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Abstract

We study the problem of learning kernel ma-
chines transductively for structured output
variables. Transductive learning can be re-
duced to combinatorial optimization prob-
lems over all possible labelings of the unla-
beled data. In order to scale transductive
learning to structured variables, we trans-
form the corresponding non-convex, combi-
natorial, constrained optimization problems
into continuous, unconstrained optimization
problems. The discrete optimization parame-
ters are eliminated and the resulting differen-
tiable problems can be optimized efficiently.
We study the effectiveness of the generalized
TSVM on multiclass classification and label-
sequence learning problems empirically.

1. Introduction

Learning mappings between arbitrary structured and
interdependent input and output spaces is a funda-
mental problem in machine learning; it covers learning
tasks such as producing sequential or tree-structured
output, and it challenges the standard model of learn-
ing a mapping from independently drawn instances to
a small set of labels. Applications include named en-
tity recognition and information extraction (sequen-
tial output), natural language parsing (tree-structured
output), classification with a class taxonomy, and col-
lective classification (graph-structured output).

When the input x and the desired output y are struc-
tures, it is not generally feasible to model each possi-
ble value of y as an individual class. It is then helpful
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to represent input and output pairs in a joint feature
representation, and to rephrase the learning task as
finding f : X × Y → R such that

ŷ = argmax
y∈Y f(x,y)

is the desired output for any input x. Thus, f can
be a linear discriminator in a joint space Φ(x,y) of in-
put and output variables and may depend on arbitrary
joint features. Max-margin Markov models (Taskar
et al., 2003), kernel conditional random fields (Lafferty
et al., 2004), and support vector machines for struc-
tured output spaces (Tsochantaridis et al., 2004) use
kernels to compute the inner product in input out-
put space. An application-specific learning method
is constructed by defining appropriate features, and
choosing a decoding procedure that efficiently calcu-
lates the argmax, exploiting the dependency structure
of the features. The decoder can be a Viterbi algo-
rithm when joint features are constrained to depend
only on adjacent outputs, or a chart parser for tree-
structured outputs.

Several semi-supervised techniques in joint input out-
put spaces have been studied. One of the most promis-
ing approaches is the integration of unlabeled instances
by Laplacian priors into structured large margin classi-
fiers (Lafferty et al., 2004; Altun et al., 2005). Brefeld
and Scheffer (2006) include unlabeled examples into
structural support vector learning by modeling dis-
tinct views of the data and applying the consensus
maximization princple between peer hypotheses. Lee
et al. (2007) study semi-supervised CRFs and include
unlabeled data via an entropy criterion such that their
objective acts as a probabilistic analogon to the trans-
ductive setting we discuss here. Xu et al. (2006) derive
unsupervised M3Networks by employing SDP relax-
ation techniques. Their optimization problem is simi-
lar to the transductive criterion derived in this paper.

Traditional binary TSVM implementations (Joachims,
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1999) solve a combinatorial optimization problem over
pseudo-labels ŷj for the unlabeled xj . These addi-
tional combinatorial optimization parameters can be
removed altogether when the constraints ŷj〈w,xi〉 ≥
1 − ξi are expressed using absolute values: ξj =
max{1 − |〈w,xj〉|, 0} (Chapelle, 2007). The resulting
problem remains non-convex, but is now continuous
and has fewer parameters. It can therefore be opti-
mized faster, and the retrieved local minima are sub-
stantially better on average (Chapelle & Zien, 2005).

The structure of this paper and its main contributions
are as follows. Section 2 recalls the basics of learn-
ing in structured output spaces. We then leverage the
technique of continuous optimization of the primal to
structured input output spaces, addressing both the
supervised (Section 3) and the transductive case (Sec-
tion 4). Our treatment covers general loss functions
and linear discrimination as well as general kernels.
We study the benefit of the generalized transductive
SVM empirically in Section 5. Section 6 provides a
discussion of the experimental results and Section 7
concludes.

