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Abstract

Approaches to multiple kernel learning (MKL) empléynorm constraints on the
mixing coefficients to promote sparse kernel combinatidisen features encode
orthogonal characterizations of a problem, sparsenessaadyo discarding use-
fulinformation and may thus result in poor generalizatienfprmance. We study
non-sparse multiple kernel learning by imposing@morm constraint on the
mixing coefficients. Empirically/o-MKL proves robust against noisy and redun-
dant feature sets and significantly improves the promotierction rate compared
to £;-norm and canonical MKL on large scales.

1 Introduction

A natural way to an automatic selection of optimal kernelddslearn a linear combination
K = 7", B; K; with mixing coefficients3 together with the model parameters. This frame-
work, known as multiple kernel learning (MKL), was first iattuced by [2] where two kinds of
constraints o and K have been considered leading to either semi-definite pnagiag or QCQP
approaches, respectively. The SDP approach was also shdyenequivalent to sparse regulariza-
tion over@ by means of a standard simplex constrdit|; = 1.

Intuitively, sparseness @ makes sense when the expected number of meaningfull késretsall.
Requiring that only a small number of features contributethe final kernel implicitly assumes
that most of the features to be selected are equally infavmain other words, sparseness is good
when the kernels already contain a couple of good featur@satlone capture almost all of the
characteristic traits of the problem. This also implieg fieatures are highly redundant. However,
when features inherently encode “orthogonal” characi¢inns of a problem, enforcing sparseness
may lead to discarding useful information and as a resuljratiation of generalization performance.

We develop anon-sparseMKL, in which the ¢;-norm in the regularization constraint ghis re-
placed with the/>-norm. Although the constrain3||> = 1 is non-convex, a tight convex approx-
imation can be obtained whose solution is always attaingdeaboundary|3||> = 1, provided
that kernel matrices are strictly positive definite. We depea semi-infinite programming (SIP)
formulation of non-sparse MKL. Our method proves robusirsganoisy and non-redundant feature
sets. Large-scale experiments on promoter detection shoaderate but significant improvement
of predictive accuracy compared4pand canonical MKL.

2 Non-sparse Learning with Multiple Kernels

We focus on binary classification problems where we are daeeled datdD = {(x;, yi) }i=1...n,
wherex € X for some input spac&’, and wherey € {+1,—1}. When learning with multiple
kernels, we are additionally givendifferent feature mappings., .. .,,. Every mapping); :
X — 'H; gives rise to a reproducing kernkj of H; given by k;(x,z) = (Y;(x),V;(Z))n,-
In the remainder we will use;, k;, and matrixK; = (k;(z;, €m))i,m=1,...,n iNterchangeably
for convenience. We now aim at finding a linear combinatEi‘;i:1 B;K; and parameters, b



simultaneouslysuch that the resulting hypothegifias a small expected risk, whefés given by
p
T) = Z B wij(x) +b = w'yp(x) +b, (1)

wherew = (w;)k=1,...p, Ya(x;) = (\/Biv¥j(x;))j=1,... p, and mixing coefficients; > 0.

Common approaches to multiple kernel learning |mp@saorm constraints on the mixing coeffi-
cients [1, 3] thus promoting sparse solutions lying on addath simplex. By contrast, we aim at
studying non-sparse multiple kernel learning, that is welesnan ¢y regularization to allow for
non-sparse kernel mixtures. The primal optimization peabtan be stated as Given datafeature

mappings), . . . , ¥, andn > 0.

