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Abstract

We present the syntax and intuition of a novel policy language for
information-flow security. The RS® Information-Flow Specification Lan-
guage (brief: RIFL) originated from the need to have a common language
for specifying security requirements within the DFG priority program Re-
liably Secure Software Systems (brief: RS®). At this point in time, RIFL
is already supported by four analysis tools, and we hope that RIFL will be
supported by further analysis tools in the future, within RS* and beyond.

1 Introduction

In the development of RIFL, our objective was to create a language for speci-
fying information-flow requirements without having to commit to a particular
information-flow analysis tool. By being tool independent, RIFL shall facilitate
the creation of case studies on information-flow security, consisting of example
programs and corresponding security requirements, that are suitable for multi-
ple tools. Figure 1 visualizes this role of RIFL. The left hand side of the figure
indicates that RIFL is suitable for expressing flow relations. Flow relations are a
common concept for the abstract definition of information-flow security require-
ments in terms of security domains. The right hand side of the figure indicates
that a RIFL specification can be provided as input to any tool supporting RIFL.

source code / byte code / specificationJ

Figure 1: RIFL as Input Language for Multiple Analysis Tools



Having a common language like RIFL is helpful for comparing information-
flow analysis tools with each other in experiments and for creating benchmarks
that can be used in such comparisons. One could even envision the use of RIFL
as glue between multiple analysis tools such that they can be used collabora-
tively in the information-flow analysis of different parts of a complex program.

At this point in time, preliminary versions of RIFL are already supported
by Joana [14], KeY [5], SuSi [20], and the RSCP security analyzer [21]. We
hope that RIFL will be adopted by other analysis tools in RS? [3] and beyond.
For analysis tools that do not yet support RIFL by construction, support can
be added by developing a front-end that translates RIFL specifications into
the policy language of an analysis tool, or directly into a tool’s internal data
structures used for expressing security requirements.

We decided to not limit the use of RIFL 1.0 to analysis tools that presume one
particular formal definition of information-flow security, because this would limit
the scope and, hence, the benefits of RIFL too much. There is a wide spectrum
of possible definitions of information-flow security, but no general agreement
regarding which formal definition is best. That is, RIFL 1.0 is not only a tool-
independent language, but also a security-property-independent language. As
a consequence, RIFL 1.0 is a semi-formal language that provides a formally
defined syntax with a particular intuition, but without a formal semantics.

In the definition of RIFL 1.0, we distinguish between parts that are inde-
pendent from the particular language in which programs are written from parts
that are specific for each programming language.

Structure of this document. In Section 2, we describe the structure of
the RIFL language and the scope of version 1.0 of RIFL. We introduce the
language-independent parts of RIFL in Section 3, and explain how RIFL can
be specialized, to a particular programming language and to a program in such
a language in Section 4. We describe the language-specific parts of RIFL for
two particular languages, namely for Java source code and Dalvik bytecode in
Sections 5 and 6, respectively. In both sections, we illustrate the use of RIFL
for these programming languages using concrete example programs. Section 5
and Section 6 are both self-contained such that each can be read directly after
reading Sections 1-4. We discuss related work in Section 7 before concluding in
Section 8.

Notation. We define each syntactic element of the RIFL language using XML
DTD [4]. In addition to this machine-readable form, we present each syntactic
element also in BNF [10], which is a more amenable notation for human beings.

2 RIFL — Overview of the Language

RIFL allows one to specify restrictions on the flow of information from the
information sources to the information sinks in a given program.



2.1 Specifying Restrictions on the Flow of Information

RIFL provides a syntax that can be used to identify sources and sinks in a
program. RIFL also provides a syntax for declaring security domains, which
constitute abstractions of concrete sources and sinks, and for defining flow re-
lations, which specify restrictions on the flow of information between security
domains. That is, information-flow restrictions are specified in RIFL on a more
abstract level than in terms of the individual sources and sinks of a given pro-
gram.

Restrictions on the flow of information from concrete sources to concrete
sinks are induced by a domain assignment, which assigns each source and each
sink to a security domain. Intuitively, information may flow from a source to
a sink if information may flow from the source’s security domain to the sink’s
security domain, where the source’s and sink’s security domain are determined
by the domain assignment.

2.2 Structure of RIFL

While sources and sinks are generic concepts, the particular sources and sinks
that may occur in programs depend on the programming language. Other RIFL
concepts, e.g., security domains are independent of the programming language.
This distinction between language-independent and language-specific elements
is reflected in the definition of RIFL.

The definition of RIFL has a modular structure. It comprises modules that
are independent from concrete target languages and modules that are specific to
a particular language. The language-independent modules offer a uniform syn-
tax for concepts that are relevant for information-flow security across different
target languages. These concepts are easy to grasp and allow an intuitive spec-
ification of information-flow requirements at an abstract level. The language-
specific modules complement the concepts in the language-independent modules
by a syntax for identifying concrete entities in a particular target language.

Figure 2 gives an overview of the modules of RIFL. Language-independent
modules are represented by white boxes at the bottom. The language-specific
module for specifying sources and sinks in a program written in a given pro-
gramming language is represented by the light-grey box at the bottom of the left
figure. A concrete RIFL specification, capturing a security requirement for a
given program, builds on both, the language-independent and language-specific
modules. Such a concrete specification is indicated by the four grey boxes at
the top of the the figure.

