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ABSTRACT
Assigning documents accurately to sites is critical for the perfor-
mance of multi-site Web search engines. In such settings, sites
crawl only documents they index and forward queries to obtain
best-matching documents from other sites. Inaccurate assignments
may lead to inefficiencies when crawling Web pages or processing
user queries. In this work, we propose a machine-learned docu-
ment assignment strategy that uses the locality of document views
in search results to decide upon assignments. We evaluate the per-
formance of our strategy using various document features extracted
from a large Web collection. Our experimental setup uses query
logs from a number of search front-ends spread across different
geographic locations and uses these logs to learn the document ac-
cess patterns. We compare our technique against baselines such as
region- and language-based document assignment and observe that
our technique achieves substantial performance improvements with
respect to recall. With our technique, we are able to obtain a small
query forwarding rate (0.04) requiring roughly 45% less replica-
tion of documents compared to replicating all documents across all
sites.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Retrieval Sys-
tems

General Terms
Design, Performance, Experimentation

Keywords
Multi-site web search engines, document replication, classification

1. INTRODUCTION
As the Web grows in size and extent, web search engines re-

quire an increasing amount of compute power to keep up with
user expectations. More compute power is necessary, for exam-
ple, to crawl more documents, compute more expensive features,
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and serve more users faster. Recently, commercial engines have
dealt with this problem by building larger data centers, and central-
izing all search engine infrastructure into one of those data centers.
There is a clear limitation in this method, however, since building
even larger data centers becomes increasingly difficult due to space
and power pressure.

An appealing alternative to such a centralized approach to search
is to split the functionality of an engine across multiple data cen-
ters or sites. Different from federated search [8], this design option
implies complete control over the functionality of each site, instead
of using existing engines to process queries. To date, some com-
mercial engines have taken the approach of using multiple sites in
a replicated fashion to prevent local disasters from disrupting the
search service. This replicated approach consists of having mul-
tiple data centers crawling and indexing approximately the same
collection of web documents. Such a replicated solution, however,
does not mitigate the problem of having to build even larger data
centers in the future. Consequently, a successful multi-site design
depends upon the ability to split the functionality of an engine with-
out requiring sites to be full replicas of each other.

Being able to divide roles and tasks across a number of sites ef-
ficiently has a number of advantages. An important advantage is
scalability: it enables a new data center to become part of the sys-
tem at any time and to increase its overall capacity. It also enables
other benefits such as geodiversity, which leads to lower costs [1]
and more efficient edge processing [14]. Despite such a set of ap-
pealing benefits, no such practical solution exists, to the best of
our knowledge, and there are still several challenges to overcome
before we are to see such multi-site search engines commonly in
practice.

One such challenge is assigning documents to sites effectively.
Since we have chosen by design not to have all sites crawling and
indexing the same set of documents, we need a mechanism to deter-
mine which site crawls and indexes which set of documents, per-
haps even allowing some degree of replication for performance.
Assigning documents to sites, however, is not a straightforward
task. There is no clear set of features that provides a good as-
signment, and a poor assignment might lead to poor utilization of
storage, compute, and communication resources, possibly defeat-
ing the purpose of having a multi-site engine.

Our goal therefore is to propose a solution with desirable prop-
erties to the problem of assigning documents to sites in multi-site
engines. We assume that sites crawl pages regularly from the Web,
and once they fetch a new page they execute a procedure to deter-
mine which site should index such a page, possibly one or more
remote sites. Our strategy builds upon multi-class classification
techniques, and shows that it is possible to improve the overall user
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Figure 1: System overview, using three sites.

experience compared to baseline strategies. There are two main use
cases we foresee for our strategy:

Query processing and indexing: Suppose a multi-site search en-
gine such that users always submit queries to the closest site
with respect to network distance. If such a site indexes most
documents requested by its users, then we are able to reduce
query processing latency substantially on average. Reducing
query processing latency is critical for user satisfaction [28].

Crawling: Suppose that we have a procedure that is able to decide
based on the URL which site or set of sites should index this
document. In such a scenario, sites mostly fetch documents
they index, and for optimization purposes, sites can tell each
other URLs they discover and other sites should index.

Contributions.
We propose a machine learning technique for document assign-

ment in multi-site search engines. We use query logs, documents,
and region/language classifiers from a commercial search engine
to evaluate our technique. Our main conclusion is that this tech-
nique enables significant performance improvements with respect
to user-observed latency and significant improvements with respect
to system resources such as storage, processing, and network band-
width. Compared to baselines that classify documents based on
region and language only, we are able to reduce substantially the
rate of query forwarding (from 0.65 to 0.04) without requiring that
all sites index all documents (roughly 45% less replication).

Roadmap.
The rest of this paper is structured as follows. Section 2 describes

our problem setting in greater detail. Section 3 characterizes the
data and discusses the features we use for the machine learning ap-
proaches that are presented in Section 4. We present our empirical
results in Section 5, and Section 6 reviews related work. We discuss
our findings in Section 7, and Section 8 concludes the paper.

