Rule-based Dependency Parse Collapsing and Propagation
for German and English

Eugen Ruppert and Jonas Klesy and Martin Riedl and Chris Biemann
FG Language Technology, Computer Science Department
Technische Universitdt Darmstadt

{euqen .ruppert, riedl, biem}@cs .tu-darmstadt.de, jonas.klesy@googlemail.com

Abstract

We present a flexible open-source frame-
work that performs dependency parsing
with collapsed dependencies. The parser
framework features a rule-based annotator
that directly works on the output of a de-
pendency parser. Thus, it can introduce de-
pendency collapsing and propagation (de
Marneffe et al., 2006) to parsers that lack
this functionality. Collapsing is a tech-
nique for dependency parses where words,
mainly prepositions, are elevated into the
dependency relation name. Propagation as-
signs syntactic roles to all involved items
in conjunctions. Currently, only the Stan-
ford parser features these abilities for the
English language. Here we introduce a
rule-based collapsing engine that can be ap-
plied on top of the output of a dependency
parser and that was used to re-engineer the
rules of the English Stanford parser. Fur-
thermore, we provide the first dependency
parser with collapsing and propagation for
German. We directly compare our collaps-
ing for English with the one from the Stan-
ford parser. Additionally, we evaluate col-
lapsed and non-collapsed syntactic depen-
dencies extrinsically when used as features
for building a distributional thesaurus (DT).

1 Introduction

Dependency parsing is a major pre-processing step
for many applications like similarity computation,
machine translation or semantic parsing. In de
Marneffe et al. (2006), a technique called depen-
dency collapsing was introduced into the Stanford
parser. Collapsing is the process of reducing the
number of dependencies, by inserting mostly func-
tion words into dependency relation names. Con-
sidering the sentence They sit in the car., a depen-

prep-in

Figure 1: Dependency parser output of the sentence
They sit in the car. Solid and dotted black lines
indicate the standard dependencies, red lines indi-
cate collapsed dependencies. Dotted black lines
represent dependencies that are removed after col-
lapsing.

dency parser produces two dependency arcs be-
tween sit and car (cf. Figure 1). The first depen-
dency arc connects sit to in — prep (sit, in),
the second connects in to car — pobj (in, car).
These relations offer only limited information; you
can sit in something, and you can do something in
cars. Collapsing makes the relation more informa-
tive, prep_in (sit, car), indicating that you
can sit in a car. Due to the enriched information
and larger disambiguation capability of the rela-
tion, collapsed dependency parsing is often used
for word sense disambiguation (Lin, 1997) and for
computing similarities between terms (Biemann
and Riedl, 2013).

Still, most work regarding collapsing has been
done for English and only as variations of the Stan-
ford parsing. Here we introduce a rule-based de-
pendency collapsing framework. We contribute a
ruleset for English and also, to our best knowledge,
the first German collapsing ruleset.

The collapsing is performed on top of the parser
output using our collapsing engine. Due to the rule-
based nature of our engine, we can also generate
rules for more complex collapsing strategies like
dependency propagation. Propagation of depen-
dencies is used to transitively propagate dependen-
cies using conjunctions (de Marneffe et al., 2006).
Words that are connected by a conjunction receive

SB

CJ_und

MO_in

Fin Fisch

und ein

Boot

See| []

schwimmen im

Figure 2: Depencency parser output of the sentence Ein Fisch und ein Boot schwimmen im See. (A fish and
a boat are swimming in the lake.) Solid and dotted black lines indicate the standard dependencies, solid red
lines indicate collapsed dependencies. Dotted black lines represent dependencies that are removed after
collapsing. Dashed red line represents the propagated dependency, where the subject (SB) dependency
was propagated to Boot, as it is connected via the conjunction und with Fisch, the subject identified by the

parser.

the same dependencies, e.g. in Figure 2, Fisch (fish)
and Boot (boat) are both subjects (SB) of the verb
schwimmen (to swim), even though only Fisch is
directly connected to the verb in the original parse.