So far, language-specific modules for specifying sources and sinks in RIFL
have been defined for two programming languages, namely Java source code
and Dalvik bytecode. The language-specific modules for these two languages are
presented in Sections 5 and 6, respectively. The adaptation to further languages,
such as Java bytecode and JavaScript, is envisioned for the future.
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Figure 2: Structure of RIFL

2.3 Scope of RIFL 1.0

RIFL 1.0 supports the declaration of domains and definition of flow relations for
specifying information-flow policies. RIFL 1.0 further supports the declaration
of sources and sinks — possibly grouped into categories — for specifying the
interface of a program. Finally, RIFL 1.0 supports the definition of a domain
assignment for relating the specification of the interface to the specification of
the information-flow policy.

The syntax of RIFL specifications (in RIFL 1.0) is specified by the following
BNF and DTD. Throughout this report, we define a concrete XML syntax
for RIFL using DTD to be used in tools. Additionally, we define an abstract
syntax for RIFL using BNF. The sole purpose of the abstract syntax is to ease
the reader’s understanding of the RIFL syntax.

BNF representation of syntactic elements

RIFL-SPEC ::= (DOMAINS, FLOW-RELATION,
INTERFACESPEC, DOMAIN—ASSIGNMENT)

XML DTD definition of syntactic elements
<!ELEMENT riflspec (domains, flowrelation,
interfacespec, domainassignment)>

Formally, a RIFL specification comprises definitions of domains, a flow re-
lation, an interface specification, and a domain assignment. In the BNF, these
elements appear as non-terminals for which we provide production rules later in
the report. For more information on BNF, we refer to its introduction in [10].
In the DTD the element riflspec defines an XML tag that encloses a RIFL
specification. The subsequent comma-separated list specifies that there must
be exactly one child node of each of the elements domains, flowrelation,
interfacespec, and domainassignment. For more information on XML and
DTD, we refer to [4].

At this point, we leave undefined the production rules for non-terminals
on the right-hand side of production rules in the BNF. We also leave the cor-



responding element declarations in the DTD undefined. The following table
points the reader to the sections where these definitions can be found:

INTERFACESPEC, interfacespec | Section 3.1 (p. 5
DOMAINS, domains | Section 3.2 (p.
FLOW-RELATION, flowrelation | Section 3.2 (p.

DOMAIN-ASSIGNMENT, domainassignment | Section 3.3 (p

)
)
)
)

RIFL 1.0 is suitable for specifying information-flow requirements, but it does
not yet provide all features that one might want from a language for specifying
information flow requirements. In particular, RIFL 1.0 does not provide syn-
tax for expressing exceptions to information-flow restrictions, i.e., it does not
support controlled declassification.

3 Language-Independent Modules of RIFL

In this section, we present the language-independent module of RIFL 1.0. The
language-independent module supports declaration of domains and categories
as well as the definition of flow relations domain assignments. It further defines
the frame for the declaration of the interface of a program.

3.1 Sources and Sinks

The interface specification makes explicit at which points in a program informa-
tion might be input, and at which points a program might output information.
Sources declare at which points a program receives input. Sinks declare at
which points a program produces output. Categories group sources and sinks
with respect to an intuitive similarity, e.g. API calls for network communication
could be grouped into a category “network”. Moreover, categories can be ar-
ranged in a tree structure, i.e. a category might have sub-categories. Categories
are an optional concept that can be used to structure the interface specification.

The abstract syntax for specifying sources and sinks in RIFL is specified by
the following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

INTERFACESPEC ::= € | ASSIGNABLE | ASSIGNABLE :: INTERFACESPEC
ASSIGNABLE ::= (HANDLE, CATSRCSNK)
CATSRCSNK ::= CATEGORY | SOURCE | SINK
CATSRCSNKLIST ::= € | CATSRCSNK | CATSRCSNK :: CATSRCSNKLIST
CATEGORY ::= (NAME, CATSRCSNKLIST)



XML DTD definition of syntactic elements
<IELEMENT interfacespec (assignable)*>
<!ELEMENT assignable (category | source | sink)>
<IATTLIST assignable handle ID #REQUIRED>
<!ELEMENT category (category | source | sink)*>
<!ATTLIST category name ID #REQUIRED>

In the DTD the attlist tags assignable and category define the lists of at-
tributes for the elements assignable and category. The element assignable
has a mandatory attribute handle of type ID and the element category has
a mandatory attribute name of type ID. The type ID requires the value of the
element to be unique in an XML document.

An interface specification is a (possibly empty) list of assignables. An
assignable is a pair of a unique handle and a category, source or sink. We
will use the handle of an assignable to refer to this assignable in the domain
assignment. A category is a tuple comprising a name and a list of further cate-
gories, sources and sinks. That is, a category is the root of a tree. Such a tree
describes an is-a-relationship, i.e. a child is subsumed by its parent.

The concepts of sources and sinks are universal and thus independent of any
particular programming language. However, the concrete sources and sinks of a
program and their syntactic representation depend on the concrete programming
language. Hence, the symbols SOURCE (source) and SINK (sink) are part of
the language-specific modules.

The following table points to the BNF and DTD for the definition of sources
and sinks in Java source code and Dalvik bytecode.

SOURCE, source | Section 6.1 (p. 16) for Dalvik bytecode,
Section 5.1 (p. 12) for Java source code

SINK, sink | Section 6.1 (p. 16) for Dalvik bytecode,
Section 5.1 (p. 12) for Java source code

We say that a specification is compatible with a program only if the spec-
ification covers all sources and sinks that appear in the program. In contrast,
we say that a program is not compatible with a program, if a source or sink
appears in the program that is not covered by the specification. If a specifica-
tion is not compatible with a program, then it is not clear from the specification
itself whether a source or sink was forgotten during specification or whether it
is not part of the specification intentionally (i.e. the flow from the source or into
the sink shall not be restricted in any way). Hence, the notion of compatibility
induces a sanity check between a specification and a program.