2. Learning in Input Output Spaces

When dealing with discriminative structured predic-
tion models, input variables xi ∈ X and outputs
variables yi ∈ Y are represented jointly by a fea-
ture map Φ(xi,yi) that allows to capture multiple-way
dependencies. We apply a generalized linear model
f(x,y) = 〈w,Φ(x,y)〉 to decode the top-scoring out-
put ŷ = argmax

y∈Y f(x,y) for input x.

We measure the quality of f by an appropriate, sym-
metric, non-negative loss function ∆ : Y × Y → R

+
0

that details the distance between the true y and the
prediction; for instance, ∆ may be the common 0/1
loss, given by ∆(y, ŷ) = 1[[y 6=ŷ]]. Thus, the expected
risk of f is given as

R(f) =

∫

X×Y

∆
(

y, argmax
ȳ
f(x, ȳ)

)

dPX×Y(x,y),

where PX×Y is the (unknown) distribution of inputs
and outputs. We address this problem by searching for
a minimizer of the empirical risk on a fixed iid sample
of pairs (xi,yi), 1 ≤ i ≤ n, drawn iid from PX×Y ,
regularized with the inverse margin ||w||2. The feature
map Φ(x,y) and the decoder have to be adapted to
the application at hand. We briefly skim the feature
spaces and decoders used in our experiments.

Multi-class classification is a special case of a joint in-
put output space with the output space equaling the
finite output alphabet; i.e., Y = Σ. Let ψ(x) be

the feature vector (e.g., a tf.idf vector) of x. Then,
the class-based feature representation φσ(x, y) is given
by φσ(x, y) = 1[[y=σ]]ψ(x), with σ ∈ Σ. The joint
feature representation is given by “stacking up” the
class-based representations of all classes σ ∈ Σ; thus,
Φ(x, y) = (. . . , φσ(x, y), . . .). With this definition,
the inner product in input output space reduces to
〈Φ(xi, yi),Φ(xj , yj)〉 = 1[[yi=yj ]]k(xi,xj), for arbitrary
k(xi,xj) = 〈ψ(xi), ψ(xj)〉. Since the number of classes
is limited we do not need a special decoding strategy:
the argmax can efficiently be determined by enumer-
ating all y and returning the highest-scoring class.

In label sequence learning, the task is to find a map-
ping from a sequential input xi = 〈xi,1, . . . , xi,|xi|〉
to a sequential output yi = 〈yi,1, . . . , yi,|xi|〉 of the
same length |yi| = |xi|. Each element of x is an-
notated with an element yi,t ∈ Σ. We follow Al-
tun et al. (2003) and extract label-label interactions
φσ,τ (y|t) = 1[[yt−1=σ∧yt=τ ]] and label-observation fea-
tures φ̄σ,l(x,y|t) = 1[[yt=σ]]ψl(xt), with labels σ, τ ∈
Σ. Here, ψl(x) extracts characteristics of x; e.g.,

ψ123(x) = 1 if x starts with a capital letter and 0 oth-
erwise. We refer to the vector ψ(x) = (. . . , ψl(x), . . .)

T

and denote the inner product by means of k(x, x̄) =
〈ψ(x), ψ(x̄)〉. The joint feature representation Φ(x,y)
of a sequence is the sum of all feature vectors
Φ(x,y|t) = (. . . , φσ,τ (y|t), . . . , φ̄σ,l(x,y|t), . . .)

T ex-
tracted at position t,

Φ(x,y) =

T
∑

t=1

Φ(x,y|t).

The inner product in input output space decomposes
into a label-label and a label-observation part,

〈Φ(xi,yi),Φ(xj ,yj)〉 =
∑

s,t

1[[yi,s−1=yj,t−1∧yi,s=yj,t]]

+
∑

s,t

1[[yi,s=yj,t]]k(xi,s, xj,t).

Note that the described feature mapping exhibits a
first-order Markov property and as a result, decoding
can be performed by a Viterbi algorithm.