Furthermore, this approach allows rulesets to
be adapted to the tagsets and dependency relation
types of different parsers, allowing to apply the
functionality to different parsers. We demonstrate
the language independence of our framework by
transforming the English ruleset to be applicable to
German dependency parses. The impact of collaps-
ing and dependency propagation is shown extrinsi-
cally based on a distributional similarity evaluation
for different corpus sizes. Our collapsing tech-
nique is applied on uncollapsed Stanford output to
demonstrate the quality of our collapsing rules and
to compare the results with its built-in collapsing
rules.

2 Related Work

Dependency parsing can help many linguistic ap-
plications, especially if they are geared towards
semantic representation of text. Since sentences
are represented as a lattice of dependencies, mostly
originating from the verb, different surface forms
of a sentence can result in the same dependency
graph. This is important for languages with a vari-
able word order (Dubey and Keller, 2003). In Ger-
man, the sentence I have seen the dog, can have two
surface forms: Den Hund habe ich gesehen (the
dog have I seen) and Ich habe den Hund gesehen
(I have the dog seen), even though the first form is
marked.

Klein and Manning (2003) introduced the Stan-
ford parser, a dependency parser that extracts de-
pendencies from probabilistic context free gram-
mar (PCFG; Johnson, 1998) constituent parses. De-
pendency collapsing for this parser was added in
(de Marneffe et al., 2006). The Stanford depen-
dency representation (de Marneffe and Manning,
2008) connects two words with a directed and typed
dependency relation.

Dubey and Keller (2003) introduced the first
PCFG parser for German. The Mate-tools parser
(Bohnet, 2010; Seeker and Kuhn, 2012) currently
offers one of the best dependency parsing perfor-
mances for German. However, it does not feature
dependency collapsing. Therefore we introduce
collapsing for German on top of the Mate-tools
parser output.

Our collapsing engine is based on the UIMA
framework (Ferrucci and Lally, 2004; Ogren and
Bethard, 2009). While there exist generic frame-
works to apply rules to UIMA annotations such as
UIMA Ruta (Kluegl et al., 2014), we have opted to
develop our own processing, in order to be able to
tailor our framework specifically for the needs of
dependency collapsing and propagation.

Dependency parsing is often used to generate
features for information extraction tasks. E.g. in
the event extraction task of BioNLP’09 (Kim et
al., 2009), 80 % of the participants and all of the
top performing teams used dependency features.
The best team (Bjorne et al., 2009) directly worked
on the dependency graph to identify relations and
extract events. This could be facilitated with our
dependency processing framework, where lists of
trigger words and protein names can be identified
with their relations.

" DocumentReader ‘
ﬂ Y |
“ Segmenter ‘

Y
) Parser
. POS Tagger |

| Dep. Parser |

\ Lemmatizer |

/ y \
‘ CollapsingEngine ‘
I v L'
‘ OutputWriter ‘

Figure 3: Processing pipeline in the UIMA frame-
work, with exchangeable annotator components

3 Method

3.1 Overview

Our framework works with parsers for any lan-
guage that produce uimaFIT (Ogren and Bethard,
2009) annotations and transforms the results ac-
cording to the custom defined rules given in the
rules file. We use the framework to perform depen-
dency collapsing and propagation for the output
of the Stanford parser and the German Mate-tools
parser.

The UIMA framework allows to create flexible
annotation pipelines, where each component can
be exchanged by other components. This enables
users to exchange components like tokenizers and
parsers to create individual processing pipelines. In
Figure 3 we show the pipeline used in our frame-
work. Documents are read by a document reader
and first segmented into sentences and tokens. Af-
terwards, we run a dependency parser component
(that can include a part-of-speech tagger and a
lemmatizer) and apply the collapsing engine on
the dependency parser annotations. Last, the col-
lapsed dependencies are written to the disk i.e. in
the CoNLL format. The pipelines for English and
German are freely available for download'.

3.1.1 Collapsing Engine
The main contribution of our collapsing framework

is the collapsing engine that operates on UIMA

IWe provide the framework with rulesets for English and
German under the permissive ASL 2.0 license at http://
jobimtext.org/dependency-collapsing/

annotations produced by dependency parsers?. It
uses rule files that define collapsing triggers and
the instructions for dependency collapsing®. A col-
lapsing trigger can be defined on word, lemma and
POS level and the relationship of multiple tokens.
If a match is found by the collapsing engine, the
system applies the operations defined in the rule
file to the parse, most commonly creating a new
dependency with a specified name.