3.2 Domains and Flow Relation

Domains model different levels of sensitivity. The flow relation specifies between
which domains information may flow. No information must flow between two
domains that are not related by the flow relation.



The abstract syntax for declaring domains and defining a flow relation is
specified by the following BNF and the concrete syntax is defined by the sub-
sequent DTD.

BNF representation of syntactic elements

DOMAINS ::= ¢ | DOMAIN | DOMAIN :: DOMAINS
FLOW-RELATION ::= € | (DOMAIN, DOMAIN) |
(DOMAIN, DOMAIN) :: FLOW-RELATION

XML DTD definition of syntactic elements

<!ELEMENT domains (domain)*>

<!ELEMENT domain EMPTY>

<IATTLIST domain name ID #REQUIRED>

<!ELEMENT flowrelation (flow)x*>

<!ELEMENT flow EMPTY>

<VATTLIST flow from IDREF #REQUIRED to IDREF #REQUIRED>

The declaration of domains is a list of domains. For a given specification, this
list defines the domains that may be used in the specification. The production
rules for the non-terminal DOMAIN remain underspecified. The non-terminal
DOMAIN ranges over strings as names for domains.

The flow relation is a list of pairs of domains. This list of pairs defines a
binary relation on domains. In the concrete XML syntax specified by the DTD,
we use IDs for referring to domains. We also use IDs for other language elements.
In order for a relation to be a valid flow relation, the IDs in the relation must
be names of domains. Since this requirement is not enforced by the syntax, it
must be checked additionally.

The reflexive closure of the relation that is defined by a list FLOW-RELATION
specifies the permissible information flows. That is, information may flow from
a domain d1 to a domain d2 if the pair (d1,d2) explicitly appears in the list
FLOW-RELATION or if d1 = d2 holds. Otherwise, information flow from d1 to d2
is forbidden. Similarly, the information flow permitted by an XML specification
is defined as the reflexive closure of the relation on domains that is specified by
flowrelation.

3.3 Domain Assignment

A domain assignment relates an interface specification to domains by assigning
the handles of assignables to from the interface specification to domains.

The abstract syntax for defining a domain assignment is specified by the
following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

DOMAIN-ASSIGNMENT ::= € | (HANDLE, DOMAIN) |
(HANDLE, DOMAIN) :: DOMAIN-ASSIGNMENT



XML DTD definition of syntactic elements

<!ELEMENT domainassignment (assign)x*>

<!ELEMENT assign EMPTY>

<!ATTLIST assign handle IDREF #REQUIRED domain IDREF #REQUIRED>

A domain assignment is a list of tuples where the first element is a handle
and the second element is a domain. For a domain assignment to be well-formed,
the list must define a total function from handles to domains. To this end, each
handle must appear exactly once as first element in a tuple from the list.

In the concrete XML syntax specified by the DTD, we use IDs instead of
handles and domains. We also use IDs for other language elements. In order for
a list to be a valid domain assignment, all IDs that appear as first elements of
a tuple in the list must be handles and all IDs that appear as second elements
of a tuple in the list must be names of domains.

3.4 Informal Semantics of a RIFL 1.0 Specification

The informal semantics of a RIFL 1.0 specification is closely related to the
intuition behind noninterference [13, 16]. That is, if no information must flow
from certain sources to certain sinks according to the specification, this means
that the output to these sinks must be independent of the input from these
sources. Consider the following example of a RIFL specification:

<riflspec>
<interfacespec>
<assignable handle="locationhandle">
<category name="location">
<source name="getGPS" />
<source name="getNetworkLocation" />
</category>
</assignable>
<assignable handle="fileshandle">
<category name="files">
<sink name="storeToFile" />
</category>
</assignable>
<assignable handle="HTTPhandle">
<sink name="sendViaHTTP" />
</assignable>
<assignable handle="HTTPShandle">
<sink name="sendViaHTTPS" />
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="locationhandle" domain="high" />



<assign handle="HTTPShandle" domain="high" />
<assign handle="fileshandle" domain="low" />
<assign handle="HTTPhandle" domain="low" />
</domainassignment>
</riflspec>

Since the syntax for specifying sources and sinks depends on the concrete
programming language, we use a simplified syntax in the example: We specify
sources and sinks only by a name without any further details. The actual syntax
for Java source code is defined in Section 5 and for Dalvik bytecode in Section 6.

The example specification expresses that no information about the location
shall be stored to files or sent via an unencrypted HTTP connection, but location
information may be sent via an encrypted HTTPS connection. That is, the
output to files and HTTP connections must be independent of the input received
from the location providers.

The interface specification defines the four assignables locationhandle,
fileshandle, HTTPhandle and HTTPShandle. The handle locationhandle
refers to the category location. This category subsumes the sources getGPS
and getNetworkLocation. The handle fileshandle refers to the category
files. This category subsumes the sink storeToFile. The handle HTTPhandle
refers to the sink sendViaHTTP. The handle HTTPShandle refers to the sink
sendViaHTTPS.

The declaration of domains declares two domains high and low. The flow
relation specifies that information may flow from low to high and within each of
these two domains. This means that no information must flow from high to low.
The domain assignment maps the handles locationhandle and HTTPShandle
to the domain high, and the handles fileshandle and HTTPhandle to the do-
main low. This means that information may flow from the sources identified by
the handle locationhandle to the sinks identified by the handle HTTPShandle.
Moreover, no information must flow from the sources identified by the han-
dle locationhandle to the sinks identified by the handles fileshandle and
HTTPhandle.

