinks that are already categorized. In-
terface specifications can then be created from such a library by choosing a
part of the library. In this way, the effort for creating an interface specifica-
tion is reduced, and one interface specification can be used in multiple RIFL
specifications.

4 Specializing and Using RIFL

4.1 Dependencies and Refined Structure of RIFL

The bottom box in Figure 5 shows the dependencies between the different mod-
ules of RIFL. A solid arrow indicates a depends-on-relationship, i.e. the def-
inition of the module at the end of the arrow depends on the module at the
head of the arrow. Moreover, the modules in the lowest row are language-
specific while the modules in the middle row are language-independent. As an
example, the language-independent module “escape hatches” depends on the
language-independent module “domain declarations” as well as the language-
specific modules “expressions” and “reference points”.

The top box in Figure 5 shows the dependencies between the different el-
ements of a RIFL specification. Again, a solid arrow indicates a depends-on-
relationship. Furthermore, a dotted arrow indicates an is-a-relationship, i.e. the
element at the end of a dotted arrow is defined using the syntax of the module
at the arrow head. For instance, a concrete “domain assignment” is defined
using the syntax of the module “domain assignments”.

a RIFL specification |

v
interface domain domain ;
specification H assignment H declaration H flow relation ‘

escape hatches

v v v ¥ v v |
interface domain domain :
specifications H assignments declarations flow relations escape hatches

—

sources & sinks ‘ expressions ‘

the RIFL specification language

reference points

Figure 5: Dependencies in RIFL

Based on the dependence graph in Figure 5, the structure of RIFL, as pre-
sented in Figure 2, can be refined as shown in Figure 6. That is, the syntax
of the language-independent modules, represented by the white boxes, builds
on the syntax of the language-specific modules, represented by the light-grey
boxes. Moreover, the definition of the elements of a RIFL specification for a
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concrete program, represented by the dark-grey boxes, uses the syntax of the
modules of RIFL as indicated by the arrows.

a RIFL specification

: . flow relation &
d t
specific for a omain assignmen escape hatches
given program interface . .
specification ﬁ domain declaration ﬁ
: . flow relations &
i domain assignment ﬁ
independent of the 9 escape hatches
programming language interface domain
specifications declarations
specific for a sources & sinks expressions &
programming language reference points

the RIFL specification language

Figure 6: Refined Structure of RIFL

In Section 4.2, we explain how to define the language-specific modules for
a programming language, i.e. the bottom layer in Figures 5 and 6. Moreover,
in Section 4.3, we explain how to write a security requirement for a concrete
program using RIFL, i.e. the top layer in Figures 5 and 6.

Remark 2. As indicated by the empty grey spot on top of the module “expres-
sions & reference points”, RIFL 1.1 does not have language-independent means
for defining expressions and reference points for escape hatches. This is due
to the fact, that we first want to build up some experience to identify how a
language-independent layer can be defined to be useful.

Remark 3. For sources, sinks, and domains, we introduced handles such that
one can easily refer to those at multiple places in a RIFL specification. Cur-
rently, expressions and reference points do not have handles in RIFL, because
we did not need this so far. In the future, we might introduce handles for ez-
pressions and reference points, if we identify some need for this at some point.

4.2 Specializing RIFL for a Programming Language

A specialization of RIFL for a particular programming language provides con-
crete syntax for identifying sources and sinks in programs that are written in
this language. Furthermore, it may provide syntax for specifying declassification
expressions and reference points.

The first step for specializing RIFL to a programming language is identifying
what one might consider as sources and sinks of information in this language.
For instance, one might consider parameters of methods in third-party libraries
as sinks in Java source code, and one might consider fields in the Android
framework as sources and also as sinks in Dalvik bytecode.
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The next step is to define a syntax for identifying occurrences of relevant
sources and sinks in a program. For instance, one could use the fully qualified
name of a field to identify occurrences of the field in a Java source code program.

The final step is to define a syntax for identifying values that may be de-
classified and for identifying points in the execution of a program during which
these values are determined. For instance, one could use JML expressions [17]
to identify values that may be declassified in a Java source code program. Fur-
thermore, one could use labels of program statements to identify points in the
execution of a Java source code program.

4.3 Using RIFL for a Concrete Program

Writing a RIFL specification for a concrete program comprises the following
steps (not necessarily in this order):

Specifying domains and flow relation:

1. Define domains that model different levels of confidentiality, e.g., low
and high for a two-level security policy distinguishing only between
public and private information.

2. Define a flow relation on domains that captures the permissible flows
of information between distinct domains, e.g., that information may
only flow from low to high and within each domain. Define the flow
relation by specifying a relation whose reflexive closure shall be the
flow relation.

Specifying the interface of the program:
1. Declare the sources and sinks of the program that are relevant for
the security requirement on the program.

2. Optionally: Structure the sources and sinks with respect to some
notion of similarity using categories, e.g., group all API calls that
send information to the network into one category.

3. Assign handles to each root element in the interface specification.

Specifying the domain assignment:

Define a domain assignment that maps each handle to a domain. The
domain assignment must be a total function, i.e., each handle must be
mapped to exactly one domain.

Specifying escape hatches:

If necessary: Specify exceptions to the flow relation by defining escape
hatches that allow the controlled declassification of information.

We present example RIFL specifications that result from these steps for
example programs written in Java in Section 5.3, and for an example program
written in Dalvik in Section 6.3.
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Remark 4. To facilitate the specification of policies for programs in a given
programming language, one can build up a library of categorized sources and
sinks for frameworks and libraries that are often used in the programming lan-
guage. This library of sources and sinks can then be used as the basis for creating
the interface specifications in multiple RIFL specifications.

Assume there is such a library of categorized sources and sinks. To create
an interface specification for a concrete program from such a library, one has
to include categories, sources and sinks from the library. If different children
of a category in the library shall be treated differently wrt. permitted informa-
tion flows, i.e., shall be assigned to different domains, then one must include
the children of the category individually in the interface specification instead
of including the parent category itself. This is due to the fact that RIFL only
supports assigning the roots of trees comprising categories, sources, and sinks
to domains, whereas all other elements in each tree are implicitly assigned to
the domain of the tree’s root. Therefore, no inconsistencies can be introduced
between explicitly assigned domains and domains inherited from parents. This
design choice does not limit expressiveness, because domains can be assigned to
any node of a tree by following the aforementioned process.

5 Specialization of RIFL for Java Source Code

In this section, we present the language-specific module of RIFL 1.1 for Java
source code [14]. To make this section a self-contained manual for RIFL for Java
source code, we introduce the complete language-specific syntax with explana-
tions, even though there is a large overlap with the syntax for Java bytecode
and Dalvik bytecode in Section 6.

5.1 Sources and Sinks for Java Source Code

In RIFL 1.1 for Java source code, the following kinds of sources can be specified:

Formal parameters of methods If a method of the program can be called
from outside the program and receive values via its formal parameters,
these parameters can be considered information sources.