Since we have found it advantageous to perform
collapsing and propagation in several stages, we
have introduced the capability to create different
stages that are executed in succession. Each stage
matches dependencies and creates new ones, as
specified in a rule. The matched dependencies can
be kept for later stage or marked to be removed
after the stage is finished.

3.2 Rule Format
3.2.1 Stages

A rule file consists of multiple stages that are exe-
cuted sequentially. Each stage consists of a set of
rules that are applied synchronously. Every rule
has access to the dependency annotations that were
present when the previous stage finished. Mul-
tiple stages are needed, if an already processed
annotation should be further processed. For ex-
ample, in one stage the collapsed dependency
prep_such is generated from the phrase animals
such as birds. In the next stage, this should be
refined to prep_such_as, which creates a direct
dependency relation between animals and birds.

3.2.2 Rules
A rule has the following scheme:

##<Rule name>
<element><ID>:<regex>
<r,d><FromID>_<ToID>:<regex>
<element><ID>:<regex>

from:<FromID>
to:<ToID>
relationName :name

It defines a collapsing match and the new depen-
dency annotation that is created from this match.
A collapsing match is defined between multiple
element items and their relations. An element

2The DKPro Core framework (Eckart de Castilho and
Gurevych, 2014) provides UIMA wrappers for a large number
of NLP components.

3Dependency propagation is also defined in the rulesets.
The framework allows to create and modify custom opera-
tions on the dependency graph. For brevity, we only mention
dependency collapsing in the rule description.

can be matched by word (w), POS tag (p) or a
lemma (1). Matching of elements is performed us-
ing regular expressions and thus allows any match-
ing, i.e. lists or string matches. Each element also
contains an integer ID that is used to identify re-
lations and to create new ones. Relations between
elements (specified by ID), are matched by a rela-
tion name, which can also be defined as a regular
expression.

If all of the conditions are met, then a new re-
lation with a custom relationName is created
between the elements specified in fromand to. A
matched relation will be removed after a stage, if it
is identified as a removable relation (r). Durable
relations (d) are available in subsequent stages.

Dependency Collapsing Here, we present an ex-
emplary rule file for dependency collapsing:

STAGE:CollapsePrepositions
{
##prep_in Rule
wl:.*
rl_2:prep
p2:IN|TO|VBG
r2_3:pobj
w3 .
relationName:prep_{w2}
from: 1
to: 3

In this example ruleset that collapses prepo-
sitions, only one stage is defined and in this
stage only one rule exists. This rule will match
all dependencies that have the dependency type
prep, originate from any word (w1 : .) and end
in a word with any of the specified POS tags
(p2:IN|TO|VBG). Additionally, there should be
another pobj dependency from p2 to any other
word (w3: . *).

If such a match is found, the collapsing engine
will create a new relation between wl and w3,
collapsing the preposition word into the relation
name (relationName:prep_{w2}). And as
the matched dependencies are marked as ‘remov-
able’ (r1_2:prep, r2_3:pobj),they will be
deleted after the stage is finished. To keep the de-
pendency for later stages, the relation should be
specified as durable, e.g. d1_2 :prep.

Dependency propagation A rule set for prop-
agation is shown below. It matches any words
(wN: . %) with N=1, 2, 3 that form the follow-
ing dependency constellation: there is a dobj
or nsubj relation between words 1 and 2; ad-
ditionally there should be a conjunction (con i)

between words 2 and 3. If these conditions ap-
ply, the same relation as between words 1 and 2
(relationName:d1_2) is propagated as a new
relation between w1l and w3.