Categories, sources, and sinks inherit the assignment of domains from their
parents and, thus, the permitted information flows are determined by their
parents. For example, information from the source getGPS may flow to the sink
sendViaHTTPS. This is because getGPS is subsumed by the category location,
whose handle is assigned to the domain high. Therefore, the source getGPS is
implicitly assigned to the domain high. Since the handle of sendViaHTTPS is
also assigned to the domain high and the flow relation is reflexive, information
flow from getGPS to sendViaHTTPS is permitted.

Analogously, categories, sources, and sinks inherit constraints on the per-
mitted information flows from their parents. For this reason, no information
must flow, for instance, from the source getGPS to the sink storeToFile. This
is because the sink storeToFile is subsumed by the category files. Since the
handle of files is assigned to the domain low, the sink storeToFile is implic-
itly assigned to the domain low as well. Because the source getGPS is classified
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Figure 3: Visualization of the Example RIFL Specification

as high (as we argued for before) and the pair (high, low) is not in the flow
relation, information flow from getGPS to storeToFile is not permitted.

Figure 3 visualizes the example policy. The circles represent the domains
specified with the tags domain. The double arrows between the circles represent
the permitted information flows according to the flow relation specified with
the tag flow. The boxes with rounded corners represent assignables. The
assignables enclose the categories specified with the tags category (represented
by text in italics) as well as the sinks specified with the tags sink (represented
by regular text). The arrows with the open arrow head represent the grouping
of sources and sinks specified with the tags source and sink (representeed by
regular text) into categories. Finally, the arrows with the closed arrow head
represent the domain assignment as specified by the tags assign.

Categories allow very concise definitions of the domain assignment even for
larger specifications, because they group sources and sinks with respect some
notion of similarity, e.g., all API calls for accessing files. We also envision a
library of specifications of sources and sinks that are already categorized. In-
terface specifications can then be created from such a library by choosing a
part of the library. In this way, the effort for creating an interface specifica-
tion is reduced, and one interface specification can be used in multiple RIFL
specifications.

4 Specializing and Applying RIFL

4.1 Specializing RIFL for a Programming Language

A specialization of RIFL 1.0 for a particular programming language provides
concrete syntax for identifying sources and sinks in programs that are written
in said language.

The first step for specializing RIFL to a programming language is identifying
what one might consider as sources and sinks of information in this language.
For instance, one might consider parameters of methods in third-party libraries
as sinks in Java, and one might consider fields in the Android framework as
sources and also as sinks in Dalvik.

The next step is to define a syntax for identifying occurrences of relevant
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sources and sinks in a program. For instance, one could use the fully qualified
name of a field to identify occurrences of the field in a Java program.

To facilitate the specification of policies for programs in a given program-
ming language, one can build up a library of categorized sources and sinks
for frameworks and libraries that are often used in the programming language.
This library can then be used as basis for creating the interface specifications
in multiple RIFL specifications.

4.2 Applying RIFL to a Concrete Program

Writing a RIFL specification for a concrete program comprises the following
steps (not necessarily in this order):

Specifying domains and flow relation:
1. Define domains that model different levels of sensitivity, e.g. low and
high for a two-level security policy distinguishing only between public
and private information.

2. Define a flow relation on domains that captures the permissible flows
of information between distinct domains. The reflexive closure of the
relation specifies the permissible information flows, e.g. information
may only flow from low to high (and implicitly within each domain).

Specifying the interface of the program:

1. Declare all sources and sinks that might appear in the program. The
sources and sinks in the specification must include all sources and
sinks that actually appear in the program, but it may also contain
further sources and sinks that do not appear in the program.

2. Optionally: Structure the sources and sinks with respect to some
notion of similarity using categories, e.g. all API calls that send in-
formation to the network.

3. Assign handles to each root element in the interface specification.

Specifying the domain assignment:
Define a domain assignment that maps each handle to a domain. The
domain assignment must be a total function, i.e. each handle must be
mapped to exactly one domain.

We present example RIFL specifications that result from these steps for an
example program written in Java in Section 5.2, and for an example program
written in Dalvik in Section 6.2.

Remark. Assume there is a library of categorized sources and sinks of the
kind mentioned in Section 4.1. To create an interface specification for a con-
crete program from such a library, one has to include categories, sources and
sinks from the library. If different children of a category in the library shall be
treated differently wrt. permitted information flows, i.e., shall be assigned to
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different domains, then one must include the children of the category individu-
ally in the interface specification instead of including the parent category itself.
This is due to the fact that RIFL only supports assigning the roots of trees com-
prising categories, sources, and sinks to domains, whereas all other elements in
each tree are implicitly assigned to the domain of the tree’s root. Therefore,
no inconsistencies can be introduced between explicitly assigned domains and
domains inherited from parents. This design choice does not limit expressive-
ness, because domains can be assigned to any node of a tree by following the
aforementioned process.

5 Specialization of RIFL for Java Source Code

In this section, we present the language-specific module of RIFL 1.0 for Java
source code [15]. To make this section a self-contained manual for RIFL for
Java, we introduce the complete syntax with explanations even though there is
a large overlap with the syntax for Dalvik bytecode in Section 6.

5.1 Sources and Sinks for Java

RIFL 1.0 for Java offers the possibility to specify formal parameters of methods,
return values of methods and fields of objects as information sources and sinks.