2. PROBLEM DESCRIPTION
A search engine has essentially three main components: a

crawler, an indexer, and a query processor. The crawler fetches
documents from the Web, and in the process it finds new pages to
crawl by parsing fetched pages. Once the crawler builds a docu-
ment collection, the indexer processes the document collection and
creates an inverted file, which is used to process queries. The query
processor receives queries from users and processes them using the
inverted file. All these components can be implemented with mul-
tiple processors in a parallel fashion, and we assume in our archi-

tecture that each site contains processors implementing crawling,
indexing and query processing.

In our setting, we need a document assignment mechanism for
two reasons: crawling and indexing. A crawler implemented with
multiple processors requires a way to split the crawling work across
all participating processes. In a multi-site scenario, splitting the
work across processors becomes even more difficult because not
all processors are co-located and selecting processors closer to
the document is critical for efficient utilization of network band-
width [12]. Consequently, we need a mechanism to determine
which site or set of sites should crawl a given document. Given
such an assignment mechanism, there are some trivial strategies
that could be implemented, such as having a single site fetching
documents and distributing synopses to others, assuming a repli-
cated document.

Since all sites index documents, it is necessary for each site to
determine which set of documents it should index. Ideally, a site
indexes all documents necessary to process queries it receives di-
rectly from users. In practice, this is simpler to achieve when fully
replicating documents. The major drawback of fully replicating is
the potential increase on the amount of infrastructure (e.g., hard-
ware, power, personnel) required for each site. Consequently, we
assume that sites are not necessarily approximate images and are
able to forward queries to each other in the case they are not able
to process queries locally. Sites can use, for example, threshold-
ing techniques such as those proposed in [1] and [13] to forward
queries. It is desirable, however, to reduce the amount of forwarded
queries, due to both network utilization and query processing la-
tency. Hence, we target an assignment mechanism that enables us
to reduce the amount of forwarded queries between sites. The ac-
tual query forwarding mechanism is out of the scope of this paper.

More specifically, the problem we target is the one of processing
a document and deciding which subset of sites should index it. Let
S be the set of sites of our system and D be the set of documents
on the Web. Note that the set D is not necessarily known. We seek
a function g : D → 2S that is able to assign documents accurately
and efficiently. Accurately means that for every site S, a signifi-
cant fraction of the queries received in S are processed locally in S
and not forwarded. Efficiently means that it is not computationally
costly to find which sites should crawl and index a given document.
In the remainder, we will focus on an application with 27 sites.

3. FEATURE EXTRACTION
We take a machine learned document classification approach as

solution for our document assignment problem. We first produce a
list of features that may correlate well with the occurrence counts of
documents in search results. For every document in a given training



set, we compute the values for each of the features in our list. From
the same training set, we also compute the view information (the
number of times a document is displayed to users) for documents.
This information constitutes our ground truth.

In our solution, each document that appears in the top k results of
a user query issued to a search site forms a classification instance,
and it is labeled with the search site at which the document is dis-
played. Since a document may be requested by different queries
issued to different search sites, a document may have multiple class
labels. Given the features and class labels of training documents,
we train classifiers using machine learning techniques detailed in
Section 4. Then, using these models, the labels are assigned to un-
seen documents in a given test set of documents. A document is
assigned to all sites corresponding to the predicted labels.

In our work, we evaluate two main features: document region
and language, which are expected to be highly correlated with doc-
ument access patterns in a geographically distributed query pro-
cessing setting. We also evaluate a number of supplementary fea-
tures, relatively much less correlated. In what follows, we describe
the representative features extracted. Note that an alternative to our
set of features would be a standard approach to document classifica-
tion using a bag-of-words or tf-idf representation. We refrain from
this approach as it is computationally expensive and does not trans-
late to our use cases as the document content may not be available
at all (e.g., classification of URLs discovered during web crawling).

3.1 Main Features
Region. We represent the geographical region of the web site

from which the document is crawled by the F-region feature. It
may not always be possible to accurately obtain this information,
however. In our case, we use a document classifier, actively used
by a commercial search engine to predict the geographical regions
of documents. This classifier combines various features such as the
URL domain to assign a region to every document. This feature
is expected to be an important feature as it is known that a high
fraction of user queries are regional queries that seek documents
that are in geographical neighborhood of users [2]. In our data, the
F-region feature can take 238 different values.

Language. A traditional technique in document classification
is to use the bag of words in the document content. However, in
a practical setting, this approach may be computationally expen-
sive. Herein, we use a single content-based feature, F-language,
which represents the language of the document. To determine the
language of our documents, we use another text classifier, which is
in production in a commercial search engine. This feature is also
expected to be important as queries are much more likely to match
documents in the same language. In our data, the F-language
feature can take 83 different values, i.e., we observed 83 different
languages in our document collection.