Once an appropriate feature mapping Φ and the cor-
responding decoding are found for a problem at hand,
both can be plugged into the learning algorithms pre-
sented in the following Sections. In the remainder we
will use the shorthand

Φiyiȳ

def
= Φ(xi,yi) − Φ(xi, ȳ)

for difference vectors in joint input output space.
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3. Unconstrained Optimization for

Structured Output Spaces

Optimization Problem 1 is the known SVM learning
problem in input output spaces with cost-based mar-
gin rescaling, which includes the fixed size margin with
0/1-loss as special case. All presented results can also
be derived for slack rescaling approaches; however, the
corresponding constraint generation becomes more dif-
ficult. The norm of w plus the sum of the slack terms
ξi be minimized, subject to the constraint that, for
all examples (xi,yi), the correct label yi receives the
highest score by a margin.

OP 1 (SVM) Given n labeled training pairs, C > 0,

min
w,ξ

||w||2 + C

n
∑

i=1

ξi

s.t. ∀n
i=1 ∀ȳ 6=yi

〈w,Φiyiȳ
〉 ≥ ∆(yi, ȳ) − ξi,

∀n
i=1 ξi ≥ 0.

In general, unconstrained optimization is easier to im-
plement than constrained optimization. For the SVM,
it is possible to resolve the slack terms:

ξi = max

{

max
ȳ 6=yi

{

∆(yi, ȳ) − 〈w,Φiyiȳ
〉
}

, 0

}

= maxȳ 6=yi

{

`∆(yi,ȳ) (〈w,Φiyiȳ
〉)

}

, (1)

where `∆(t) = max{∆−t, 0} is the hinge loss with mar-
gin rescaling. We can now pose Optimization Problem
2 for structured outputs, a simple quadratic optimiza-
tion function without constraints.

OP 2 (∇SVM) Given n labeled pairs and C > 0,

min
w

||w||2 + C

n
∑

i=1

ξi (2)

where ξi = maxȳ 6=yi

{

`∆(yi,ȳ) (〈w,Φiyiȳ
〉)

}

.

The ξi remain in Optimization Problem 2 for better
comprehensibility; when they are expanded, the cri-
terion is a closed expression. When the maximum is
approximated by the softmax, and a smooth approx-
imation of the hinge loss is used, Equation 1 is also
differentiable. The softmax and its derivative are dis-
played in the following Equations,

smax
ỹ 6=yk

(s(ỹ)) =
1

ρ
log

(

1 +
∑

ỹ6=yk

(eρs(ỹ) − 1)
)

∂

∂s(ȳ)
smax
ỹ 6=yk

(s(ỹ)) =
eρs(ȳ)

1 +
∑

ỹ 6=yk
(eρs(ỹ) − 1)

,
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Figure 1. The differentiable Huber loss `∆=1,ε=0.5.

where we will use s(ỹ) = `∆(yi,ỹ) (〈w,Φiyiỹ
〉). The

Huber loss `∆,ε, displayed in Figure 1, is given by

`∆,ε(t) =







∆ − t : t ≤ ∆ − ε
(∆+ε−t)2

4ε : ∆ − ε ≤ t ≤ ∆ + ε
0 : otherwise

`′∆,ε(t) =







−1 : t ≤ ∆ − ε
− 1

2 (∆−t
ε + 1) : ∆ − ε ≤ t ≤ ∆ + ε
0 : otherwise .

An application of the representer theorem shows that
w can be expanded as

w =
∑

k

∑

ȳ 6=yk

αkyk ȳ Φkykȳ. (3)

The gradient is a vector over the coefficients αkyk ȳ for
each example xk with true label yk and each possible
incorrect labeling ȳ. Computationally, only nonzero
coefficients have to be represented. The gradient of
Equation 2 with respect to w is given by

∇OP2 = 2w∇w + C

n
∑

i=1

∇ξi
.

Thus, applying Equation 3 gives us the first derivative
in terms of the αkykȳ

∂OP2

∂αkyk ȳ

= 2w
∂w

∂αkykȳ

+ C

n
∑

i=1

∂ξi
∂αkyk ȳ

.