The abstract syntax for defining concrete sources and sinks is specified by
the following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

SOURCE ::= PARAMETER | RETURN | FIELD
SINK ::= PARAMETER | RETURN | FIELD
PARAMETER ::= CLASS.METHOD@N
RETURN ::= CLASS.METHOD@return
METHOD ::= METHOD-NAME(PARAMETERS)
PARAMETERS ::= € | PARAMETER | PARAMETER, PARAMETERS
FIELD ::= CLASS.FIELD

XML DTD definition of syntactic elements
<!ELEMENT source (parameter | returnvalue | field)>
<!ELEMENT sink (parameter | returnvalue | field)>
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter class CDATA #REQUIRED

method CDATA #REQUIRED parameter CDATA #REQUIRED>
<!ELEMENT returnvalue EMPTY>
<IATTLIST returnvalue class CDATA #REQUIRED

method CDATA #REQUIRED>
<!ELEMENT field EMPTY>
<VATTLIST field class CDATA #REQUIRED name CDATA #REQUIRED>

12



The non-terminals CLASS and PARAMETER as well as the possible values
of class range over fully qualified names of classes and interfaces [15, §6.7],
e.g. package.Class. The non-terminals METHOD-NAME and FIELD as well as
the possible values of the attribute name range over identifiers as specified in [15,
§3.8]. These identifiers represent method names and field names in a given class.
The possible values of the attribute method range over method signatures as
specified by the non-terminal METHOD, e.g. method(java.lang.String), and
identify a method in a given class.

The non-terminal N and the values of the attribute parameter range over
the natural numbers. A number identifies the paramter by its position in the
list of formal parameters. The input parameters of a method start at position
1 and the “this” pointer of an object is identified by postion 0.

The syntax is suitable for specifying the following types of sources:

Formal parameters of methods If a method of the program can be called
from outside the program and receives values via its formal parameters,
these parameters can be considered information sources.

Fields If a field of the program is accessible from the outside the program,
the field can be considered an information source, because input might be
received as value of the field.

Return values of external methods If a method outside the program, e.g.
in a library, is called by the program, the return value of the method can
be considered an information source, because the value returned by the
method might be used as input.

The syntax is suitable for specifying the following types of sinks:

Return value of methods If a method of the program can be called from
outside the program, the return value of the method can be considered an
information sink.

Fields If a field of the program is accessible from outside the program, the field
can be considered an information sink, because values written to the field
are observable from outside the program.

Formal parameters of external methods If a program calls a method out-
side the program, the formal parameters of the method call can be con-
sidered information sinks.

5.2 Example of a RIFL Specification for Java Source Code
5.2.1 Simple Password Program in Java Source Code

Consider the Java source code program in Listing 1 that implements a simple
password prompt. The password is input via the command line. The security
requirement is that the password read from the command line with the method
call of readLine () in line 9 should be kept secret.
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Listing 1: Example Java Program

package de.spp_rs3;

public class Main{
public static void main(String [] args) {
try {
BufferedReader br = new BufferedReader (
new InputStreamReader (System.in));
System.out.println (” Please_enter_your._password:” );
String password = br.readLine ();
System.out.println (password);
} catch (IOException e) {
e.printStackTrace ();

}
}
}

5.2.2 RIFL Specification for the Simple Password Program

The XML specification in Listing 2 captures the desired information-flow re-
quirement for the program in Listing 1.

The sources of the program in Listing 2 are the formal parameters of the
method main, the return value of the called method readLine in line 9, and the
fields System.in and System.out. The sinks of the program are the parameters
of the method calls to println in line 8 and 11, and of the constructors of
InputStreamReader and BufferedReader. As an example, consider the source

<source>
<parameter class="de.spp_rs3.Main"

method="main(java.lang.String[])" parameter="1" />
</source>
from the specification. The attribute class="de.spp_rs3.Main" corresponds
to the fully qualified class name, i.e. lines 1-3 in the program. The attribute
method="main(java.lang.String)" corresponds to the method signature, i.e.
line 4 in the program. In the signature, main corresponds to the method name
and java.lang.String[] corresponds to the fully qualified array type name of
the method parameter. Finally, the attribute parameter="1" refers to the first
actual parameter of the method.

The specification declares two domains low and high and defines a flow
relation {(low,high), (low,low), (high,high)}. That means information may
flow within each domain and from low to high, but no information must flow
from high to low.

Since we want to keep the password entered via command line secret, the
domain assignment maps the handle of the respective source, i.e. the handle

14



Listing 2: Example RIFL Specification for Java

<riflspec>
<interfacespec>
<assignable handle="cmdinputhandle">
<source>
<returnvalue class="java.io.BufferedReader"
method="readLine ()" />
</source>
</assignable>
<assignable handle="cmdoutputhandle">
<sink>
<parameter class="java.io.PrintStream"
method="println(java.lang.String)" parameter="1" />
</sink>
</assignable>
<assignable handle="envinputhandle">
<category name="envinput">
<source>
<parameter class="de.spp_rs3.Main"
method="main(java.lang.String[])" parameter="1" />
</source>
<source><field class="java.lang.System" name="in" /></source>
<source><field class="java.lang.System" name="out" /></source>
</category>
</assignable>
<assignable handle="envoutputhandle">
<category name="envoutput'">
<sink>
<parameter class="java.io.InputStreamReader"
method="InputStreamReader (java.io.InputStream)"
parameter="1" />
</sink>
<sink>
<parameter class="java.io.BufferedReader"
method="BufferedReader(java.io.Reader)" parameter="1" />
</sink>
</category>
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="cmdinputhandle" domain="high" />
<assign handle="cmdoutputhandle" domain="low" />
<assign handle="envinputhandle" domain="low" />
<assign handle="envoutputhandle" domain="low" />
</domainassignment>
</riflspec>
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cmdin of the source
<source>

<returnvalue class="java.io.BufferedReader" method="readLine()" />
</source>

to high, and all other handles to low.

The example specification illustrates how the use of categories in the interface
specification enables a concise specification of the domain assignment. Due to
the grouping of the sources and sinks in the categories envinput and envoutput,
we only need four assign tags in the domain assignment instead of seven assign
tags.