3.2 Supplementary Features
Document quality. The quality of a document may be computed

in many different ways, using the information extracted from its
content (e.g., spam classification) or by using the link information
in the web graph (e.g., PageRank). Herein, we evaluate two quality
metrics referred to as F-linkQuality and F-hostQuality.
The first is a metric that uses the incoming links of the document to
compute a quality value. The second computes the quality based on
the host of the document. Both metrics are proprietary, and hence
we do not disclose the exact formulas herein.

URL. In certain cases, the only information available about the
document is the URL. There are several reasons for this. First,
the document content may not have been crawled yet, but only a

link to the document (i.e., its URL) is discovered. Second, clas-
sifiers may not be available to compute more complex features
such as region, language, and quality. Third, the document may
have an empty content and consist of only a URL. As representa-
tive features, we extract four features from the URL: F-length,
F-port, F-query, and F-depth. The F-length feature is
simply the length of the URL. F-port represents the port number
of the HTTP server from which the document is fetched. F-query
is a categorical feature taking the values of 1 or 0, depending
on whether the URL has a query component1 or not. Finally,
F-depth indicates the depth of the document in the storage hier-
archy, i.e., it is simply the number of slashes in the path component
of the URL.

Size. We use two features, F-htmlSize and F-textSize,
which represent the size of the document before and after remov-
ing the HTML tags, respectively. We also use two other features,
referred to as F-termCount and F-uTermCount, which rep-
resent the number of terms and the number of unique terms in the
document, respectively.

3.3 Feature Characteristics
In this section, we first investigate the correlation between our

main features and document views in search results. We adopt the
following strategy. For the F-region and F-language fea-
tures, we count the number of documents having a certain fea-
ture value and how many of those documents are requested by at
least one query, i.e., appear in the top k search results (in our case,
k = 10). The ratio of the two numbers gives us the likelihood for
those documents to be viewed at least once. Any feature value for
which the number of documents is less than 0.1% of the collection
size is omitted as the number of samples is low.

Fig. 2 shows properties of the F-region and F-language
features, where the values are sorted in increasing order of proba-
bilities. According to Fig. 2 (top), documents of certain regions are
more likely to be viewed. We similarly observe that documents of
certain languages are more likely to be viewed (Fig. 2, bottom).

In Fig. 3, we visualize the correlation between sites (x-axis) and
features (y-axis). In this figure, correlation is encoded by color,
that is, darker colors indicate higher correlations and lighter colors
indicate lower correlations, e.g., white indicates statistically un-
correlated features. Unsurprisingly, we observe that F-region
and F-language are the two features that correlate most with all
sites. Depending on the site, the strength of the correlation varies.
For instance, sites 4, 13, 15, and 27 highly correlate with regions
and languages while sites 6, 7, 8, 19, and 26 show only weak corre-
lations across all features. Most importantly, however, none of the
supplementary features show high correlation throughout the anal-
ysis. Consequently, we discard them in the remainder and focus
only on F-region and F-language features.

4. MACHINE LEARNING APPROACHES
In this section, we introduce machine learning approaches to

learn a function g : D → 2S that assigns every document to a
subset S of available sites. Section 4.1 introduces the formal prob-
lem setting and shows the appropriateness of binary classification
methods. Section 4.2 discusses the representation of documents.

4.1 Formal Problem Setting
Let xi denote the feature representation of the i-th document and

yi ∈ {+1,−1} be the ground-truth of a document for site s, where

1RFC 3986 specifies that the query component of an URI is the
part between the ? and the end of the URI or the character #.
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Figure 2: Probability that a document is requested by at
least one query vs. the feature value: F-region (top) and
F-language (bottom).

yi = +1 if xi appears in the top-k result set of queries that come
from site s. That is, yi indicates whether to store document xi at
site s (yi = +1) or not (yi = −1).2

Translating all documents and target values in this way gives us
a training set of n pairs Ds = {(x1, y1), . . . , (xn, yn)} for site
s. Recall that for a site s, the decision of storing a document is
independent of possibly existing replicas of that document at sites
s′ 6= s. That is, for each site s ∈ S, the formal problem setting
reduces to a binary classification problem as follows.

For each site s, we aim at learning a linear model of the form

fs(x) = 〈ws, x〉+ bs,

where ws is called the weight vector and bs the threshold. At appli-
cation time, new documents are stored at site s if sign[fs(x)] = +1
and rejected if sign[fs(x)] = −1.