The partial derivative ∂w

∂αkyk ȳ

resolves to Φkykȳ; that

of ξi can be decomposed by the chain rule into

∂ξi
∂αkyk ȳ

=
∂ξi
∂w

∂w

∂αkyk ȳ

=
∂ξi
∂w

Φkyk ȳ ,

∂ξi
∂w

=
∑

ȳ6=yi

∂ smax
ỹ 6=yi

s(ỹ)

∂s(ȳ)
· `′∆(yi,ȳ) (〈w,Φiyiȳ

〉) · Φiyiȳ

This solution generalizes Chapelle (2007) for general
input output spaces. The global minimum of Opti-
mization Problem 2 can now easily be found with a
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standard gradient algorithm, such as conjugate gradi-
ent descent. By rephrasing the problem as an uncon-
strained optimization problem, its intrinsic complexity
has not changed. We will observe the benefit of this
approach in the following Sections.

4. Unconstrained Transductive SVMs

In semi-supervised learning, unlabeled x∗
j for n+1 ≤

j ≤ n+m are given in addition to the labeled pairs
(xi,yi) for 1 ≤ i ≤ n, where usually n � m. Op-
timization Problem 3 requires the unlabeled data to
be classified by a large margin, but the actual label is
unconstrained; this favors a low-density separation.

OP 3 (TSVM) Given n labeled and m unlabeled

training pairs, let Cl, Cu > 0,

min
w,ξ,ξ∗

||w||2 + Cl

n
∑

i=1

ξi + Cu

n+m
∑

j=n+1

ξ∗j

subject to the constraints

∀n
i=1∀ȳ 6=yi

〈w,Φiyiȳ
〉 ≥ ∆(yi, ȳ) − ξi

∀n+m
j=n+1∃y

∗

j
∀ȳ 6=y

∗

j
〈w,Φjy∗

j
ȳ〉 ≥ ∆(y∗

j , ȳ)−ξ∗j

∀n
i=1 ξi ≥ 0; ∀n+m

j=n+1 ξ
∗
j ≥ 0.

Optimization problem 3 requires that there be a y∗
j

such that all other labels ȳ violate the margin by no
more than ξ∗j . Hence, the value of slack variable ξ∗j
is determined by the label ȳ that incurs the strongest
margin violation. Alternatively, the sum of margin vi-
olations over all ȳ 6= y∗

j may be upper bounded by ξ∗j .
In fact we can interpolate between max and sum by
varying the softmax parameter ρ. Note that the opti-
mum expansion α is sparse, as only margin violating
labels ȳ contribute to the aggregation. As we will see
later, these ȳ can be efficiently determined.

The constraints on ξ∗j involve a disjunction over all
possible labelings y∗

j of the unlabeled x∗
j which causes

non-convexity and renders QP-solvers not directly ap-
plicable. The TSVM implementation in SVMlight

(Joachims, 1999) treats the pseudo-labels y∗
j as addi-

tional combinatorial parameters. The existential quan-
tifier is thus removed, but the criterion has to be mini-
mized over all possible values of (y∗

n+1, . . . ,y
∗
n+m) and,

in a nested step of convex optimization, over the w.
Analogously to the ξi (Equation 1), we replace the
constraints on ξ∗j :

ξ∗j = min
y
∗

j

max

{

max
ȳ 6=y

∗

j

{

∆(y∗
j , ȳ) − 〈w,Φjy∗

j
ȳ〉

}

, 0

}

= min
y
∗

j

max
ȳ6=y

∗

j

{

u∆(y∗

j
,ȳ)(〈w,Φjy∗

j
ȳ〉)

}

. (4)
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Figure 2. Loss u∆=1,τ=0.6(t) and first derivative.