STAGE:Propagation

{
##subj/obj propagation
wls:.x
dl_2:dobjlnsubj
W2: .
d2_3:conj.x
w3z .
relationName: {dl_2}
from:1
to:3

3.3 Rulesets

We have compiled rulesets for English and Ger-
man, each with and without dependency propa-
gation. For re-engineering the collapsing rules for
English, we compared the collapsing from the Stan-
ford parser to our collapsing rules and stopped af-
ter we achieved sufficient overlap. Starting from
preposition collapsing, we addressed the largest er-
ror class in each rule writing stage to identify more
complex dependency matchings. Propagation rules
were added in an additional stage.

German rules are corresponding to the English
rules, with adjusted dependency types, and — for
lexicalized rules — translated words. In few cases,
the parsers produce slightly different dependency
structures (e.g. switch of governor/dependent).
Also, some rules only apply for English and are
thus left out of the German ruleset.

Overall, the rulesets now feature 3 stages for
collapsing and 4 stages for collapsing with prop-
agation. For English, we have compiled 43 rules
for collapsing (46 with propagation). For German,
there are 26 rules for collapsing (29 with propaga-
tion).

4 Evaluation

To evaluate our collapsing tool and the rulesets,
we performe two kinds of evaluation. First, we in-
trinsically compare to the English Stanford parser*.
Second, we use the dependency parser output for
similarity computation (see Section 5). This allows
us to show the positive impact of collapsing and

dependency propagation on semantic tasks.

4As there exists no parser that performs collapsing for
German, we cannot compare to a German parser intrinsically.

Table 1: Number of dependencies of our method
and Stanford dependency parsing

not in not in

both our method Stanford

collapsed dep. 27,602 405 664
all dep. 165,594 1,067 1,850

4.1 Intrinsic Evaluation of the English
Ruleset

As there is no evaluation set for collapsing avail-
able, we perform an intrinsic evaluation. We com-
pare directly to the Stanford parser on a sample of
10,000 unannotated English sentences. On these
sentences, we perform dependency parsing using
1) the Stanford dependency parser with collapsing
and 2) the Stanford dependency parser without any
collapsing, where we apply the collapsing using
our tool.

From these sentences, 927 do not contain any
collapsed dependency. The number of dependency
relations is reduced from 200,541 to 194,669 with
collapsing from the Stanford dependency parser.
For dependency collapsing, we observe that our
method only misses 1.45 % of the collapsed de-
pendencies (see Table 1). Additionally, we ob-
serve that our collapsing engine performs collaps-
ing more often than the Stanford collapsing, e.g.
we always collapse prepositions, which is often not
performed by the Stanford collapsing. On the other
hand, we most commonly miss collapsed depen-
dency relations which collapse more than one word
into the relation name, like prep_away_from or
prep-out_of.

In a further analysis we checked the different
dependency types for each sentence. For this, we
extracted all differences between the Stanford col-
lapsed dependencies and our collapsed dependen-
cies and counted how often they occur. Manually
checking the most frequent 100 of these differences
(occurring in 592 sentences), we figured out that
in 27 of these discrepancies (represented by 32
sentences) we could not decide which system per-
forms better, when checking instances manually.
For 72 dependency patterns (204 sentences), the
Stanford collapsing performs better, whereas our
system yields better results for 78 patterns (168
sentences).

On the basis of sentences, this gives a balanced
picture of our system, with Stanford being correct

Table 2: Number of dependencies of our method
and Stanford dependency parsing, with dependency
propagation

not in not in

both our method Stanford

propagated dep. 29,271 611 566
all dep. 168,201 7,377 4,036

in 50.6 % of the cases and 41.6 % where our sys-
tem is correct. Our system often misses collapsed
dependency relations that collapse more then one
word into the relation name. On the other hand,
the Stanford collapsing often misses collapsing the
construct according to into the dependency type,
which is performed more often with our system.

We also analyzed the performance of depen-
dency propagation, as shown in Table 2. Here
we miss slightly more dependencies and we also
observe that the total number of dependencies in-
creases. This is because most propagated depen-
dencies are added to the dependency graph, so that
mostly no other dependencies are deleted by prop-
agation.