Fields of objects If a field of an object is accessible from outside the program,
the field can be considered an information source, because input might be
received as the value of the field.

Static fields If a static field of a class in the program is accessible from outside
the program, the field can be considered an information source, because
input might be received as the value of the field.

Content and length of arrays The content and the length of arrays can be
considered information sources, because input might be received in an
array.

17



Return values of external methods If a method outside the program, e.g.
in a library, is called by the program, the return value of the method can
be considered an information source, because the value returned by the
method might be used as input.

Exceptions thrown by external methods If a method outside the program,
e.g., in a library, is called by the program, it might terminate abnormally,
i.e., throw an exception. Whether or not this happens can be considered
an information source, since it can affect the control-flow of the program.

In RIFL 1.1 for Java source code, the following kinds of sinks can be specified:

Return value of methods If a method of the program can be called from
outside the program, the return value of the method can be considered an
information sink.

Fields of objects If a field of an object is accessible from outside the program,
the field can be considered an information sink, because values written to
the field are observable from outside the program.

Static fields If a static field of a class in the program is accessible from outside
the program, the field can be considered an information sink, because
values written to the field are observable from outside the program.

Content and length of arrays The content and the length of arrays can be
considered information sinks, because the content and the length of the
array may be observable from outside the program.

Formal parameters of external methods If a program calls a method out-
side the program, the formal parameters of the method call can be con-
sidered information sinks.

Exception thrown by methods If a method of the program can be called
from outside the program, whether or not that method throws an excep-
tion can be considered an information sink because this might be observed
from outside the program.

5.1.1 Syntax

The abstract syntax for defining sources and sinks in Java source code programs
is specified by the following BNF and the concrete syntax is defined by the
subsequent DTD.
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BNF representation of syntactic elements

SOURCE ::= PARAMETER | RETURN | FIELD | EXCEPTION | ACCESSPATH
SINK ::= PARAMETER | RETURN | FIELD | EXCEPTION
PARAMETER ::= QNAME.METHOD@N
RETURN ::= QNAME.METHOD@return
FIELD ::= QNAME.FIELDNAME
EXCEPTION ::= QNAME.METHOD@exception
ACCESSPATH ::= PARAMETER.FIELDNAMES
METHOD ::= METHODNAME(QNAMES)
QNAMES ::= € | QNAME | QNAME, QNAMES
FIELDNAMES ::= FIELDNAME | FIELDNAME.FIELDNAMES

XML DTD definition of syntactic elements
<!ELEMENT source (parameter | returnvalue | field | exception
| path)>
<!ELEMENT sink (parameter | returnvalue | field | exception)>
<!ELEMENT parameter EMPTY>
<IATTLIST parameter class CDATA #REQUIRED
method CDATA #REQUIRED parameter CDATA #REQUIRED>
<!ELEMENT returnvalue EMPTY>
<IATTLIST returnvalue class CDATA #REQUIRED
method CDATA #REQUIRED>
<!ELEMENT field EMPTY>
<IATTLIST field class CDATA #REQUIRED name CDATA #REQUIRED>
<!ELEMENT exception EMPTY>
<IATTLIST exception class CDATA #REQUIRED
method CDATA #REQUIRED>
<!ELEMENT path (parameter, (field)+)>

The non-terminal QNAME is represented in the concrete syntax by the XML
attributes class. The non-terminal and the attributes range over all possi-
ble fully qualified names as specified by the Java Language Specification [14,
§6.7). Examples of possible values are double[] and package.Class. The
non-terminal FIELDNAME is represented in the concrete syntax by the XML
attribute name. The non-terminal and the attribute range over identifiers as
specified in [14, §3.8]. The non-terminal METHODNAME represents names of
methods in a program. It ranges over identifiers as specified in [14, §3.8]. The
non-terminal METHOD is represented in the concrete syntax by the XML at-
tribute method. The non-terminal and the attribute represent names of meth-
ods in a program, including their signature. The possible values of the at-
tribute method range over the possible values of the non-terminal METHOD,
e.g. method(java.lang.String). Note that in Java source code, method sig-
natures do not include the return type of the method. The non-terminal N and
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the values of the attribute parameter range over the natural numbers.

5.1.2 Informal Semantics

Each possible child element type of source and its analog in the abstract syntax
identifies a source, i.e., a location in the code of a program where input is read.
Analogously, each possible child element type of sink and its analog in the
abstract syntax identifies a sink, i.e., a location in the code of a program where
output is provided.

In the following, the meaning of each element type and each corresponding
non-terminal of the BNF is explained.

parameter / PARAMETER
Consider the following XML element of the type parameter and its analog

in the abstract syntax:

<parameter class="c" method="m" parameter="n" />

c.m@n

If n > 0, ¢ is the fully qualified name of a class, and the class ¢ defines
an implementation of the method m, then this identifies the n-th formal
parameter of the implementation of the method m defined by ¢ as a source
or sink. The formal parameters are enumerated beginning at 1.

If n =0, c is the fully qualified name of a class, and the class ¢ defines a
non-static implementation of the method m, then this identifies the “this”
pointer referencing the object on which the method is called as a source
or sink.

In all other cases, the informal semantics of the element is undefined.

returnvalue / RETURN

Consider the following XML element of the type returnvalue and its
analog in the abstract syntax:

<returnvalue class="c¢" method="m" />

c.m@Qreturn

If ¢ is the fully qualified name of a class and the class ¢ defines an imple-
mentation of the method m, then this identifies the return value of the
implementation of the method m defined by the class ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.

field / FIELD

Consider the following XML element of the type field and its analog in
the abstract syntax:
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<field class="c¢" name="f" />
c.f

Fields:

If ¢ is the fully qualified name of a class and the class ¢ defines a static
field f, then this identifies the static field f of the class ¢ as a source or
sink.

If ¢ is the fully qualified name of a class and the class ¢ defines a non-static
field f, then this identifies the fields f of all instances of the class ¢ as a
source or sink.

Arrays:
If ¢ is the qualified name of an array type and f is "content", then this
identifies the content of all arrays of the type ¢ as a source or sink.

If ¢ is the qualified name of an array type and f is "length", then this
identifies the length of all arrays of the type ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.
Remark 5. Note that both elements of type £ield and of the type path

can identify fields of objects as sources. The precedence between these two
mechanisms for identifying fields as sources is clarified in Section 5.1.3.

exception / EXCEPTION

Consider the following XML element of the type exception and its analog
in the abstract syntax:

<exception class="c" method="m" />

c.m@exception

If ¢ is the fully qualified name of a class and ¢ defines an implementation
of the method m, then this identifies the fact whether the implementation
of the method m defined by the class ¢ throws an exception as a source.
Since we assume that observing the fact that an exception was thrown
incurs observing the type of the exception, this also identifies the type of
any exception thrown by the implementation of the method m defined by
the class ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.

path / ACCESSPATH (only for identifying sources)
Consider the following XML element of the type path and its analog in
the abstract syntax:

<path>
<parameter class="cy" method="m" parameter="n" />
<field class="c;" name="f;" />
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<field class="c," name="f," />
</path>

co-m@Qn.f1--- fn

This identifies the field as a source that is accessed by evaluating the given
access path directly after entering the method. Evaluating an access path
means to dereference each field in the access path in the order of the access
path starting at the object referred to by the parameter.