6 Specialization of RIFL for Dalvik Bytecode

In this section, we present the language-specific module of RIFL 1.0 for Dalvik
bytecode [1]. To make this section a self-contained manual for RIFL for Dalvik,
we introduce the complete syntax with explanations even though there is a large
overlap with the syntax for Java source code in Section 5.

6.1 Sources and Sinks for Dalvik Bytecode

RIFL 1.0 for Dalvik offers the possibility to specify formal parameters of meth-
ods, return values of methods and fields of objects as information sources and
sinks.

The abstract syntax for defining concrete sources and sinks is specified by
the following BNF and the concrete syntax is defined by the subsequent DTD.

BNF representation of syntactic elements

SOURCE ::= PARAMETER | RETURN | FIELD
SINK ::= PARAMETER | RETURN | FIELD
PARAMETER ::= CLASS—>METHOD@N
RETURN ::= CLASS—>METHOD@return
METHOD ::= METHOD-NAME(PARAMETERS)PARAMETER
PARAMETERS ::= € | PARAMETER | PARAMETERPARAMETERS
FIELD ::= CLASS—>FIELD
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XML DTD definition of syntactic elements
<!ELEMENT source (parameter | returnvalue | field)>
<!ELEMENT sink (parameter | returnvalue | field)>
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter class CDATA #REQUIRED

method CDATA #REQUIRED parameter CDATA #REQUIRED>
<!ELEMENT returnvalue EMPTY>
<IATTLIST returnvalue class CDATA #REQUIRED

method CDATA #REQUIRED>
<!ELEMENT field EMPTY>
<!ATTLIST field class CDATA #REQUIRED name CDATA #REQUIRED>

The non-terminals CLASS and PARAMETER as well as the values of class
range over type descriptors of classes and interfaces [2], e.g. Lpackage/Class;.
The non-terminals METHOD-NAME and FIELD as well as the possible values of
the attribute name range over simple names as specified in [2]. These simple
names represent method names and field names in a given class. The possible
values of the attribute method range over method signatures as specified by the
non-terminal METHOD, e.g. method (Lpackage/Class;)V, and identify a method
in a given class.

The non-terminal N and the values of the attribute parameter range over
the natural numbers. A number identifies the paramter by its position in the
list of formal parameters. The input parameters of a method start at position
1 and the “this” pointer of an object is identified by postion 0.

The syntax is suitable for specifying the following types of sources:

Formal parameters of methods If a method of the program can be called
from outside the program and receives values via its formal parameters,
these parameters can be considered information sources.

Fields If a field of the program is accessible from the outside the program,
the field can be considered an information source, because input might be
received as value of the field.

Return values of external methods If a method outside the program, e.g.
in a library, is called by the program, the return value of the method can
be considered an information source, because the value returned by the
method might be used as input.

The syntax is suitable for specifying the following types of sinks:

Return value of methods If a method of the program can be called from
outside the program, the return value of the method can be considered an
information sink.

Fields If a field of the program is accessible from outside the program, the field
can be considered an information sink, because values written to the field
are observable from outside the program.
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Listing 3: Example Dalvik Program

de.spp-rs3.Main.main: ([Ljava/lang/String;)V
0000: new—instance v0, java.io.BufferedReader
0002: new—instance vl, java.io.InputStreamReader
0004: sget—object v2, java.lang.System.in:Ljava/io/InputStream;
0006: invoke—direct {vl, v2},
java.io.InputStreamReader.<init >:(Ljava/io/InputStream;)V
0009: invoke—direct {v0, vl},
java.io.BufferedReader.<init >:(Ljava/io/Reader;)V
000c: sget—object vl, java.lang.System.out:Ljava/io/PrintStream;
000e: const—string v2, ”Please enter your password:”
0010: invoke—virtual {vl, v2},
java.io.PrintStream. println:(Ljava/lang/String;)V
0013: invoke—virtual {vO0},
java.io.BufferedReader.readLine: () Ljava/lang/String;
0016: move—result—object vO
0017: sget—object vl, java.lang.System.out:Ljava/io/PrintStream;
0019: invoke—virtual {vl, vO0},
java.io.PrintStream.println:(Ljava/lang/String;)V
00lc: return—void
001d: move—exception vO0
00le: invoke—virtual {v0}, java.io.IOException.printStackTrace:()V
0021: goto 001c
tries:
try 0000..001c
catch java.io.IOException —> 001d

Formal parameters of external methods If a program calls a method out-
side the program, the formal parameters of the method call can be con-
sidered information sinks.

6.2 Example of a RIFL Specification for Dalvik Bytecode
6.2.1 Simple Password Program in Dalvik Bytecode

Consider the Dalvik bytecode in Listing 3 that implements a simple password
prompt. The assembly was created using dexdump and was simplified for better
readability. The password is input via the command line. The security require-
ment is that the password read from the command line with the method call of
readLine () at position 0013 should be kept secret.

6.2.2 RIFL Specification for the simple password program

The XML specification in Listing 4 captures the desired information-flow re-
quirement for the program in Listing 3.