4.2 Extrinsic Evaluation on Similarity
Computation

We follow Riedl et al. (2014) to evaluate the per-
formance of collapsing extrinsically: We use de-
pendency features to build distributional thesauri
(DT) and evaluate the thesauri against the lexical re-
sources WordNet (Fellbaum, 1998) and GermaNet
(Hamp and Feldweg, 1997; Henrich and Hinrichs,
2010). Evaluation is performed by the WordNet-
based Path measure (Pedersen et al., 2004). The
Path measure is the inverse path length between
two words in WordNet/GermaNet. We use a
word list of 1000 frequent and 1000 infrequent
nouns for each language. The word lists were sam-
pled from the corpora with the requirement that
they are also present in WordNet/ GermaNet. For
English, we use the same words that were also
used in Weeds and Weir (2003). From the DT
entries of these words, we extract the top 5 sim-
ilar words and calculate the average inverse path
length. Since the similarities in a DT entry should
be high, this means that the path length should re-
main relatively low, e.g. synonyms (length 1, same
synset), hyponyms/hypernyms (length 2, term—
hypernym /hyponym) or co-hyponyms (length 3,
term — hypernym —related term). The Path measure

Table 3: Extracted context features for Mary and
John sit in the car, using the Stanford parser, with-
out collapsing

Term Context Feature

Lemma Lemma Dependency
Mary#NP sit#VB -nsubj
Mary#NP John#NP conj
Mary#NP and#CC cc
and#CC Mary#NP -cc
John#NP Mary#NP -conj
sit#VB Mary#NP nsubj
sithVB in#IN prep
in#IN sit#VB -prep
in#IN car#NN pobj
the#DT car#NN -det
car#NN the#DT det
car#NN in#IN -pobj

is an established way for relative comparison of
DTs against lexical-semantic networks. Since the
measure is heavily dependent on the structure and
coverage of the semantic network, scores are not
comparable across languages.

S Experimental Settings

5.1 Context Feature Representations

To evaluate the performance of our custom collaps-
ing rules, we create distributional thesauri (DT)
using dependency parse relations as context fea-
tures. We use the PCFG Stanford parser (Klein and
Manning, 2003) to parse English. As the Stanford
parser has options for collapsing and propagation
(de Marneffe et al., 2006), we can directly com-
pare DTs that are computed with different Stanford
parser settings (collapsing, propagation) with the
performance achieved when using our collapsing
rules. For German, we use the Mate-tools parser
(Bohnet, 2010; Seeker and Kuhn, 2012). As the
Mate-tools parser does not feature collapsing, we
cannot directly compare results. In fact, the lack of
collapsing for German was the main motivation of
our work. Instead, we can measure the quality im-
provements that collapsing introduces for similarity
computation.

For higher precision, words are lemmatized lead-
ing to context features as shown in Tables 3 and
4. For the purpose of computing semantic simi-
larity, we model dependencies in both directions
by adding ‘inverse’ dependencies (e.g. —nsub j).
As dependency relations are directed, not using
inverse dependencies affects similarity computa-
tions of words commonly used as dependents in

Table 4: Extracted context features for Mary and
John sit in the car, using the Stanford parser, with
collapsing and propagation (propagated dependen-
cies in italics)

Term Context Feature

Lemma Lemma Dependency
Mary#NP John#NP conj_and
Mary#NP sit#VB -nsubj
John#NP Mary#NP -conj_and
John#NP sit#VB -nsubj
sit#VB Mary#NP nsubj
sit#VB John#NP nsubj
sit#VB car#NN prep-in
the#DT car#fNN -det
car#NN the#DT det
car#NN sit#VB -prep-in

dependencies (e.g. Mary in Table 3).

Tables 3 and 4 demonstrate the impact of collaps-
ing and propagation. Even though Table 3 contains
more dependency relations, they are less discrimi-
native than the collapsed dependencies in Table 4.
Dependency propagation adds a dependency from
John to sit, leading to a higher recall in the similar-
ity computation.

5.1.1 Trigram Baseline

As a baseline system, we use a context representa-
tion of trigrams. This is an unsupervised, language-
independent feature extractor that uses the left and
right neighboring words as a combined context
feature, e.g. extracting the term /ikes and the con-
text feature Mary_@ _John from the phrase Mary
likes John. This feature representation is language-
agnostic and thus it can be used for most languages
with an established tokenization. For a fair com-
parison, we run this baseline in two configurations:
first, without any linguistic processing and second,
for an analysis of the impact of dependency fea-
tures, we lemmatize all words.