Remark 6. Note that both elements of the type path and of the type
field can identify fields of objects as sources. The precedence between
these two mechanisms for identifying fields as sources is clarified in Sec-
tion 5.1.3.

5.1.3 Precedence in the Presence of Access Paths

Precedence of Access Paths over Class-wide Fields. In RIFL 1.1, fields
can be specified as sources at the granularity of classes (using field) as well as at
the granularity of single objects (using path). Specifications at the granularity
of single objects have precedence over specifications at the granularity of classes.
The rationale behind this definition of the precedence is that the specification
at the granularity of classes can be seen as the default case for all objects of a
given class. In contrast, the specification at the granularity of objects refers to
the field of one particular object of a class and thus constitutes a special case
that should take precedence over the default case.

As an example, consider a RIFL specification that declares the following two
sources, the first source being at the granularity of classes and the second source
being at the granularity of single objects:
<source>

<field class="C" name="x" />
<source>

<source>
<path>
<parameter class="A" method="m(B)" parameter="1" />
<field class="B" name="c" />
<field class="C" name="x" />
</path>
</source>

Both these sources identify the field x of instances of the class C. In this example,
whenever the field x of an object of class C can be accessed by evaluating the
access path param.c.x (where param is the name of the first parameter of m())
upon entry of method m(), the field is considered as a source according to the
second specified source. If the field x of an object of class C cannot be accessed
by evaluating the access path param.c.x upon entry of method m(), the field
is considered as a source according to the first specified source.
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Access Paths and Aliasing. In the following, we clarify the assignment of
domains to sources specified by access paths in the presence of aliasing.

Using access paths one can have different source specifications referring to
the same field of the same object due to aliasing. Consider, for instance, the
following example program and source specification:

public int m(C a, C b){
return a.x;
}

<assignable handle="h1" >
<source>
<path>
<parameter class="A" method="m(C, C)" parameter="1" />
<field class="C" name="x" />
</path>
</source>
</assignable>
<assignable handle="h2" >
<source>
<path>
<parameter class="A" method="m(C, C)" parameter="2" />
<field class="C" name="x" />
</path>
</source>
</assignable>

If the method m is called with the same actual parameter for the two formal
parameters, i.e. a and b, then the two sources hl and h2 refer to the field x of
the same object.

In such a case, the domain assignment might seem ambigous, as it can assign
different security levels to the same field due to the different source specifica-
tions. However, the domain assignment is not really ambigous due to the follow-
ing reason. When writing a RIFL specification, the security domains assigned
to the sources carry the implicit assumption that any information provided via
a source is at most as confidential as specified by the assigned security domain.
Hence, if two parameters are aliased and two different security domains are as-
signed to a field via two different access paths, then the information in this field
must be at most as confidential as specified by both security domains. In other
words, it must be permissible that the information in the field flows to both
security domains. In consequence, a lower security domain for a field specified
with an access path is implicitly dominating a higher security domain specified
for the same field with a different access path in case of aliasing. To make this
more concrete, consider, for instance, the following flow relation and domain
assignment for the aforementioned program:

<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="h1" domain="low" />
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<assign handle="h2" domain="high" />
</domainassignment>

This specification assigns the domain low to the source hi, i.e. the field a.x.
Furthermore, this specification assigns the domain high to the source h2, i.e.
the field b.x.

In case the method m is called with the same object o as the first and the
second parameter, then the sources hl and h2 are aliased. In consequence, o.x
on the callee-site must be of a security level of at most low, because o is passed
to the method for the parameter a and the security domain low is assigned
to a.x. If this were not the case, the method call would not have been in
accordance with the RIFL specification and, thus, the RIFL specification would
not adequately capture the level of confidentiality of the inputs.

5.2 Escape Hatches for Java Source Code

In RIFL 1.1 for Java source code, expressions of the Java Modeling Language
(JML) [17] are used as declassification expressions and labels of program state-
ments are used as reference points. An example of the use of escape hatches for
Java source code in a RIFL specification is given in Section 5.3.2.

Syntax. The abstract syntax for defining declassification expressions and ref-
erence points of escape hatches for Java source code is specified by the following
BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

EXPRESSION ::= JML-EXPRESSION
REFERENCE-POINT ::= CNAME.METHOD:LABEL

XML DTD definition of syntactic elements
<!ELEMENT expression (#PCDATA) >
<IELEMENT referencepoint EMPTY>
<IATTLIST referencepoint

class CDATA #REQUIRED

method CDATA #REQUIRED

label CDATA #REQUIRED>

The DTD specifies that in RIFL for Java source code, an element of type
expression may have exactly one child element, which must be character data.
The non-terminal JML-EXPRESSION as well as the valid character data content
of XML elements of the type expression ranges over the set of JML speci-
fication expressions [17, Section 12.2]. We require that the JML specification
expression is well-defined at the reference point, i.e. all local variables in the ex-
pression must be in the scope at the reference point. The non-terminal CNAME
as well as the possible values of the attribute class range over fully qualified
names of classes and interfaces [14, §6.7], e.g. package.Class. The possible
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values of the attribute method range over method signatures as specified by the
non-terminal METHOD in Subsection 5.1, e.g. method(java.lang.String), and
identify a method in a given class. The non-terminal LABEL as well as the pos-
sible values of label range over identifiers as specified in [14, §3.8]. We require
these identifiers to be names of labels of statements in a Java program.

Informal Semantics. The value of a JML expression in a given program state
is defined as in the JML language specification [17, Section 12.4]. A reference
point consisting of the name of a label in a specific method denotes all states
in the execution of a program in which a statement labeled with this label in
the given method is immediately about to be executed. Hence, the information
that may be declassified by a Java source code program according to a given
escape hatch are the values of the JML specification expression in all states in
which a statement labeled with the reference point label is immediately about
to be executed.

Note that, since any Java statement may be labeled [14, §14.7], reference
points can identify arbitrary statements in a Java program.

5.3 Examples
5.3.1 Simple Password Program

Consider the Java source code program in Listing 1 that implements a simple
password prompt. The password is input via the command line. The security
requirement is that the password read from the command line with the method
call of readLine() in line 9 should be kept secret.

Listing 1: Example Java Program

package de.spp._rs3;

public class Main{
public static void main(String[] args) {
try {
BufferedReader br = new BufferedReader (
new InputStreamReader (System.in));
System.out.println (” Please_enter_your._password:” );
String password = br.readLine ();
System.out.println (password);
} catch (IOException e) {
e.printStackTrace ();

}
}
}
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RIFL Specification for the Simple Password Program. The RIFL spec-
ification in Listing 2 captures the desired information-flow requirement for the
program in Listing 1.