S %W’w Fll€lln st Vil yi (W) +0) 2 1-&; €205 B=0; [|Bll2=1.
The optimization problem is inherently non-convex since toundary of the unit ball given by
{B : ||B]]2 = 1} is not a convex set. As a remedy, we relax the constrain8 ¢a become an
inequality constraint, i.e/|3]|2 < 1. We will later show that the resulting approximation errer i
zero under reasonable assumptions. Another non-conusxdgused by the productsw; which,
however, can be easily removed by a variable substitution= 5;w;. We arrive at the following
optimization problem which is convex.
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Fixing 3 € A, whereA = {83 € R" |3 >0, |82 < 1}, we build the partial Lagrangian with
respect tov, b, and€. Setting the partial derivatives of the Lagrangian withpesg to the primal
variables to zero yields the relatiofis< a; < n, >, a;y; = 0, andv; = >, a;y:8;¢;(x;) for

1 <i<nandl < j < p. The KKT conditions trivially hold and resubstitution gveise to the
min-max formulation

min max Zal—— Z alamyzymZﬁj (i, @m) S.t. Zylal—o 18]z < 1.

B>0 0<a<ly
=1 i,m=1 =1

The above problem can either be solved directly by gradiased techniques exploiting the
smoothness of the objective [1] or translated into an edgmiasemi-infinite program (SIP) as fol-
lows. Supposex* is optimal, then denoting the value of the target function@y, 3), we have
t(a*, B) > t(a, B) for all @ and3. Hence we can equivalently minimize an upper boénan the
optimal value. We thus arrive at Optimization Problem 1.

Optimization Problem 1 (SIP) Let@; = Y K;Y forall 1 < j < pwhereY = diag(y),
1 p
. ! ! . .
%ng O st 6>1a- e ;:1 B;Qje; Bl <1; B>0

Va e R" with 1'a<nl’ and y'aa=0 aswellas a > 0.

Note, that the above SIP is only a relaxation of the primabfgm. However, Theorem 1 shows that
the approximation error is zero if the employed kernel fioret are positive definite.

Theorem 1 Let (©*, 3%) be optimal points of Optimization Problem 1 afd, . . ., K, be positive
definite. Then we always hay{8*||> = 1. (Proof omitted for lack of space)

3 Discussion

The SIP in Optimization Problem 1 can be efficiently solvediftgrleaving cutting plane algo-
rithms. The solution of a quadratic program (here the ragB\dM) generates the most strongly
violated constraint for the actual mixtufe The optimal(3*, ©) is then computed by solving a
quadratically constrained program (QCP) with respect tafactive constraints. The described
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Figure 1: Left: Test errors for the artificial data set. RigRésults for the real-world experiment.

algorithm is a special case of SIP algorithms knowreshange method€xchange methods are
known to converge if the feasible region can be covered byllanlith finite radiusr > 0. How-
ever, no convergence rate for such algorithms are knownreRlge promising alternative strategies
for optimizing the/;-MKL, based on gradient-based [3] and level-set [7] optatian, have been
proposed.

Obviously, the regular support vector machine is contaased special case for learning with only
one kernel (i.e.p = 1). Moreover, our approach can be easily extended to a oss-skdting when
the kernel matrices are appropriately normalized (Sedi@h Our approach is moreover contained
in [6] as a special case fgr= 0,¢ = 1, however, their approach is not discussed or evaluated for
these parameters settings.

4 Empirical Results

4.1 Toy 1. Measuring the Impact of Redundant Kernels

The first experiment investigates the strengths and weakred the canonical kernel combination,
¢1- and/>-MKL for different “levels of independence” of the kernel iriaes.

The aim of the following procedure is to generate a fixed nunolb@ Kernel matrices, where the
degree of independence is parameterized.bipo this end we generateda-dimensional sample of
sizen from two Gaussian distributions with = 7. We decompose the examples inta’ disjoint
feature setsXy, ..., X,, whereX; € R:*" Vi = 1...v. Then we sample — v copies from
these feature sets, by randomly picking one by one fdom. . ., X, with replacement For each
of thesep sets we randomly generate a linear transformation matyix . . , A,, with A; € RT#X7.
Finally the kernel matrices are computedids= XA, A, X;. The randomization not only alters
the attribute sets that would otherwise be identical bt atwiches the dimensionality of tHé; by

a factorr. Using varying values for allows us to generate kernel matrices for different “le\sls
independence”.