5.1.2 Stanford Parser

stanford_basic Dependency parsing without col-
lapsing or propagation

stanford_collapsed Dependency parsing with
built-in collapsing

stanford_collapsed_prop Dependency parsing
with built-in collapsing and propagation

stanford_basic_custom_collapsing Dependency
parsing without built-in collapsing, applying
our English collapsing rules afterwards

stanford_basic_custom_collapsing_prop
Dependency parsing without built-in collaps-
ing, applying our English collapsing rules
with propagation afterwards

5.1.3 Mate-tools Parser

matetools Dependency parsing without collapsing
(no built-in collapsing available)

matetools_custom _collapsing Dependency pars-
ing without collapsing, applying our German
collapsing rules afterwards

matetools_custom_collapsing_prop Dependency
parsing without collapsing, applying our
German collapsing rules with propagation
afterwards

5.2 Data

We chose datasets of different sizes for German
and English. Both of these sets consist of randomly
sampled sentences from news articles from the
Leipzig Corpora Collection (Richter et al., 2006).
To assess the impact of training data size, we
have taken samples of different sizes. These sam-
ples were taken from the full sets and include the
following sizes: 0.1M, 1M and 10M sentences.

5.3 Similarity Computation

The similarity computation is performed using the
JoBimText framework (Biemann and Riedl, 2013).
It incorporates UIMA annotators for feature ex-
traction, so we can add the collapsing annotator to
the feature extraction pipeline on top of the parser
output. We use the settings from Riedl and Bie-
mann (2013). Terms and their context features are
extracted from the input text. In our experiments,
we use neighboring words and dependency parse
features. We calculate the corpus frequencies for
terms, context features and the term—context fea-
ture combinations. Using these frequencies, we
compute the Lexicographers Mutual Information
significance measure (Evert, 2005) between terms
and contexts. We prune context features that occur
with more than 1000 words and only keep the top
1000 most significant context features per word.
Similarity between words is computed by count-
ing the number of context features that two words
share. The result is a distributional thesaurus where
for each word we obtain up to 200 similar words,
of which we evaluate on the top 5 only.

6 Results

Tables 5 and 6 show the evaluation results. In line
with previous results, a larger corpus size results
in more accurate similarities. Corpus size has a
larger impact on rare nouns, where more input text
is required to get sufficient ‘signals’ for similarity
calculation. This becomes most apparent for Ger-
man, where, due to the more complex morphology
and noun compounding, we find about twice as
many different word forms as in English (2.8M vs.
1.4M words) in the 10M corpora.

Overall, a larger corpus size leads to better DTs,
which is expected. Compared to the baselines, de-
pendency path features also improve the DTs. This
is due to the structured, more accurate features and
the fact that with dependency parsing, we obtain
several context features for most words in a sen-
tence (cf. Table 3).

Of the structural alternatives, collapsing brings
a large boost and propagation usually adds a small
improvement on top, especially for rare nouns.
Therefore, we conclude that collapsing and propa-
gation help improve the similarity computation for
both languages. Some example DT entries can be
seen in Table 7. Even though the DT entries do
not change much, using collapsing and propaga-
tion puts the more similar terms on top (e.g. office,
bank or Bahnhof (railway station)), while less sim-
ilar terms like student or Strafse (street) are ranked
lower. Collapsing and propagation do not only lead
to more accurate similarities, they also improve the
recall. For rare German nouns, the distributional
thesaurus contains similarities for only 592 out of
1000 test nouns, when computed using the Mate-
tools parser alone. Collapsing improves the recall
to 700 nouns and propagation offers an additional
increase to 703 words.

The extrinsic comparison of our collapsing en-
gine with the custom rules shows a comparable
performance to Stanford parsing with collapsing.
The scores show almost no difference for collaps-
ing and up to 0.002 score points difference for
propagation, indicating — as in Section 4.1 — that
the dependencies produced by our rulesets are very
similar to Stanford parser dependencies.