The sources of the program in Listing 2 are the formal parameters of the
method main, the return value of the called method readLine in line 9, and the
fields System.in and System.out, since input can be obtained by the program
from the Java library by reading this parameter, return values, and fields. The
sinks of the program are the parameters of the method calls to println in line
8 and 10, and of the constructors of InputStreamReader and BufferedReader,
since information may leave the program and enter the Java library by passing
it to one of these methods. As an example, consider the source

<source>
<parameter class="de.spp_rs3.Main"
method="main(java.lang.String[])" parameter="1" />
</source>

from the specification. The attribute class="de.spp_rs3.Main" corresponds
to the fully qualified class name, i.e. lines 1-3 in the program. The attribute
method="main(java.lang.String)" corresponds to the method signature, i.e.
line 4 in the program. In the signature, main corresponds to the method name
and java.lang.String[] corresponds to the fully qualified array type name of
the method parameter. Finally, the attribute parameter="1" refers to the first
actual parameter of the method.

The specification declares two domains low and high and defines a flow
relation {(low,high), (low, low), (high,high)}. That means information may
flow within each domain and from low to high, but no information must flow
from high to low.

Since we want to keep the password entered via command line secret, the
domain assignment maps the handle of the respective source, i.e. the handle
cmdin of the source
<source>

<returnvalue class="java.io.BufferedReader" method="readLine()" />
</source>

to high, and all other handles to low.

The example specification illustrates how the use of categories in the interface
specification enables a concise specification of the domain assignment. Due to
the grouping of the sources and sinks in the categories envinput and envoutput,
we only need four assign tags in the domain assignment instead of seven assign
tags.

5.3.2 Password Checker with Declassification

Consider the Java source code program in Listing 3 that contains a method
for checking whether a given user ID and hash of a password is valid. The
valid combinations of user IDs and password hashes are stored in a database
implemented by a list of entries. The security requirement is that all user
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Listing 2: Example RIFL Specification for Java

<riflspec>
<interfacespec>
<assignable handle="cmdinputhandle">
<source>
<returnvalue class="java.io.BufferedReader"
method="readLine ()" />
</source>
</assignable>
<assignable handle="cmdoutputhandle">
<sink>
<parameter class="java.io.PrintStream"
method="println(java.lang.String)" parameter="1" />
</sink>
</assignable>
<assignable handle="envinputhandle">
<category name="envinput">
<source>
<parameter class="de.spp_rs3.Main"
method="main(java.lang.String[])" parameter="1" />
</source>
<source><field class="java.lang.System" name="in" /></source>
<source><field class="java.lang.System" name="out" /></source>
</category>
</assignable>
<assignable handle="envoutputhandle">
<category name="envoutput'">
<sink>
<parameter class="java.io.InputStreamReader"
method="InputStreamReader (java.io.InputStream)"
parameter="1" />
</sink>
<sink>
<parameter class="java.io.BufferedReader"
method="BufferedReader(java.io.Reader)" parameter="1" />
</sink>
</category>
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="cmdinputhandle" domain="high" />
<assign handle="cmdoutputhandle" domain="low" />
<assign handle="envinputhandle" domain="low" />
<assign handle="envoutputhandle" domain="low" />
</domainassignment>
</riflspec>
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IDs and all password hashes shall be kept secret. As an exception, the only
information about the user IDs and the hashes that the method may reveal is
whether the given password hash is the correct one for the given user ID. On
the implementation level, this means that there is an index in the array db such
that the value of the field user of the instance stored at this index matches
the given user ID and the value of the field pwHash of the instance matches the
given password hash. This is an example of controlled declassification.

Listing 3: Example Java Program Requiring Declassification

package de.spp._rs3;

class DatabaseEntry {
public int user;
public int pwHash;

}

class PasswordChecker {
private DatabaseEntry [] db;

public boolean check(int user, int pwHash) {
declass:
for (int i = 0; i < names.length; i++) {
if (db[i].user = user && db[i].pwHash = pwHash)
return true;
}

return false;

}
}

RIFL Specification for the Password Checker. The RIFL specification
in Listing 4 captures the desired information-flow requirement for the program
in Listing 3.

The fields of the entries of the array db are declared as sources that are
assigned to the domain high. Furthermore, the return value of the method
check is declared as a sink that is assigned to the domain low. The flow relation
does not allow any flow of information from high to low. Hence, the RIFL
specification captures the requirement that the method may not reveal any
information about the user IDs or password hashes.

The RIFL specification uses an escape hatch to specify the exception to this
strict information-flow policy. The declassification expression
<expression>

<! [CDATAL
\exists int i; db[i].user == user && db[i] .pwHash == pwHash
11>

</expression>
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Listing 4: Example RIFL Specification for Java using Declassification

<riflspec>
<interfacespec>
<assignable handle="h">
<category name="highFields">
<source>
<field class="de.spp_rs3.DatabaseEntry" name="user" />
</source>
<source>
<field class="de.spp_rs3.DatabaseEntry" name="pwHash" />
</source>
</category>
</assignable>
<assignable handle="1">
<sink>
<returnvalue class="de.spp_rs3.PasswordChecker"
method="check(int,int)" />
</sink>
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="h" domain="high" />
<assign handle="1" domain="low" />
</domainassignment>
<hatches>
<hatch to="low">
<expression>
<! [CDATA[
\exists int i; db[i] .user == user && db[i] .pwHash == pwHash
11>
</expression>
<referencepoint class="de.spp_rs3.PasswordChecker"
method="check(int,int)" label="declass" />
</hatch>
</hatches>
</riflspec>
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specifies that the fact whether the given user ID and password hash are a valid
combination may be declassified, i.e., whether there is an entry in the array db
such that the user ID and password hash stored in this entry match the given
ones. (The CDATA section around the JML expression enables the use of special
characters such as & or < in the declassification expression.) Furthermore, the
reference point
<referencepoint class="de.spp_rs3.PasswordChecker"
method="check(int,int)" label="declass" />
specifies points in the execution of the program s.t. the value of the declassifi-
cation expression at these points is the value that may be declassified. In this
example, these are the points in the execution whenever the statement labeled
with the label declass in the method check is about to be executed. The
placement of the declass label in the method check means that the value of
the declassification expression directly after the execution of the method has
started may be declassified. Finally, the attribute to="1ow" of the escape hatch
specifies that this information may be declassified to the domain low. Hence,
it is also valid for this information to flow to the return value of the method
check, which is assigned to the domain low.

6 Specialization of RIFL for Java and Dalvik
Bytecode

In this section, we present the language-specific module of RIFL 1.1 for Java
bytecode [18] and Dalvik bytecode [6]. Due to the close similarity of the two
bytecode languages in most aspects apart from their instruction set, the syn-
tax and informal semantics described in this section are suitable for specifying
information-flow requirements for programs in both languages. To make this
section a self-contained manual for RIFL for Java bytecode and Dalvik byte-
code, we introduce the complete syntax with explanations, even though there is
a large overlap with the syntax for Java source code in Section 5.