For each site, optimal parameters are supposed to minimize la-
tency and storage overhead. Latency can be identified with the
number of false negatives, that is, documents that should be stored
at the site but have been rejected:

Ωlatency(fs,Ds) =
∑

(x,y)∈Ds

I [y = +1 ∧ sign[fs(x)] = −1] ,

where I[·] is an indicator function yielding I[z] = 1 if z is true
and I[z] = 0 if z is false. Analogously, storage overhead can be

2To avoid cluttering the notation unnecessarily, we omit the addi-
tional subscript s for ys,i since the binarized ground-truth highly
depends on the actual site s.
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Figure 3: Visualization of correlation coefficients between fea-
tures and sites. Darker colors indicate stronger correlations.

related to the number of false positives, that is, documents that are
unnecessarily stored because they are never requested:

Ωstorage(fs,Ds) =
∑

(x,y)∈Ds

I [y = −1 ∧ sign[fs(x)] = +1] .

Since both, latency and storage capacity, are equally important, a
natural approach to finding fs is to minimize the unweighted sum
which is precisely the classification error:

f∗s = argmin
f

Ωlatency(f,Ds) + Ωstorage(f,Ds)

= argmin
f

∑
(x,y)∈Ds

I [y 6= sign[f(x)]] .

That is, we can apply off-the-shelf machine learning techniques
minimizing the error rate, such as Decision Trees [23], Logistic Re-
gression [19], or Support Vector Machines [15], to learn classifiers
for the sites s ∈ S. In this work, we focus on Support Vector Ma-
chines that minimize an upper bound on the error rate while maxi-
mizing the separating margin between the two classes to preserve a
well-posed, convex optimization problem with unique solution.

Once optimal functions f∗1 , . . . , f∗|S| are computed, the final as-
signment g is easily assembled by stacking the classifiers:

g(x) = (f∗1 (x), . . . , f∗|S|(x)).

4.2 Document Representation
So far, xi denoted the feature representation of the i-th doc-

ument. Our study relies on only two categorical attributes with
238 (F-region) and 83 (F-language) realizations. Usually,
categorical attributes are binary encoded such that ones indicate
the presence and zeros the absence of a certain realization. For
example, an attribute a having three possible realizations a ∈
{r1, r2, r3}would be translated into (1, 0, 0), (0, 1, 0), or (0, 0, 1),
respectively, depending on whether the actual realization is r1, r2,
or r3. Applying this principle to our attributes yields 238+83=321
dimensional feature vectors for each document. These vectors can
be efficiently stored in sparse representation as only two elements
will be non-zero.
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Given the binarized representation, the learning algorithm adapts
to the present combinations of regions and languages. However,
depending on the actual realizations, the two features might not
be expressive enough to allow for reliable results. For instance,
scenarios like X-OR, which cannot be learned with linear models,
might occur. To allow for a richer set of features, we therefore
incorporate features indicating the absence of certain regions or
languages for a document. These so-called negative features have
been proven beneficial in many areas including robotics [16] and
natural language processing [6].

Translated to our example, a document with the attribute a = r2
would have the representation (0, 1, 0, 1, 0, 1) where the last three
elements indicate the absence of r1 and r3. We devise a second
representation of the documents including negative features leading
to 642 dimensional feature vectors with exactly 321 non-negative
elements per document.

5. EVALUATION

5.1 Experimental Setup

5.1.1 Documents
We use a set of documents crawled from the Web as our doc-

ument collection (about 25 million documents). This collection
excludes documents that contain text in languages such as Chinese,
Japanese, and Korean (we use the UTF code range of characters to
detect such documents). The reason behind excluding these docu-
ments is that there is no tokenization algorithm available to us for
these languages, for which space is not a natural word delimiter.

The obtained collection is split into two sets randomly as train-
ing and test sets, each containing about 80% and 20% of the doc-
uments, respectively. A power-law distribution is observed in the
frequency of document views (Fig. 4), i.e., many documents are
rarely viewed while few documents are viewed many times.

5.1.2 Queries
To create the ground-truth class labels, we use a training query

set of 5.9 million queries, randomly sampled from the query logs
(the same day) of a commercial search engine. We also sample a
test query set of 5.7 million queries from a different day of query
logs to assign class labels to the test collection. For each query, we
record the site the query originates from (for our query log, there
are 27 possible sites). During query sampling, we exclude succes-
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Figure 5: Query frequency distribution.

sive page requests and consider only the queries requesting the first
page, i.e., the top 10 results. All queries are passed through stan-
dard cleansing procedures such as stop-word elimination and case-
folding. We also unique query terms and sort them alphabetically.
Fig. 5 shows that our sample query log follows a clear power-law
distribution in terms of query occurrence frequency.

We use the Terrier search engine to create two separate inverted
indexes, one for the training collection and the other for the test col-
lection. Using the same search engine, we evaluate every test and
train query on their respective indexes and obtain the top 10 results.
Every document retrieved in top 10 results of a query is assigned
a label corresponding to the region of the query. As some doc-
uments are requested by different queries from different regions,
they are assigned multiple labels. In top k computations, we use
a BM25 variant. We avoid the use of techniques that incorporate
more information into the scoring function, such as a link analy-
sis metric or region boosting. This is because some features (e.g.,
F-region, F-linkQuality, and F-hostQuality) show
correlation with these scoring techniques. We want to test features
that are as independent as possible from the scoring function.