7 Conclusion

In this paper, we have presented a flexible frame-
work for collapsing, which can be applied on top of
arbitrary dependency parser outputs. We release, to
our knowledge, the first dependency collapsing and

Table 5: Average WordNet path scores for the top 5 most similar words in a DT, considering different

corpus sizes and word lists of frequent/rare English nouns

Corpus Size (freq. nouns) Corpus Size (rare nouns)
Method 0.1M M 10M 0.1M 1M 10M
baseline 0.178 0.228 0.280 0.044 0.129 0.190
baseline_lemma 0.187 0.240 0.280 0.065 0.137 0.194
stanford_basic 0.210 0.272 0.302 0.096 0.183 0.229
stanford_collapsed 0.225 0.292 0.322 0.100 0.193 0.241
stanford_collapsed_prop 0.222 0.291 0.319 0.106 0200 0.241
stanford_basic_custom_coll 0.224 0.291 0.321 0.101 0.193 0.241
stanford_basic_custom_coll_prop | 0.224 0.290 0.319 0.104 0.195 0241

Table 6: Average GermaNet path scores for the top 5 most similar words in a DT, considering different

corpus sizes and word lists of frequent/rare German nouns

Corpus Size (freq. nouns) Corpus Size (rare nouns)
Method 0.1M M 10M 0.1IM M 10M
baseline 0.127 0.165 0.229 0.000 0.009 0.056
baseline_lemma 0.128 0.183 0.254 0.000 0.009 0.062
matetools 0.144 0.208 0.265 0.001 0.017 0.081
matetools_custom_coll 0.149 0217 0.273 0.001 0.022 0.103
matetools_custom_coll_prop | 0.147 0.217 .0.274 0.001 0023 0.104

Table 7: Top 5 most similar words for English and German nouns, and their average Path scores

English: branch German: Bahnhofsplatz (station square)

stanf_basic stanf_coll stanf_coll_prop | matetools matetools_coll matetools_coll_prop
student office office Innenstadt (city) Bahnhof (station) Bahnhof (station)
area bank bank Bahnhof (station) Strafle (street) StraBe (street)
official company company Hauptbahnhof (station) Innenstadt (city) Innenstadt (city)
bank project group Strafle (street) Hauptbahnhof (station) Hauptbahnhof (station)
business director director Stadtteil (district) Schulhof (school yard) Platz (square)
0.152 0.153 0.170 | 0.152 0.169 0.219

propagation mechanism for German. This frame-
work was used to implement collapsing and tran-
sitive propagation of dependencies over conjunc-
tions for English and German. We have shown that
collapsing improves the quality of distributional
models. Also, our English ruleset offers compara-
ble performance to the built-in Stanford collapsing
rules. Since it is a separate component, it can be
used to add collapsing functionality to any other
English dependency parser. The parser framework
is freely available for download and is accessible
under a permissive license. We supply extensible
rulesets for English based on the Stanford depen-
dency tagset and for German based on the TIGER
(Brants et al., 2002) tagset.

Since we have demonstrated the utility of de-
pendency collapsing and propagation for semantic

tasks such as distributional similarity, we believe
that the German collapsing and propagation rules
are a valuable addition for German NLP. For the
future, we would hope that other groups might add
collapsing rules for more languages.

Acknowledgment

This work has been supported by the German Fed-
eral Ministry of Education and Research (BMBF)
within the context of the Software Campus project
LiCoRes under grant No. 011S12054.

References

Chris Biemann and Martin Riedl. 2013. Text: Now in
2D! a framework for lexical expansion with contex-
tual similarity. Language Modelling, 1(1):55-95.

Jari Bjorne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2009. Ex-
tracting complex biological events with rich graph-
based feature sets. In Proc. Workshop on Current
Trends in Biomedical NLP: Shared Task, pages 10—
18, Boulder, CO, USA.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proc.
International Conference on Computational Linguis-
tics (COLING 2010), pages 89-97, Beijing, China.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
treebank. In Proc. Workshop on Treebanks and Lin-
guistic Theories, pages 24—41, Sofia, Bulgaria.