6.1 Sources and Sinks for Java and Dalvik Bytecode

In RIFL 1.1 for Java and Dalvik bytecode, the following kinds of sources can be
specified:

Formal parameters of methods If a method of the program can be called
from outside the program and receives values via its formal parameters,
these parameters can be considered information sources.

Fields of objects If a field of an object is accessible from outside the program,
the field can be considered an information source, because input might be
received as the value of the field.
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Static fields If a static field of a class in the program is accessible from outside
the program, the field can be considered an information source, because
input might be received as the value of the field.

Content and length of arrays The content and the length of arrays can be
considered an information source, because input might be received in an
array.

Return values of external methods If a method outside the program, e.g.
in a library, is called by the program, the return value of the method can
be considered an information source, because the value returned by the
method might be used as input.

Exceptions thrown by external methods If a method outside the program,
e.g., in a library, is called by the program, it may terminate abnormally,
i.e., throw an exception. Whether or not this happens can be considered
an information source, since it can affect the control-flow of the program.

In RIFL 1.1 for Java and Dalvik bytecode, the following kinds of sinks can be
specified:

Return value of methods If a method of the program can be called from
outside the program, the return value of the method can be considered an
information sink.

Fields of objects If a field of an object is accessible from outside the program,
the field can be considered an information sink, because values written to
the field are observable from outside the program.

Static fields If a static field of a class in the program is accessible from outside
the program, the field can be considered an information sink, because
values written to the field are observable from outside the program.

Content and length of arrays The content and the length of arrays can be
considered an information sink, because the content and the length of the
array may be observable from outside the program.

Formal parameters of external methods If a program calls a method out-
side the program, the formal parameters of the method call can be con-
sidered information sinks.

Exception thrown by methods If a method of the program can be called
from outside the program, whether or not that method throws an excep-
tion can be considered an information sink because this may be observed
from outside the program.
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6.1.1 Syntax

The abstract syntax for defining sources and sinks for Java and Dalvik bytecode
is specified by the following BNF and the concrete syntax is defined by the
subsequent DTD.

BNF representation of syntactic elements

SOURCE ::= PARAMETER | RETURN | FIELD | EXCEPTION | ACCESSPATH
SINK ::= PARAMETER | RETURN | FIELD | EXCEPTION
PARAMETER ::= TYPDESC->METHOD@N
RETURN ::= TYPDESC->METHOD@return
FIELD ::= TYPDESC->FIELDNAME
EXCEPTION ::= TYPDESC->METHOD@exception
ACCESSPATH ::= PARAMETER.FIELDNAMES
METHOD ::= METHODNAME(TYPDESCS)TYPDESC
TYPDESCS ::= € | TYPDESC | TYPDESC TYPDESCS
FIELDNAMES ::= FIELDNAME | FIELDNAME.FIELDNAMES

XML DTD definition of syntactic elements
<!ELEMENT source (parameter | returnvalue | field | exception
| path)>
<!ELEMENT sink (parameter | returnvalue | field | exception)>
<!ELEMENT parameter EMPTY>
<IATTLIST parameter class CDATA #REQUIRED
method CDATA #REQUIRED parameter CDATA #REQUIRED>
<!ELEMENT returnvalue EMPTY>
<!ATTLIST returnvalue class CDATA #REQUIRED
method CDATA #REQUIRED>
<!ELEMENT field EMPTY>
<IATTLIST field class CDATA #REQUIRED name CDATA #REQUIRED>
<!ELEMENT exception EMPTY>
<IATTLIST exception class CDATA #REQUIRED
method CDATA #REQUIRED>
<!ELEMENT path (parameter, (field)+)>

The non-terminal TYPDESC is represented in the conrete syntax by the XML
attributes class. The non-terminal and the attributes represent descriptors
of types in a program. For Java bytecode, they range over all possible field
descriptors [18, ch. 4.3.2]. For Dalvik bytecode, they range over all possible
type descriptors [7]. Examples of possible values (for both Java and Dalvik
bytecode) are [D and Lpackage/Class;.

The non-terminal FIELDNAME is represented in the concrete syntax by the
XML attribute name. The non-terminal and the attribute represent names of
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fields in a program. For Java bytecode, they range over the possible unqualified
names [18, ch. 4.2.2]. For Dalvik bytecode, they range over simple names [7].

The non-terminal METHODNAME represents names of methods in a program.
For Java bytecode, it ranges over the possible unqualified names as specified in
[18, ch. 4.2.2]. For Dalvik bytecode, it ranges over simple names [7].

The non-terminal METHOD is represented in the concrete syntax by the XML
attribute method. The non-terminal and the attribute represent names of meth-
ods in a program, including their signature. For both Java bytecode and Dalvik
bytecode, the possible values of the attribute method range over the possible val-
ues of the non-terminal METHOD, e.g., method(Ljava/lang/String;)V. Note
that in Java and Dalvik bytecode, method signatures include the return type of
the method.

The non-terminal N is represented in the concrete syntax by the XML at-
tribute parameter. The non-terminal and the attribute represent indices of
formal parameters of methods. They range over the natural numbers.

6.1.2 Informal Semantics

Each possible child element type of source and its analog in the abstract syntax
identifies a source, i.e., a location in the code of a program where input is read.
Analogously, each possible child element type of sink and its analog in the
abstract syntax identifies a sink, i.e., a location in the code of a program where
output is provided.

In the following, the meaning of each element type and each corresponding
non-terminal of the BNF is explained.

parameter / PARAMETER
Consider the following XML element of the type parameter and its analog

in the abstract syntax:

<parameter class="c" method="m" parameter="n" />

c->m@Qn

If n > 0, cis the descriptor of a class, and the class ¢ defines an implemen-
tation of the method m, then this identifies the n-th formal parameter of
the implementation of the method m defined by ¢ as a source or sink. The
formal parameters are enumerated beginning at 1.

If n =0, c is the descriptor of a class, and the class ¢ defines a non-static
implementation of the method m, then this identifies the “this” pointer
referencing the object on which the method is called as a source or sink.

In all other cases, the informal semantics of the element is undefined.

returnvalue / RETURN

Consider the following XML element of the type returnvalue and its
analog in the abstract syntax:
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<returnvalue class="c¢" method="m" />

c->m@return

If ¢ is the descriptor of a class and the class ¢ defines an implementation of
the method m, then this identifies the return value of the implementation
of the method m defined by the class ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.

field / FIELD
Consider the following XML element of the type field and its analog in
the abstract syntax:
<field class="c¢" name="f" />
>f

Fields:
If ¢ is the descriptor of a class and the class ¢ defines a static field f, then
this identifies the static field f of the class ¢ as a source or sink.

If ¢ is the descriptor of a class and the class ¢ defines a non-static field f,
then this identifies the fields f of all instances of the class ¢ as a source or
sink.