The sources of the program in Listing 4 are the formal parameters of the
method main, the return value of the called method readLine at position 0013,
and the fields System. in and System.out. The sinks of the program are the for-
mal parameters of the constructors of InputStreamReader and BufferedReader
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Listing 4: Example RIFL Specification for Dalvik

<riflspec>
<interfacespec>
<assignable handle="cmdinputhandle">
<source>
<returnvalue class="Ljava/io/BufferedReader;"
method="readLine()Ljava/lang/String;" />
</source>
</assignable>
<assignable handle="cmdoutputhandle">
<sink>
<parameter class="Ljava/io/PrintStream;"
method="println(Ljava/lang/String;)V" parameter="1" />
</sink>
</assignable>
<assignable handle="envinputhandle">
<category name="envinput">
<source>
<parameter class="Lde/spp_rs3/Main;"
method="main([Ljava/lang/String;)V" parameter="1" />
</source>
<source><field class="Ljava/lang/System;" field="in" /></source>
<source><field class="Ljava/lang/System;" field="out" /></source>
</category>
</assignable>
<assignable handle="envoutputhandle">
<category name="envoutput'">
<sink>
<parameter class="Ljava/io/InputStreamReader;"
method="<init>(Ljava/io/InputStream;)V" parameter="1" />
</sink>
<sink>
<parameter class="Ljava/io/BufferedReader;"
method="<init>(Ljava/io/Reader;)V" parameter="1" />
</sink>
</category>
</assignable>
</interfacespec>
<domains><domain name="high" /><domain name="low" /></domains>
<flowrelation><flow from="low" to="high" /></flowrelation>
<domainassignment>
<assign handle="cmdinputhandle" domain="high" />
<assign handle="cmdoutputhandle" domain="low" />
<assign handle="envinputhandle" domain="low" />
<assign handle="envoutputhandle" domain="low" />
</domainassignment>
</riflspec>
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and the parameter of the method calls to println at positions 0010 and 0019.
As an example, consider the source

<source>
<parameter class="Lde/spp_rs3/Main;"
method="main([Ljava/lang/String;)V" parameter="1" />
</source>

from the specification. The attribute class="Lde/spp_rs3/Main;" corresponds
to the type descriptor of the class containing the method, i.e. lines 1 in the
program. The attribute method="main([Ljava/lang/String;)V" corresponds
to the method signature, i.e. line 1 in the program. In the signature, main
corresponds to the simple name of the method, [Ljava/lang/String; corre-
sponds to the type descriptor of the method parameter, and V corresponds to
the type descriptor of the return value of the method. Finally, the attribute
parameter="1" refers to the first actual parameter of the method.

The specification declares two domains low and high and defines a flow
relation {(low,high), (low, low), (high,high)}. That means information may
flow within each domain and from low to high, but no information must flow
from high to low.

Since we want to keep the password entered via command line secret, the
domain assignment maps the handle of the respective source, i.e. the handle
cmdin of the source

<source>
<returnvalue class="Ljava/io/BufferedReader;"
method="readLine()Ljava/lang/String;" />
</source>

to high, and all other handles to low.

The example specification illustrates how the use of categories in the interface
specification enables a concise specification of the domain assignment. Due to
the grouping of the sources and sinks in the categories envinput and envoutput,
we only need four assign tags in the domain assignment instead of seven assign
tags.

7 Related Work

Information-flow control is an established research area (see, e.g. [18, 19], for two
surveys) and a wide range of tools has been proposed for different programming
languages. This variety of tools comes with a variety of different specification
languages for information-flow requirements that shall be checked with these
tools. Giving an overview of all existing languages is out of the scope of this
report. Nevertheless, we want to present a selection of languages that are used
in existing tools for Java and Dalvik.

JFlow/JIF and Paragon. JFlow/JIF [8, 9] is an extension of the Java pro-
gramming language with security types. The security types are represented
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as labels attached to data types in Java. These labeled types can occur at
almost every place where data types may appear, e.g. field declarations, vari-
able declarations, and parameters of methods. For instance, a field declaration
int{ol: rl1, r2; o02: ri1} x; declares a field x with two owners ol and o2
that may be read by its owners as well as all readers on which the owners agree,
namely r1 but not r2. Information may flow from one container, e.g. a variable,
to a second container, e.g. a field, only if the label of the second container is at
least as restrictive as the label of the first container.

Paragon [11] is another extension of the Java programming language with
security types. Similar to JFlow/JIF’s labels, policies in Paragon label an infor-
mation container according to where the information from this container may
flow. In contrast to JFlow/JIF’s labels, policies in Paragon enable one to specify
explicitly where information from a container may flow while in JFlow/JIF infor-
mation may flow to any container that has a more restrictive label than the origin
of the information. Paragon additionally has an explicit state under which a pol-
icy is evaluated. This state is modeled with locks that can be opened and closed
using designated instruction in the program. For instance, information from an
information container labeled with policy p = { File f: Owns(f, alice) }
may flow to every file £ that is owend by alice. The ownership is modeled with
a lock Owns(f, alice). Intuitively, a file £ is owned by alice in the current
state of the policy, if the lock is open. Dually, the file £ is not owned by alice
in the current state of the policy, if the lock is closed.

One difference between RIFL and the policy languages of JFlow/JIF and
Paragon is that RIFL policies are separate from the program code while the
policies of JFlow/JIF and of Paragon are a part of the program code. Both
approaches have advantages and disadvantages. With the policies being part of
the program, it is possible to treat some parts of the policies as first-class citizens
in the language. This enables a programmer to encode security decisions based
on the policy inside the program. On the other hand, having the policy and
program code in separate files provides a clearer separation between specifying
the security concerns and implementing functionality. In particular, a program
can easily be checked against several policies without changing the program
code, which is beneficial, for instance, when different users of a program have
different security concerns.

IFT. The Information Flow Type-Checker (IFT) [17] verifies the information-
flow security of Android apps given as Java source code. IFT determines which
flows of information are permitted based on a flow-policy file, and on source
code annotations in the analyzed program.