We quantify the loss induced by unlabeled instances
u∆,τ by a function slightly different from Huber loss
`∆,ε. Diverging from `, we engineer u to be symmet-
ric, and to have a vanishing derivative at (and around)
the point of symmetry. At this point, two labels score
equally good (and better than all others), and the cor-
responding margin violation can be mitigated by mov-
ing w in two symmetric ways.

u∆,τ(t) =



















1 : |t| ≤ ∆ − τ

1 − (|t|−∆+τ)2

2τ2 : ∆ − τ ≤ |t| ≤ ∆
(|t|−∆−τ)2

2τ2 : ∆ ≤ |t| ≤ ∆ + τ
0 : otherwise

u′∆,τ(t) =















0 : |t| ≤ ∆ − τ

−
sgn(t)

τ2 (|t| − ∆ + τ) : ∆ − τ ≤ |t| ≤ ∆

+
sgn(t)

τ2 (|t| − ∆ − τ) : ∆ ≤ |t| ≤ ∆ + τ
0 : otherwise.

Having rephrased the constraints on ξ∗j as an equation,
we can pose the unconstrained transductive SVM op-
timization problem for structured outputs.

OP 4 (∇TSVM) Given n labeled and m unlabeled

training pairs, let Cl, Cu > 0,

min
w

||w||2 + Cl

n
∑

i=1

ξi + Cu

n+m
∑

j=n+1

ξ∗j (5)

with placeholders ξi = maxȳ 6=yi

{

`∆(yi,ȳ) (〈w,Φiyiȳ
〉)

}

and ξ∗j = min
y
∗

j

max
ȳ 6=y

∗

j

{

u∆(y∗

j
,ȳ)

(

〈w,Φjy∗

j
ȳ〉

)}

.

Variables ξi and ξ∗j remain in Optimization Problem 4
for notational harmony, they can be expanded to yield
a closed, unconstrained optimization criterion.

Again we invoke the representer theorem (3) and op-
timize along the gradient ∂OP4

∂α
. In addition to the

derivatives calculated in the Section 3, we need the
partial derivatives of the ξ∗j . They are analogous to
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Table 1. The ∇TSVM Algorithm

Input: Labeled data {(xi,yi)}
n
i=1, unlabeled data {x∗

j}
n+m
j=n+1; parameters Cl, Cu, εα > 0.

1: repeat
2: for each labeled example (xi,yi) do
3: ȳ← argmax

y 6=yi
{∆(yi,y)− 〈w, Φ(xi,y)〉} // compute worst margin violater

4: if `∆(yi,ȳ),ε(〈w, Φ(xi,yi)〉 − 〈w, Φ(xi, ȳ)〉) > 0 then
5: W ←W ∪ {(i,yi, ȳ)} // add difference vector to working set
6: end if
7: end for
8: for each unlabeled example x∗

j do

9: ŷ∗
j ← argmax

y

˘

〈w, Φ(x∗
j ,y)〉

¯

// compute top scoring output

10: ȳ← argmax
y 6=y

∗

j

˘

∆(y∗
j ,y)− 〈w, Φ(x∗

j ,y)〉
¯

// compute runner-up

11: if ∃y∗
j ∈ W ∧ y∗

j 6= ŷ∗
j then

12: ∀ȳ : W ←W\{(j,y∗
j , ȳ)} // delete old constraints

13: end if
14: if u∆(y∗

j
,ȳ),τ (〈w, Φ(x∗

j ,y∗
j )〉 − 〈w, Φ(x∗

j , ȳ)〉) > 0 then

15: y∗
j ← ŷ∗

j

16: W ←W ∪ {(j, y∗
j , ȳ)} // add difference vector to working set

17: end if
18: end for
19: α← argminα′ TSVM(α′, W ) // minimize Eq. 5 by conjugate gradient descent
20: ∀αkyȳ < εα : W ← W\{(k,yk, ȳ)} // delete unnecessary constraints
21: until convergence

Output: Optimized α, working set W .

those of ξi; let s̄(ỹ) = u∆(y∗

j
,ỹ)(〈w,Φjy∗

j
ỹ〉), we have

∂ξ∗j
∂w

=
∑

ȳ6=y
∗

j

∂ smax
ỹ 6=y

∗

j

s̄(ỹ)

∂s̄(ȳ)
u′∆(y∗

j
,ȳ)

(

〈w,Φjy∗

j
ȳ〉

)

Φjy∗

j
ȳ.