5.1.3 Baselines
We employ two baselines, based on region and language at-

tributes. The first baseline, referred to as REG, assigns documents
to sites according to their region. That is, we assume that all doc-
uments in a region are stored in the geographically closest data
center. We identify the closest site by measuring the great-circle
distances between the document’s region and the regions in which
a data center is located. In the second baseline, referred to as LAN,
we use the predicted language of the document for assignment. In
this approach, we use the information provided on Wikipedia about
the usage frequency of languages in different regions. We first try
to assign the document to the region with the highest number of
native speakers. If there is no data center in that region, we iterate
in order of decreasing frequency until we find a region with a data
center. If none is found, we assign the document to the geographi-
cally closest data center.

Fig. 6 shows how many different regions and languages are as-
signed to a site. According to Fig. 6 (top), a few search sites are as-
signed to many regions while the bulk is assigned to only a few. The
distribution is even more biased for the language baseline (Fig. 6,
bottom). Note that these baselines are completely blind to docu-
ment views and accesses by users of different search sites in reality.
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Figure 6: The number of different regions (top) and languages
(bottom) assigned to each search site by the baseline techniques.

5.2 Results

5.2.1 Accuracy
In the first part of our evaluation, we focus on the predictive ac-

curacies of Support Vector Machines (SVMs) using the two feature
representations described in Section 4.2. We refer to using only
positive features simply as SVM and denote the incorporation of
negative features as SVM-n.

For each site and feature representation, we use 5-fold cross-
validation [33] for selecting the optimal value of the SVM trade-
off parameter C ∈ [10−4, 104]. Using the optimal C, the model is
retrained on all training examples and evaluated on the independent
test set. We account for skewed class distributions by re-weighting
the impact of examples according to their class ratios throughout
all experiments.

A problem in measuring the accuracy for a site s is differently
labeled instances of the same document. Since all these instances
have the same feature representation, they are classified into the
same category. However, irrespectively of whether the prediction
is correct or not, some of these instances contribute positively to the
accuracy and some negatively. We intend to exclude the possibility
that negatively labeled instances overrule the impact of the posi-
tively labeled ones since they refer to other sites and induce a bias
on the accuracies. A simple remedy is to re-label the ground-truth
of all instances of a document as positive if at least one of them is
assigned to the site s. However, note that this approach significantly
alters the distribution of documents for the sites. We thus decided to
remove all negatively labeled instances of a document from the test

Table 1: Accuracy values for individual search sites

Accuracy
Class Size REG LAN SVM SVM-n

18 21674 99.86 99.92 57.35 57.35
25 23011 99.87 99.92 57.58 57.58

6 24972 99.82 99.91 57.83 57.83
5 46863 99.51 99.83 32.04 60.21

20 51719 97.52 98.94 58.09 58.09
7 54814 99.74 99.80 60.08 60.08

11 56087 99.74 99.78 32.21 59.14
1 56210 98.99 99.80 59.82 0.20

23 60826 99.59 99.49 38.91 60.43
17 94259 99.61 99.36 29.23 62.05

9 98347 99.62 99.68 59.19 0.36
21 144831 99.41 99.44 0.55 64.23
16 184054 98.32 99.19 33.51 65.46
26 738741 98.45 98.67 16.12 2.86
10 874524 94.77 93.95 15.94 81.06

0 1016069 95.93 95.27 20.56 4.91
19 1034849 94.31 94.94 32.71 4.96

8 1191769 93.63 95.36 5.89 5.89
14 1205321 95.54 95.92 5.69 5.69

2 1676430 91.09 89.91 9.68 9.68
22 2319567 88.14 86.88 13.05 13.15
13 2397392 89.08 87.73 12.30 12.30

3 2822912 92.54 93.28 14.10 14.10
15 2929832 86.39 84.59 15.40 15.40

4 3635510 73.05 76.56 23.43 23.43
12 4115087 86.40 87.67 22.71 22.71
24 7084813 66.74 76.75 44.29 44.29
Avg. accuracy 95.29 95.734 30.68 36.41

set of site s if at least one of these instances is positively labeled. If
all instances of a document are positively/negatively labeled, then
all instances are kept.

Table 1 shows the accuracies for all 27 sites, ordered with by
their size, i.e., the number of instances in the class. The two base-
lines perform excellent in terms of accuracy and significantly out-
perform the machine learning approaches. For the latter, the size of
the sites is crucial for predictive performance. While small sites are
covered reasonably well the SVMs perform poorly for large ones.
The reason is the great variety of documents at large sites. That is,
documents of any region and language are retrieved at large sites
and the presence of all realizations of the attributes hardens the
learning process. Hence, the optimal solution for large sites is to
simply assign all documents to the site, which explains the poor
accuracies. By contrast, the baselines assign every document by
design to only a single site. Thus, if according to the ground-truth,
a document should be stored on x sites, the number of true nega-
tives is at least tn=27−x−1, which constitutes the main portion of
the accuracies in our setting. We will see in the next section that ac-
curacy is not always a good indicator for replication and forwarding
rates. Before, let us note that, compared to SVM, the negative fea-
tures in SVM-n help slightly to capture small- and medium-sized
sites better. For large sites, the performance is identical.