Throughout the experiment we fix = 60, p = 30, andT = 4. For each value oy €
{1,2,3,4,6,8,12,15,20,30}, we generate a sample of si#60 encoded in the kernel ma-
trices using the procedure above. The matrices are therllegpdit into training, validation,
and test kernel matrices. We compare the performanog-MKL and /,-MKL with a base-
line SVM using the canonical mixture kern&l = % ?:1 K;. Optimal soft-margin parame-

tersn € [0.001, 10] are determined using the validation set. We report on aeeragst errors
of 100 repetitions of this procedure; error bars indicasmdard errors. Note that for each rep-
etition the kernel matrices are generated from scratch.nftrices are normalized according to

k(z,z) — k(z, :E)/(% S k(i @) — nl—Q szzl k(zi,x;)).

The results are shown in Figure 1 (left). The x-axis deplotsratio of information carrying kernels
given byv /p. Obviously,/;-MKL performs best when the relevant information is congaiin only
a few kernels. However, its performance deteriorates dyigkh a decrease in redundancy. In the

That is, feature sets can be picked multiple times.



extreme, where all relevant information is spread unifgrathong the kernels such that there is no
redundant information shared, the canonical mixture iiviely represents the optimal kernel.

With increasing redundand§s-MKL outperforms the canonical mixture that now incorpesatore
and more information that is either already contained ieoklernels or irrelevant noise. By contrast,
¢2-MKL effectively determines appropriate kernel mixtures &ll redundancy ratios. In the other
extreme, where all kernel matrices encode the full knowdeslgpout the data, all methods perform
equally well and effectively counterbalance the randoradintransformations by ensemble-effects.

4.2 Real World: Identifying Transcription Start Sites

This task on real-world data aims at detecting transchipsi@art sites (TSS) of RNA Polymerase |l
binding genes in genomic DNA sequences. In general, trgntiger start site finders exploit that

the features of promoter regions and the transcription sti@s are different from features of other
genomic DNA. Many such detectors thereby rely on a combinaif feature sets which makes the
learning task appealing for MKL.

For our experiments we use the dataset from [4] which costiturated set @08 TSS annotated
genes utilizing dbTSS version 4 [5] and refseq genes. Thes&anslated into positive training
instances by extracting windows of size1000, +1000] around the TSS. From the interior of the
genes5042 negative instances are generated using the same windawéizemploy five different
kernels representing the TSS signal (weighted degree Wift),she promoter (spectrum), the 1st
exon (spectrum), angles (linear), and energies (lineaexn& parameters are specified according
to prior knowledge or intuition and are reported in [4]. Bvé&ernel is normalized according to
k(x,z) — k(x,z)//k(z,2)k(z, ).

As in [4], our training sets consist of6794 instances, and the remaining756 examples
are split into fixed tuning 1(/3) and test /3) sets. Model selection is performed fgr €
{272:5,272 .. 225}, We report on average AUC values over 10 repetitions witkoanly drawn
training instances; error bars indicate standard erroe rEsults for varying training set sizes are
shown in Figure 1 (right). The sparse mixture foundipynorm MKL performs worst and is clearly
outperformed by a canonical mixture for all sample sizesc@&ytrast/.-MKL effectively learns a
non-sparse kernel mixture and leads to significantly higle¢ection rates compared to the canon-
ical mixture for all but the rightmost point. Non-sparse MKutperforms its classical -norm
counterpart significantly for all sample sizes.

5 Conclusions

We studied a non-sparse approach to multiple kernel leguiMiiKL). Our approach is motivated by
the observation that sparseness may not always be dedioalle&eombination of multiple kernels.
Large scale experiments on finding transcription stars sigealed the effectiveness®@fMKL in
the case wheré,-MKL was even outperformed by a canonical mixture. TheMKL achieved the
highest predictive performance in our experiments.
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