Every expansion coefficient α∗
jy∗

j
ȳ

influences how

strongly f favors label y∗
j over ȳ for the unlabeled ex-

ample j. This solution generalizes Chapelle and Zien
(2005) for general input output spaces.

Algorithmically, continuous optimization over all pa-
rameters αkyk ȳ is impossible due to exponentially
many ȳ’s. However, our loss functions cause the solu-
tion to be sparse. In order to narrow the search to the
non-zero variables, generalized ∇TSVM training inter-
leaves two steps. In the decoding step, the algorithm
iterates over all training instances and uses a 2-best
decoder to produce the highest-scoring output ŷ and
the worst margin violator ȳ 6= ŷ. For labeled exam-
ples (xi,yi), output ŷ has to be equal to the desired
yi, and ȳ must not violate the margin. Otherwise,
the difference vector Φiyiȳ

is added to the (initially
empty) working set of the i-th example. For unlabeled
data, the highest-scoring output of the joint classifier
ŷ∗

j serves as desired labeling and the runner-up as mar-
gin violator ȳj . Again, in case of a margin violation
Φjy∗ȳ is added to the working set for xj .

In the optimization step, conjugate gradient descent
(CG) is executed over the parameters αkyk ȳ, given by

all examples xk, desired outputs yk, and all associ-
ated pseudo-labels ȳ currently in the working set. As
proposed in (Chapelle, 2007) we use the kernel matrix
as preconditioner, which speeds up the convergence of
the CG considerably. The inner loop of the ∇TSVM
algorithm is depicted in Table 1.

In an outer loop, ∇TSVM first increases Cl in a barrier
fashion to avoid numerical instabilities, and eventually
increases the the influence of the unlabeled examples
Cu. The algorithm terminates when the working set
remains unchanged over two consecutive iterations and
Cl and Cu have reached the desired maximum value.
Notice that ∇TSVM reduces to ∇SVM when no unla-
beled examples are included into the training process;
i.e., for ∇SVM, lines 8-18 are removed from Table 1.

For binary TSVMs it has proven useful to add a bal-

ancing constraint to the optimization problem that en-
sures that the relative class sizes of the predictions are
similar to those of the labeled points (Joachims, 1999).
For structured outputs, the relative frequencies of the
output symbols σ ∈ Σ may be constrained:
∑n+m

j=n+1

∑|xj |
t=1 1[[yj,t=σ]]

∑n+m
j=n+1 |xj |

=

∑n
i=1

∑|xi|
s=1 1[[yi,s=σ]]

∑n
i=1 |xi|

.

Analoguously to binary TSVMs (Chapelle & Zien,
2005), this can be relaxed to “soft” linear constraints:

n+m
∑

j=n+1

|xj |
∑

t=1

(

w>Φ(xj,t, σ) + bσ −w>Φ̄(xj,t) + b̄
)

= p̂σ
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where Φ(xj,t, σ) are the feature maps correspond-
ing to predicting σ for position t of xj , Φ̄(xj,t) =
∑

ω∈Σ Φ(xj,t, ω)/|Σ| is their average, the bσ are newly
introduced label biases with average b̄ =

∑

σ bσ/|Σ|,
and p̂σ = (

∑

j |xj |)(
∑

i

∑

s 1[[yis=σ]]/(
∑

i |xi|)−1/|Σ|)
are centered predicted class sizes. By appropriately
centering the unlabeled data these constraints can be
equivalently transformed into fixing the bσ to con-
stants. However, here we do not implement any bal-
ancing, as we empirically observe the fractions of pre-
dicted symbols to roughly agree to the corresponding
fractions on the known labels.

5. Experiments

We investigate unconstrained optimization of struc-
tured output support vector machines by comparing
differentiable ∇SVM and ∇TSVM to SVMs solved by
quadratic programming (QP) approaches.