5.2.2 Replication and Forwarding Rates
When designing multi-site search engines, there are two impor-

tant concerns with respect to resource utilization and user satisfac-
tion. Having more documents in a site implies more storage for



Table 2: Replication and query forwarding rates for individual sites

Replication rate Forwarding rate
Class Size REG LAN SVM SVM-n REG LAN SVM SVM-n

18 21674 0.001 0.000 0.000 0.000 0.768 0.771 0.771 0.771
25 23011 0.001 0.000 0.000 0.000 0.772 0.777 0.777 0.777

6 24972 0.001 0.000 0.053 0.000 0.742 0.761 0.714 0.761
5 46863 0.005 0.000 0.714 0.000 0.746 0.779 0.410 0.779

20 51719 0.032 0.024 0.019 0.000 0.323 0.281 0.287 0.487
7 54814 0.001 0.000 0.064 0.000 0.749 0.756 0.676 0.756

11 56087 0.004 0.003 0.714 0.000 0.633 0.622 0.354 0.787
1 56210 0.014 0.000 0.049 1.000 0.734 0.765 0.572 0.000

23 60826 0.004 0.005 0.638 0.000 0.350 0.343 0.228 0.366
17 94259 0.005 0.013 0.783 0.000 0.650 0.622 0.267 0.765

9 98347 0.005 0.004 0.511 1.000 0.622 0.608 0.501 0.000
21 144831 0.009 0.000 1.000 0.000 0.613 0.762 0.000 0.762
16 184054 0.023 0.014 0.706 0.000 0.546 0.548 0.280 0.756
26 738741 0.008 0.010 0.887 1.000 0.632 0.592 0.063 0.000
10 874524 0.053 0.083 0.888 0.000 0.764 0.637 0.163 0.823

0 1016069 0.013 0.000 0.864 0.995 0.737 0.788 0.160 0.004
19 1034849 0.015 0.005 0.828 1.000 0.858 0.863 0.178 0.000

8 1191769 0.075 0.060 1.000 1.000 0.650 0.568 0.000 0.000
14 1205321 0.042 0.045 1.000 1.000 0.686 0.626 0.000 0.000

2 1676430 0.020 0.008 1.000 1.000 0.838 0.872 0.000 0.000
22 2319567 0.007 0.003 1.000 1.000 0.860 0.881 0.000 0.000
13 2397392 0.019 0.001 1.000 1.000 0.769 0.795 0.000 0.000

3 2822912 0.032 0.031 1.000 1.000 0.561 0.486 0.000 0.000
15 2929832 0.007 0.000 1.000 1.000 0.784 0.812 0.000 0.000

4 3635510 0.470 0.000 1.000 1.000 0.732 0.878 0.000 0.000
12 4115087 0.055 0.063 1.000 1.000 0.688 0.585 0.000 0.000
24 7084813 0.079 0.627 1.000 1.000 0.823 0.377 0.000 0.000

Avg. replication factor 1.000 1.000 18.688 14.996 – – – –
Avg. forwarding rate – – – – 0.741 0.651 0.027 0.041

those documents and processing capacity to index them. Reducing
the number of documents manipulated in each site is consequently
a critical goal. Reducing the amount of compute and storage re-
sources for each site, however, is not the only concerning aspect.
Using fewer hardware resources does not guarantee that the user
perception of latency is good. To achieve this goal, sites ideally in-
dex all documents in the result set of queries it receives from local
users without indexing the whole collection served by the engine.

In this section, we report on the actual replication and forwarding
rates of the derived classifiers. The replication rate on a particular
site is defined as the fraction of the full index that is replicated
on that site, i.e., the rate is given by the number of postings that
appear in the site’s local index. Therefore, we accurately measure
the storage requirement for local indexes. The replication factors
we report in this section indicate the number of sites a document is
replicated on average.

The query forwarding rate of a site is defined as the fraction of
queries that cannot be locally processed by the site and hence needs
to be forwarded to at least one other site. Therefore, we can have
an estimate of what fraction of queries are expensive, i.e., have
high response times. When computing the query forwarding rates,
we assume the existence of an oracle that knows the placement
of all document replicas and hence gives the forwarding decisions
with perfect accuracy. That is, we assume that a query is processed
locally only if all documents that will appear in the its top k list are
indexed by the local index; otherwise, it is forwarded from the local
site to one or more sites. The average forwarding rates displayed at

the bottom of the table are computed over all queries submitted to
all sites. We note that this average is obtained by micro-averaging,
i.e., it is an average over all queries issued to the search engine.