Arrays:

If ¢ is the descriptor of an array type and f is "content", then this
identifies the content of all arrays of the type ¢ as a source or sink.

If ¢ is the descriptor of an array type and f is "length", then this identifies
the length of all arrays of the type ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.
Remark 7. Note that both elements of type type field and of the type
path can identify fields of objects as sources. The precedence between

these two mechanisms for identifying fields as sources is clarified in Sec-
tion 5.1.3.

exception / EXCEPTION

Consider the following XML element of the type exception and its analog
in the abstract syntax:

<exception class="c" method="m" />
c->m@exception

If ¢ is the descriptor of a class and ¢ defines an implementation of the
method m, then this identifies the fact whether the implementation of the
method m defined by the class ¢ throws an exception as a source. Since
we assume that observing the fact that an exception was thrown incurs
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observing the type of the exception, this also identifies the type of any
exception thrown by the implementation of the method m defined by the
class ¢ as a source or sink.

In all other cases, the informal semantics of the element is undefined.

path / ACCESSPATH (only for identifying sources)

Consider the following XML element of the type path and its analog in
the abstract syntax:

<path>
<parameter class="cy" method="m" parameter="n" />
<field class="c;" name="f;" />

<field class="c," name="f," />
</path>

co->mQn.f1--- fn

This identifies the field as a source that is accessed by evaluating the given
access path directly after entering the method. Evaluating an access path
means to dereference each field in the access path in the order of the access
path starting at the object referred to by the parameter.

Remark 8. Note that both elements of the type path and of the type
field can identify fields of objects as sources. The precedence between

these two mechanisms for identifying fields as sources is clarified in Sec-
tion 6.1.3.

6.1.3 Precedence in the Presence of Access Paths

Precedence of Access Paths over Class-wide Fields. In RIFL 1.1, fields
can be specified as sources at the granularity of classes (using field) as well as at
the granularity of single objects (using path). Specifications at the granularity
of single objects have precedence over specifications at the granularity of classes.
The rationale behind this definition of the precedence is that the specification
at the granularity of classes can be seen as the default case for all objects of a
given class. In contrast, the specification at the granularity of objects refers to
the field of one particular object of a class and thus constitutes a special case
that should take precedence over the default case.

As an example, consider a RIFL specification that declares the following two
sources, the first source being at the granularity of classes and the second source
being at the granularity of single objects:

<source>
<field class="LC;" name="x" />
<source>

35



<source>
<path>
<parameter class="LA;" method="m(LB;)V" parameter="1" />
<field class="LB;" name="c" />
<field class="LC;" name="x" />
</path>
</source>

Both these sources identify the field x of instances of the class C. In this example,
whenever the field x of an object of class C can be accessed by evaluating the
access path param.c.x (where param is the name of the first parameter of
m) at entry of method m, the field is considered as a source according to the
second specified source. If the field x of an object of class C cannot be accessed
by evaluating the access path param.c.x at entry of method m, the field is
considered as a source according to the first specified source.

Access Paths and Aliasing. In the following, we clarify the assignment of
domains to sources specified by access paths in the presence of aliasing.

Using access paths one can have different source specifications referring to
the same field of the same object due to aliasing. Consider, for instance, the
following example program and source specification:

public int m(C a, C b){
return a.x;
}

<assignable handle="h1" >
<source>
<path>
<parameter class="LA;" method="m(LC;LC;)I" parameter="1" />
<field class="LC;" name="x" />
</path>
</source>
</assignable>
<assignable handle="h2" >
<source>
<path>
<parameter class="LA;" method="m(LC;LC;)I" parameter="2" />
<field class="LC;" name="x" />
</path>
</source>
</assignable>

If the method m is called with the same actual parameter for the two formal
parameters, i.e. a and b, then the two sources hl and h2 refer to the field x of
the same object.

In such a case, the domain assignment might seem ambigous, as it can assign
different security levels to the same field due to the different source specifica-
tions. However, the domain assignment is not really ambigous due to the follow-
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ing reason. When writing a RIFL specification, the security domains assigned
to the sources carry the implicit assumption that any information provided via
a source is at most as confidential as specified by the assigned security domain.
Hence, if two parameters are aliased and two different security domains are as-
signed to a field via two different access paths, then the information in this field
must be at most as confidential as specified by both security domains. In other
words, it must be permissible that the information in the field flows to both
security domains. In consequence, a lower security domain for a field specified
with an access path is implicitly dominating a higher security domain specified
for the same field with a different access path in case of aliasing. To make this
more concrete, consider, for instance, the following flow relation and domain
assignment for the aforementioned program:

<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>

<assign handle="h1" domain="low" />

<assign handle="h2" domain="high" />
</domainassignment>

This specification assigns the domain low to the source hi, i.e. the field a.x.
Furthermore, this specification assigns the domain high to the source h2, i.e.
the field b.x.

In case the method m is called with the same object o as the first and the
second parameter, then the sources hl and h2 are aliased. In consequence, o.x
on the callee-site must be of a security level of at most low, because o is passed
to the method for the parameter a and the security domain low is assigned
to a.x. If this were not the case, the method call would not have been in
accordance with the RIFL specification and, thus, the RIFL specification would
not adequately capture the level of confidentiality of the inputs.

6.2 Escape Hatches for Java and Dalvik Bytecode

RIFL 1.1 does not yet provide a syntax for specifying escape hatches in Java
bytecode and Dalvik bytecode. This feature is left for future versions of RIFL.

6.3 Examples
6.3.1 Simple Password Program in Dalvik Bytecode

Consider the Dalvik bytecode in Listing 5 that implements a simple password
prompt. The mnemonic code in the listing was created by compiling the Java
source code program from Listing 1 and then using dexdump on the result-
ing Dalvik bytecode binary file. It was simplified for better readability. The
password is input via the command line. The security requirement is that the
password read from the command line with the method call of readLine() at
position 0013 should be kept secret.

37



Listing 5: Example Dalvik Program

de.spp-rs3.Main.main: ([Ljava/lang/String;)V

0000: new—instance v0, java.io.BufferedReader

0002: new—instance vl, java.io.InputStreamReader

0004: sget—object v2, java.lang.System.in:Ljava/io/InputStream;

0006: invoke—direct {vl, v2},
java.io.InputStreamReader.<init >:(Ljava/io/InputStream;)V

0009: invoke—direct {v0, vl},
java.io.BufferedReader.<init >:(Ljava/io/Reader;)V

000c: sget—object vl, java.lang.System.out:Ljava/io/PrintStream;

000e: const—string v2, ”Please enter your password:”

0010: invoke—virtual {vl, v2},
java.io.PrintStream.println:(Ljava/lang/String;)V

0013: invoke—virtual {vO0},
java.io.BufferedReader.readLine: () Ljava/lang/String;

0016: move—result—object vO

0017: sget—object vl, java.lang.System.out:Ljava/io/PrintStream;

0019: invoke—virtual {vl, vO0},
java.io.PrintStream.println:(Ljava/lang/String;)V

00lc: return—void

001d: move—exception vO0

00le: invoke—virtual {v0}, java.io.IOException.printStackTrace:()V

0021: goto 001c

tries:

try 0000..001c

catch java.io.IOException —> 001d

RIFL Specification for the Simple Password Program. The XML spec-
ification in Listing 6 captures the desired information-flow requirement for the
program in Listing 5.