The flow-policy file specifies a transitive, binary relation between predefined
sources and sinks, e.g., LOCATION -> INTERNET. If a source is in relation with a
sink, then information may flow from this source to this sink. The sources and
sinks include all resources protected by Android permissions, like the device’s
location and the network. Further sources and sinks cover resources like user
input, the accelerometer, and the device’s display. Moreover, some sources and
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sinks are parametric to allow for a fine-grained specification of flow policies, e.g.,
FILESYSTEM("notes/").

The source code annotations @Source and @Sink, respectively, assign sources
and sinks to any occurrence of data types in Java programs. In particular, a
programmer annotates the declaration of fields, the declaration of formal pa-
rameters of methods, and the declaration of the return type of methods. The
annotations of remaining occurrences of data types, e.g., in the declaration of
local variables, are usually defaulted or inferred by the analysis. Intuitively,
@Source declares possible origins of values stored in the annotated resource,
whereas @Sink declares possible destinations to which the stored values may be
sent. Annotations may also be used on the data types of cast operations. In this
special case, they allow to explicitly declassify information, i.e., to implement a
flow that otherwise violates the flow policy.

The predefined sources and sinks in the policy language of IFT roughly
correspond to one possible use of categories in RIFL. One particularly interesting
feature of IFT’s sources and sinks is that some can be parameterized for a more
fine-grained categorisation. In contrast to RIFL, the IF'T-policy files define the
permitted flows directly on the predefined categories while RIFL permits an
additional abstraction step to domains that group all categories that should be
treated similarly with respect to security, e.g. sources that introduce information
which should be kept confidential. Hence, RIFL enables very concise definitions
of the flow policy. In contrast to JFlow’s and Paragon’s labels, the source-code
annotations in IFT describe a grouping with respect to functionality and not
with respect to security concerns. Hence, these annotations can be used to check
a given program against different policies, similar to categories RIFL.

Information Flow Policies for Java-Enabled Smart Cards. In [12], the
authors present a policy language to define information-flow policies for Java
bytecode and propose to verify that a class file satisfies such a policy with
a custom class loader. A policy defines what fields of an object may contain
secrets and to which other classes secrets from this class may flow. Furthermore,
an object of a class may implicitly share its secrets with all other objects of
the same class. For instance, the policy Ca fsa, fsb; Cb fsl1 fs2; defines
that the fields fsa and fsb of class Ca as well as the fields fs1 and fs2 of
class Cb may contain secrets while all other fields (including fields of other
classes) must not contain secrets. This policy can be extended with a statement
Ca shares with Cb to allow that secrets from class Ca may flow to class Cb.
That is, information from a field that may contain secrets in class Ca may
flow to a field that may contain secrets in class Cb. The policy statement
Cb strict secret specifies that the secrets of one instance of class Cb must
not be shared with other instances of the same class.

In this policy language, the fields of classes are considered as information
sources and sinks, like in RIFL. The current specializations of RIFL to Dalvik
bytecode and Java source code are more general in the sense that the parameters
of methods can also be considered as sources and sinks. The policy language

22



in [12] allows one to specify that secrets between different instances of classes
should not be shared in addition. This is currently not possible in RIFL, but
could be introduced in the future if the need arises.

SCF. The SideChannelFinder (SCF) [6] is a tool for the detection of possible
timing side channels in Java implementations of cryptographic implementations.
For this purpose, SCF employs a security type system that is parametric in
an information-flow requirement specified in XML [7]. The policy language of
the SCF enables assigning security domains to fields of classes as well as to
parameters of methods (including the return parameter).

The types of sources and sinks in the SCF are identical to the types of
sources and sinks in the Java-specific definitions of RIFL 1.0. Unlike RIFL, the
information-flow requirement implicitly assumes two security domains, namely
0 and 1 where 0 is a domain for public information and 1 is a domain for
secret information. The implicit flow policy in SCF allows information flows
within each domain and from 0 to 1. Having the declaration and definition of
the security domains as well as the flow relation explicit in the specification
language, like in RIFL, enables the specification of a wider range of policies,
e.g. multi-level security policies.

8 Conclusion

In this report, we defined version 1.0 of RIFL as a semi-formal specification
language for information-flow requirements, i.e. a language with formal syntax
and informal semantics. The concrete syntax of RIFL facilitates the specification
of information-flow requirements for different programming languages in terms
of sources and sinks that occur in a concrete program. The generic parts of RIFL
are independent of a concrete programming language. In order to specialize
RIFL for a concrete programming language, one needs to provide a concrete
syntax for specifying sources and sinks. We have provided specializations of
RIFL for Java source code and Dalvik bytecode. We have also illustrated how
this specializations can be used for specifying information-flow requirements for
concrete programs.

RIFL 1.0 is already supported by the RSCP security analyser and its in-
tegration into Cassandra [21]. Moreover, earlier versions of RIFL are already
supported by Joana [14], SuSi [20], and KeY [5]. We hope that RIFL will
be adopted by other information-flow analysis tools in RS® [3] and beyond.
Moreover, RIFL shall serve as a basis for using different tools in combination.
Furthermore, we envision that the use of RIFL in different research groups leads
to a library of example programs with information-flow requirements that can
be used to test information-flow analysis tools.

For the future, we plan to augment the scope of RIFL by integrating syntax
for specifying exceptional information flows. This will allow more expressive
policies as it enables the specification of controlled release of secrets. We also
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plan to specialize RIFL for further programming languages, e.g. for Java byte-
code and JavaScript. Finally, we might provide formal semantics for RIFL in
the future. The design choice for informal semantics was deliberate such that
RIFL can be supported by information-flow analysis tools that enforce differ-
ent noninterference-like security conditions. To address this, we could provide
several alternative semantics for RIFL to choose from in the specification of an
information-flow requirement.
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