Table 2 shows the results. Due to the nature of the baselines, their
replication factor is trivially 1. Each document is stored at exactly
one site, determined by either its region or language attribute. As
a consequence, the forwarding rate is very high: across all queries,
on average about 74% of the queries using the region and 65%
using the language are forwarded.

The results change substantially when using SVM and SVM-n.
For the machine learning approaches, the average degree of repli-
cation of a document goes up to almost 19 and 15, respectively,
implying that the overall storage cost also increases by the same
number. This is due to storing all documents for large sites as seen
in the previous section. Interestingly, the fraction of forwarded
queries is reduced by the higher degree of replication. For the
SVM, the average forwarding rate is only 0.027, which can be con-
sidered marginal. Introducing negative features in SVM-n results
in a slightly larger forwarding rate of 0.041 but reduces the average
replication to only 15 sites. Therefore, there is a clear benefit in
using SVM and SVM-n.

Irrespective of the method, the results for small sites leave room
for improvement. Language and region baselines do not assign
documents or only very few documents to such sites, while the ma-
chine learning approaches assign a larger fraction of documents to
the sites and still requires a relatively large fraction of forwarded
queries. SVM-n even results in an all-or-nothing strategy by either



Table 3: Replication factor for missing test instances

Replication rate
Class Size REG LAN SVM SVM-n

18 21674 0.000 0.000 0.000 0.000
25 23011 0.000 0.000 0.000 0.000

6 24972 0.000 0.028 0.000 0.000
5 46863 0.005 0.006 0.000 0.000

20 51719 0.147 0.000 0.141 0.000
7 54814 0.000 0.000 0.000 0.000

11 56087 0.006 0.000 0.005 0.000
1 56210 0.023 0.000 0.000 1.000

23 60826 0.029 0.093 0.039 0.000
17 94259 0.005 0.003 0.012 0.000

9 98347 0.003 0.052 0.003 1.000
21 144831 0.008 0.005 0.000 0.000
16 184054 0.024 0.021 0.017 0.000
26 738741 0.014 0.005 0.015 1.000
10 874524 0.029 0.047 0.052 0.000

0 1016069 0.005 0.000 0.000 1.000
19 1034849 0.014 0.017 0.005 1.000

8 1191769 0.116 0.012 0.093 1.000
14 1205321 0.040 0.000 0.047 1.000

2 1676430 0.008 0.005 0.028 1.000
22 2319567 0.003 0.141 0.002 1.000
13 2397392 0.012 0.000 0.005 1.000

3 2822912 0.008 0.002 0.006 1.000
15 2929832 0.001 0.039 0.000 1.000

4 3635510 0.438 0.508 0.000 1.000
12 4115087 0.020 0.000 0.021 1.000
24 7084813 0.042 0.015 0.508 1.000

Average 1.000 1.000 18.446 15.000

storing all documents at a site or none. While this results in an
additional storage overhead for small sites, storing all documents
appears reasonable for large sites as no forwarding is needed. Our
results encourage the use of SVMs which substantially improve
the replication rate for only a marginal increase in forwarding com-
pared to a traditional replication scenario.

An important issue is that some queries return no results after
evaluation over the entire index. For such queries, we assume that
our oracle does not forward the query to non-local sites as it is
known that the query will not be answered by any site. There-
fore, in certain sites, even though the replication amount on the site
is zero, the fraction of queries forwarded by that site may remain
below 1. As an example, consider site 18, where no documents
are replicated (see Table 2). The query forwarding rate remains at
0.771 since about 22.9% of queries issued to site 18 are not for-
warded as they are known to not return any results.

5.2.3 Missing Documents
Our analysis so far focused on storing documents that are re-

turned as results for a set of queries. However, not all documents
are retrieved as part of a top-k result set [26]. Some documents
for instance are even never returned. The common strategy is to
store these documents rather than deleting them for potential future
queries. Table 3 shows the replication rates for documents, that are
not part in any of our result sets. The numbers are almost identical
to the ones in Table 2. The distribution of the missing instances is
therefore uniform with respect to region and language and they do
not change the overall picture.
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Figure 7: Contribution of features to the overall performance.
The poor average performance is due to the noise that is intro-
duced by additional and uncorrelated features.

5.2.4 Feature Analysis
In this section, we analyze the contribution of all feature to the

overall prediction for the support vector machine classifiers. For
this, we trained Support Vector Machines using all 12 features for
the 27 sites. In the test phase, we strategically discarded all but
one feature from the learned models and averaged the performances
over the sites.

Fig. 7 shows the results. As already shown earlier, the features
F-region and F-language possess the strongest correlation
with the target values and contribute highest to the average accu-
racies. Nevertheless, the models are trained on all features and the
performance is not as good as if trained on the respective single
feature alone. This poor performance is due to the noise introduced
by the uncorrelated features, which harms the learning process, and
the figure justifies our initial choice of features.