The sources of the program in Listing 6 are the formal parameters of the
method main, the return value of the called method readLine at position 0013,
and the fields System.in and System.out, since input can be obtained by the
program from the Android framework by reading this parameter, return val-
ues, and fields. The sinks of the program are the formal parameters of the
constructors of InputStreamReader and BufferedReader and the parameter
of the method calls to println at positions 0010 and 0019, since information
may leave the program and enter the Android framework by passing it to one
of these methods. As an example, consider the source

<source>
<parameter class="Lde/spp_rs3/Main;"
method="main([Ljava/lang/String;)V" parameter="1" />
</source>

from the specification. The attribute class="Lde/spp_rs3/Main;" corresponds
to the type descriptor of the class containing the method, i.e. lines 1 in the
program. The attribute method="main([Ljava/lang/String;)V" corresponds
to the method signature, i.e. line 1 in the program. In the signature, main
corresponds to the simple name of the method, [Ljava/lang/String; corre-
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Listing 6: Example RIFL Specification for Dalvik

<riflspec>
<interfacespec>
<assignable handle="cmdinputhandle">
<source>
<returnvalue class="Ljava/io/BufferedReader;"
method="readLine()Ljava/lang/String;" />
</source>
</assignable>
<assignable handle="cmdoutputhandle">
<sink>
<parameter class="Ljava/io/PrintStream;"
method="println(Ljava/lang/String;)V" parameter="1" />
</sink>
</assignable>
<assignable handle="envinputhandle">
<category name="envinput">
<source>
<parameter class="Lde/spp_rs3/Main;"
method="main([Ljava/lang/String;)V" parameter="1" />
</source>
<source><field class="Ljava/lang/System;" name="in" /></source>
<source><field class="Ljava/lang/System;" name="out" /></source>
</category>
</assignable>
<assignable handle="envoutputhandle">
<category name="envoutput'">
<sink>
<parameter class="Ljava/io/InputStreamReader;"
method="&lt;init&gt; (Ljava/io/InputStream;)V" parameter="1" />
</sink>
<sink>
<parameter class="Ljava/io/BufferedReader;"
method="&1t;init&gt; (Ljava/io/Reader;)V" parameter="1" />
</sink>
</category>
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="cmdinputhandle" domain="high" />
<assign handle="cmdoutputhandle" domain="low" />
<assign handle="envinputhandle" domain="low" />
<assign handle="envoutputhandle" domain="low" />
</domainassignment>
</riflspec>
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sponds to the type descriptor of the method parameter, and V corresponds to
the type descriptor of the return value of the method. Finally, the attribute
parameter="1" refers to the first actual parameter of the method.

The specification declares two domains low and high and defines a flow
relation {(low,high), (low,low), (high,high)}. That means information may
flow within each domain and from low to high, but no information must flow
from high to low.

Since we want to keep the password entered via command line secret, the
domain assignment maps the handle of the respective source, i.e. the handle
cmdin of the source

<source>
<returnvalue class="Ljava/io/BufferedReader;"
method="readLine()Ljava/lang/String;" />
</source>

to high, and all other handles to low.

The example specification illustrates how the use of categories in the interface
specification enables a concise specification of the domain assignment. Due to
the grouping of the sources and sinks in the categories envinput and envoutput,
we only need four assign tags in the domain assignment instead of seven assign
tags.

7 Related Work

Information-flow control is an established research area (see, e.g. [32, 33], for two
surveys) and a wide range of tools has been proposed for different programming
languages. This variety of tools comes with a variety of different specification
languages for information-flow requirements that shall be checked with these
tools. Giving an overview of all existing languages is out of the scope of this
report. Nevertheless, we want to present a selection of languages that are used
in existing tools for Java and Dalvik.

JFlow/JIF and Paragon. JFlow/JIF [28, 2] is an extension of the Java
programming language with security types. The security types are represented
as labels attached to data types in Java. These labeled types can occur at
almost every place where data types may appear, e.g. field declarations, vari-
able declarations, and parameters of methods. For instance, a field declaration
int{ol: r1, r2; 02: r1} x; declares a field x with two owners ol and o2
that may be read by its owners as well as all readers on which the owners agree,
namely r1 but not r2. Information may flow from one container, e.g. a variable,
to a second container, e.g. a field, only if the label of the second container is at
least as restrictive as the label of the first container.

Paragon [5] is another extension of the Java programming language with
security types. Similar to JFlow/JIF’s labels, policies in Paragon label an infor-
mation container according to where the information from this container may
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flow. In contrast to JFlow/JIF’s labels, policies in Paragon enable one to specify
explicitly where information from a container may flow while in JFlow/JIF infor-
mation may flow to any container that has a more restrictive label than the origin
of the information. Paragon additionally has an explicit state under which a pol-
icy is evaluated. This state is modeled with locks that can be opened and closed
using designated instruction in the program. For instance, information from an
information container labeled with policy p = { File f: Owns(f, alice) }
may flow to every file £ that is owned by alice. The ownership is modeled with
a lock Owns(f, alice). Intuitively, a file £ is owned by alice in the current
state of the policy, if the lock is open. Dually, the file £ is not owned by alice
in the current state of the policy, if the lock is closed.

One difference between RIFL and the policy languages of JFlow/JIF and
Paragon is that RIFL policies are separate from the program code while the
policies of JFlow/JIF and of Paragon are a part of the program code. Both
approaches have advantages and disadvantages. With the policies being part of
the program, it is possible to treat some parts of the policies as first-class citizens
in the language. This enables a programmer to encode security decisions based
on the policy inside the program. On the other hand, having the policy and
program code in separate files provides a clearer separation between specifying
the security concerns and implementing functionality. In particular, a program
can easily be checked against several policies without changing the program
code, which is beneficial, for instance, when different users of a program have
different security concerns.

IFT. The Information Flow Type-Checker (IFT) [10] verifies the information-
flow security of Android apps given as Java source code. IFT determines which
flows of information are permitted based on a flow-policy file, and on source
code annotations in the analyzed program.

The flow-policy file specifies a transitive, binary relation between predefined
sources and sinks, e.g., LOCATION -> INTERNET. If a source is in relation with a
sink, then information may flow from this source to this sink. The sources and
sinks include all resources protected by Android permissions, like the device’s
location and the network. Further sources and sinks cover resources like user
input, the accelerometer, and the device’s display. Moreover, some sources and
sinks are parametric to allow for a fine-grained specification of flow policies, e.g.,
FILESYSTEM("notes/").