Marie-Catherine de Marneffe and Christopher D Man-
ning. 2008. The Stanford typed dependencies rep-
resentation. In Proc. International Conference on
Computational Linguistics (COLING '08), pages 1—
8, Manchester, UK.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christoper D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proc. Language Resources and Evaluation (LREC
2006), pages 449-454, Genova, Italy.

Amit Dubey and Frank Keller. 2003. Probabilistic
parsing for German using sister-head dependencies.
In Proc. Meeting of the Association for Computa-
tional Linguistics (ACL 2003), pages 96—103, Sap-
poro, Japan.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Proc. Workshop on Open Infrastructures and Anal-
ysis Frameworks for HLT (OIAF4HLT) at COLING
2014, pages 1-11, Dublin, Ireland.

Stefan Evert. 2005. The statistics of word cooccur-
rences: word pairs and collocations. Ph.D. thesis,
IMS, Universitét Stuttgart.

Christiane Fellbaum. 1998. Wordnet. An Electronic
Lexical Database. MIT Press, Cambridge, MA.

David Ferrucci and Adam Lally. 2004. UIMA: An
Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment.
Natural Language Engineering 2004, 10(3-4):327-
348.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet —
a lexical-semantic net for German. In Proc. ACL
Workshop on Automatic Information Extraction and
Building of Lexical Semantic Resources for NLP Ap-
plications (ACL-EACL ’97), pages 9-15, Madrid,
Spain.

Verena Henrich and Erhard Hinrichs. 2010.
GernEdiT — the GermaNet editing tool. In Proc.
Language Resources and Evaluation (LREC 2010),
pages 2228-2235, Valletta, Malta.

Mark Johnson. 1998.
tree representations.
24(4):613-632.

PCFG models of linguistic
Compututational Linguistics,

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP’(09 shared task on event extraction. In
Proc. Workshop on Current Trends in Biomedical
NLP: Shared Task, pages 1-9, Boulder, CO, USA.

Dan Klein and Christoper D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proc. Meeting of
the Association for Computational Linguistics (ACL
2003), pages 423-430, Sapporo, Japan.

Peter Kluegl, Martin Toepfer, Philip-Daniel Beck,
Georg Fette, and Frank Puppe. 2014. UIMA Ruta:
Rapid development of rule-based information extrac-
tion applications. Natural Language Engineering,
pages 1-40.

Dekang Lin. 1997. Using syntactic dependency as
local context to resolve word sense ambiguity. In
Proc. Meeting of the Association for Computational
Linguistics and Conference of the European Chapter
of the ACL (ACL-EACL ’97), pages 64—71, Madrid,
Spain.

Philip Ogren and Steven Bethard. 2009. Building test
suites for UIMA components. In Proc. Workshop on
Software Engineering, Testing, and Quality Assur-
ance for NLP (SETQA-NLP 2009), pages 1-4, Boul-
der, CO, USA.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet::similarity: measuring the re-
latedness of concepts. In Demonstration Papers at
HLT-NAACL 2004, pages 38—41, Boston, MA, USA.

Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdottir,
and Chris Biemann. 2006. Exploiting the Leipzig
Corpora Collection. In Proc. IS-LTC 2006, pages
68-73, Ljubljana, Slovenia.

Martin Riedl and Chris Biemann. 2013. Scaling to
large® data: An efficient and effective method to
calculate distributional thesauri. In Proc. Empirical
Methods in Natural Language Processing (EMNLP
2013), pages 884-890, Seattle, WA, USA.

Martin Riedl, Irina Alles, and Chris Biemann. 2014.
Combining supervised and unsupervised parsing for
distributional similarity. In Proc. International
Conference on Computational Linguistics (COLING
2014), pages 1435-1446, Dublin, Ireland.

Wolfgang Seeker and Jonas Kuhn. 2012. Making el-
lipses explicit in dependency conversion for a Ger-
man treebank. In Proc. Language Resources and
Evaluation (LREC 2012), pages 3132-3139, Istan-
bul, Turkey.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In Proc. Empirical
methods in Natural Language Processing (EMNLP
2003), pages 81-88, Sapporo, Japan.