6. RELATED WORK
We are not the first to propose techniques for building multi-site

search engines. Baeza-Yates et al. and Cambazoglu et al. have
investigated the feasibility of multi-site search engines [1, 11, 13]
and specific problems on these architectures such as query forward-
ing [1, 13], index freshness [27], and result cache freshness [10].
Unlike traditional centralized, single-site search architectures [4,
25], the work on multi-site engines focuses on distributing the
search process over multiple, cooperative, and geographically dis-
tant search sites. Our work is complementary to theirs. We specif-
ically target the document assignment problem in multi-site search
architectures.

It is important to observe that our setting shares more similarities
with tiering [3] than with federated search [8] or metasearch [22].
In our setting, a site processes any local query first, and only if nec-
essary other sites process such a query. Federated search systems
typically first rank sites [9, 32] and then send queries to top-ranked
sites. Our architecture is different from proposed P2P search ar-
chitectures. Different from P2P search [5, 34], we do not assume
churn or any adversarial behavior and the number of sites is on the
order of tens instead of tens to hundreds of thousands as with peers
in P2P. Even though we have not explored such possibilities, our
techniques might be applicable to other forms of parallel and dis-
tributed architectures such as both federated IR architectures and
P2P search architectures.



In the literature, in addition to statistical techniques [35, 36, 37],
there is much research work on applying machine learning tech-
niques to document classification [17, 24, 30]. A nice survey of
related work of the latter type is provided in [29]. Our work differs
from these approaches not only in the number of processed docu-
ments but also in the choice of features. In contrast to common fea-
ture representations such as tf-idf requiring expensive dictionaries,
we focus on simple and inexpensive features that can be extracted
on the fly. Furthermore, our approach makes use of state-of-the-
art machine learning techniques such as Support Vector Machines,
which are tailored to large-scale classification [7, 18, 31].

In [20], techniques are discussed for selecting partial document
replicas using inference network. The emphasis in that work is on
improving performance of IR systems without degrading retrieval
accuracy. The same authors later investigated the impact of result
caching on partial replica selection [21]. A naive document replica-
tion technique is employed recently in a geographically distributed
search engine setting [1, 13]. This technique simply replicates the
most popular 1% of documents on all data centers, without using
any other features. The technique is not applicable to our work be-
cause its main objective is to reassign existing documents (with past
access history) to sites, whereas our objective herein is to classify
newly seen documents.

7. DISCUSSION
In a multi-site search engine setting, indexing and processing

fewer documents per site leads to an important reduction of the
amount of hardware used, thus reducing the total cost of equipment
and ownership. At the same time, sites ideally are able to repli-
cate all the documents that their local users seek to achieve low
query processing latency. Reducing costs and increasing locality
are competing forces that make the problem of deciding what doc-
uments to replicate in a given site non-trivial. A viable solution,
however, must be able to strike a balance between these compet-
ing forces, presenting low rates of forwarded queries for low query
processing latency and minimizing document replication.

With the goals of locality and cost reduction in mind, we can
draw the following observations. False positives when classify-
ing documents for a site imply that the site stores and indexes more
documents. This metric consequently gives us an idea of how much
more hardware resources we end up using unnecessarily. False neg-
atives, on the other hand, imply that documents have been stored
elsewhere, which lower the overall locality of the system thus lead-
ing to higher user latency.

In our work, we reported replication and forwarding rates, which
are weighted variants of false positives and false negatives. That is,
we obtain the replication rate by scaling the false positives with the
corresponding unique terms and appropriate normalization. Vice
versa, relating the false negatives to remotely issuing queries, we
guarantee that the query forwarding rate is proportional to latency.

Our results show that our machine learning approach outper-
forms the baseline approaches, based on region or language. Al-
though our approach requires higher storage capacities, it is char-
acterized by small forwarding rates. As the latter improves user
latency, our approach is able to provide a better user experience.
Compared to identically replicated data centers, our solution saves
about 45% of the storage capacity compared to replicating all doc-
uments on all sites while marginally increasing the forwarding rate.

8. CONCLUSION
We studied document assignment in multi-site search engines.

We decompose the problem into several independent tasks that are

solved with linear Support Vector Machines using positive and neg-
ative features obtained from the region and language of documents.
Our results show a significant latency improvement when using ma-
chine learning: the fraction of forwarded queries drops from over
0.65 to 0.02. Although our findings show excellent latency values
throughout the experiments, the results come at the cost of a high
replication rate. Even though latency is important for user experi-
ence, there might be scenarios requiring an efficient storage with
little or no overhead. Using negative features already enables a
reduction of the replication factor: it drops from 19 to 15 when us-
ing negative features. Nevertheless, our approach is a step towards
practical multi-site engines, and, to the best of our knowledge, the
first work to approach document assignment in such architectures.
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