The source code annotations @Source and @Sink, respectively, assign sources
and sinks to any occurrence of data types in Java programs. In particular, a
programmer annotates the declaration of fields, the declaration of formal pa-
rameters of methods, and the declaration of the return type of methods. The
annotations of remaining occurrences of data types, e.g., in the declaration of
local variables, are usually defaulted or inferred by the analysis. Intuitively,
@Source declares possible origins of values stored in the annotated resource,
whereas @Sink declares possible destinations to which the stored values may be
sent. Annotations may also be used on the data types of cast operations. In this

41



special case, they allow to explicitly declassify information, i.e., to implement a
flow that otherwise violates the flow policy.

The predefined sources and sinks in the policy language of IFT roughly
correspond to one possible use of categories in RIFL. One particularly interesting
feature of IFT’s sources and sinks is that some can be parameterized for a more
fine-grained categorisation. In contrast to RIFL, the IFT-policy files define the
permitted flows directly on the predefined categories while RIFL permits an
additional abstraction step to domains that group all categories that should be
treated similarly with respect to security, e.g. sources that introduce information
which should be kept confidential. Hence, RIFL enables very concise definitions
of the flow policy. In contrast to JFlow’s and Paragon’s labels, the source-code
annotations in IFT describe a grouping with respect to functionality and not
with respect to security concerns. Hence, these annotations can be used to check
a given program against different policies, similar to categories RIFL.

Information Flow Policies for Java-Enabled Smart Cards. In [12], the
authors present a policy language to define information-flow policies for Java
bytecode and propose to verify that a class file satisfies such a policy with
a custom class loader. A policy defines what fields of an object may contain
secrets and to which other classes secrets from this class may flow. Furthermore,
an object of a class may implicitly share its secrets with all other objects of
the same class. For instance, the policy Ca fsa, fsb; Cb fsl1 fs2; defines
that the fields fsa and fsb of class Ca as well as the fields fs1 and fs2 of
class Cb may contain secrets while all other fields (including fields of other
classes) must not contain secrets. This policy can be extended with a statement
Ca shares with Cb to allow that secrets from class Ca may flow to class Cb.
That is, information from a field that may contain secrets in class Ca may
flow to a field that may contain secrets in class Cb. The policy statement
Cb strict secret specifies that the secrets of one instance of class Cb must
not be shared with other instances of the same class.

In this policy language, the fields of classes are considered as information
sources and sinks, like in RIFL. The current specializations of RIFL to Dalvik
bytecode and Java source code are more general in the sense that the parameters
of methods can also be considered as sources and sinks. The policy language
in [12] allows one to specify that secrets between different instances of classes
should not be shared in addition. This is currently not possible in RIFL, but
could be introduced in the future if the need arises.

SCF. The SideChannelFinder (SCF) [23] is a tool for the detection of possible
timing side channels in Java implementations of cryptographic implementations.
For this purpose, SCF employs a security type system that is parametric in an
information-flow requirement specified in XML [22]. The policy language of
the SCF enables assigning security domains to fields of classes as well as to
parameters of methods (including the return parameter).

The types of sources and sinks in the SCF are identical to the types of
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sources and sinks in the Java-specific definitions of RIFL 1.0. Unlike RIFL, the
information-flow requirement implicitly assumes two security domains, namely
0 and 1 where 0 is a domain for public information and 1 is a domain for
secret information. The implicit flow policy in SCF allows information flows
within each domain and from 0 to 1. Having the declaration and definition of
the security domains as well as the flow relation explicit in the specification
language, like in RIFL, enables the specification of a wider range of policies,
e.g. multi-level security policies.

JML. In [34] and further development [4], the authors introduce a specifica-
tion language for information-flow contracts in JML. An example specification
in the style of [4] is given below.

/*@Q \determines \result, this.x+this.y \by a x/

int someMethod(int a, int b) {...}

The specification consists of two lists of expressions. The first list, \result,
this.x+this.y, states that the return value and the sum of the fields x and y
must hold low information after the execution of someMethod. The second list,
a, states that via parameter a low information is provided. As the example
indicates, the specification language allows very precise specification and de-
classification of information. The reason is: nearly arbitrary JML expressions
are allowed in the two lists of expressions.

In [16], the authors build on JML-style specification to provide non-interfer-
ence specifications for component-based systems and sketch a specification lan-
guage for JavaEE programs. Information-flow specification for individual ser-
vices of a component is supported via a notion of dependency clusters, repre-
sentable using lists of expressions similar to those in [34]. Verified dependency
clusters can be used as building blocks to obtain complex, domain-driven secu-
rity specifications for entire components and component-based systems. While
dependency clusters support similar precision as JML specifications, escape
hatches cannot be expressed — a design decision allowing compositionality of
non-interference and specifications.

8 Conclusion

In this report, we defined RIFL 1.1, a semi-formal specification language for
information-flow requirements, i.e., a language with formal syntax and infor-
mal semantics. The concrete syntax of RIFL facilitates the specification of
information-flow requirements for different programming languages in terms of
sources and sinks that occur in a concrete program. The generic parts of RIFL
are independent of a concrete programming language. In order to specialize
RIFL for a concrete programming language, one needs to provide a concrete
syntax for specifying sources and sinks. We have provided specializations of
RIFL for Java source code, Java bytecode, and Dalvik bytecode. We have also
illustrated how these specializations can be used for specifying information-flow
requirements for concrete programs.
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In addition to RIFL 1.0, the previous version of RIFL, RIFL 1.1 supports
the specification of controlled declassification by means of escape hatches, pro-
vides an additional specialization for Java bytecode, allows for specifying the
occurrence of exceptions as sources and sinks, and allows for specifying fields as
sources more precisely by means of access paths.

Various parts of RIFL 1.1 are already supported by the RSCP security anal-
yser and its integration into Cassandra [19, 8], Joana [15], JoDroid [27], and
KeY [1]. Moreover, an earlier version of RIFL is supported by SuSi [29]. We
believe that RIFL can also be of use for other information-flow analysis tools
and encourage its adoption and contributions to its further development by the
community. Moreover, RIFL shall serve as a basis for using different tools in
combination. For example, complex information-flow analysis problems could
be tackled be dividing them and solving each part using a tool that is especially
suitable for this particular part, using RIFL as the policy language common to
all involved tools.

Currently, a library of example programs with associated information-flow
requirements specified using RIFL is being compiled. In this endeavour, RIFL
serves as a machine-readable language for information-flow requirements that
enables automatic testing of different tools on the collected example programs.

In the future, we plan to specialize RIFL for further programming lan-
guages, e.g., for JavaScript and C. Finally, we might provide formal semantics
for RIFL. The design choice for informal semantics was deliberate such that
RIFL can be supported by information-flow analysis tools that enforce different
noninterference-like security conditions. To support formal semantics without
losing flexibility, we could provide several alternative semantics for RIFL to
choose from in the specification of an information-flow requirement.
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