In each setting, the influence of unlabeled examples is
determined by a smoothing strategy which exponen-
tially approaches Cu after a fixed number of epochs.
We optimize Cu using resampling and then fix Cu

and present curves that show the average error over
100 randomly drawn training and holdout sets; error-
bars indicate standard error. In all experiments we set
Cl = 1, ε = 0.3, and τ = 0.4.

5.1. Execution Time

Figure 3 compares the execution times of CG-based
∇SVM and ∇TSVM to a QP-based SVM where we
used the same convergence criteria for all optimizers.
∇TVSM is trained with the respective number of la-
beled examples and a 5 times larger set of unlabeled
instances. Besides being faster than a solution based
on solving QPs, the continuous optimization is remark-
ably efficient at utilizing the unlabeled data. For in-
stance, ∇TSVM with 50 labeled and 250 unlabeled
examples converges considerably faster than ∇SVM
and qpSVM with only 200 labeled instances.
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Figure 3. Execution time.

5.2. Multi-Class Classification

For the multi-class classification experiments, we use
a cleaned variant of the Cora data set that contains
9,555 linked computer science papers with a reference
section. The data set is divided into 8 different classes.
We extract term frequencies of the document and of
the anchor text of the inbound links. The latter are
drawn from three sentences, respectively, centered at
the occurrence of the reference. We compare the per-
formances of ∇TSVM with 0/1 loss to the performance
of TSVMlight, trained with a one-vs-rest strategy. Fig-
ure 4 details the error-rates for 200 labeled examples
and varying numbers of unlabeled instances. For no
unlabeled data both transductive methods reduce to
their fully-supervised, inductive counterparts. Both
SVMs perform equally well for the labeled instances.
However, when unlabeled examples are included into
the training process, the performance of TSVMlight

deteriorates. The error-rates of ∇TSVM show a slight
improvement with 800 unlabeled instances.
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Figure 4. Error-rates for the Cora data set.

We also apply our method to the 6-class dataset COIL
as used in (Chapelle et al., 2006), and compare to the
reported one-vs-rest TSVM results. For n = 10 la-
beled points, we achieve 68.87% error, while the one-
vs-rest TSVM achieves 67.50%. For n = 100 points,
the results are 25.42% as compared to 25.80%.

5.3. Artificial Sequential Data

The artificial galaxy data set (Lafferty et al., 2004)
consists of 100 sequences of length 20, generated by a
two state hidden Markov model. The initial state is
chosen uniformly and there is a 10% chance of switch-
ing the state. Each state emits instances uniformly
from one of the two classes, see Figure 5 (left).

We run ∇SVM and ∇TSVM using Hamming loss with
two different kernels, a Gaussian RBF kernel with
bandwidth σ = 0.35 and a semi-supervised graph ker-
nel. The graph kernel is constructed from a 10-nearest
neighbor graph and given by K = 10 (L+

�
ρ)−1, with
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Figure 5. The galaxy data set (left) and error-rates for ∇SVM and ∇TSVM using RBF (center) and graph kernels (right).

graph Laplacian L and ρ = 10−6 as proposed by Laf-
ferty et al. (2004).

In each experiment we draw a certain number of la-
beled sequences at random and use the rest either as
unlabeled examples or as holdout set. We report on av-
erages over 20 runs. Figure 5 (center and right) details
the results for semi-supervised vs. supervised algo-
rithm and semi-supervised vs. standard kernel. Since
the approaches are orthogonal, we apply all 4 combi-
nations. For increasing numbers of labeled examples,
the error rates of the tested models decrease. The con-
tinuous TSVM performs just slightly better than the
supervised SVM; the differences are significant only in
few cases. This problem is extremely well tailored for
the Laplacian kernel. The error rates achieved with the
semi-supervised kernel are between 20% to 3% lower
than the corresponding results for the RBF kernel.

5.4. Named Entity Recognition

The CoNLL2002 data consists of sentences from a
Spanish news wire archive and contains 9 label types
which distinguish person, organization, location, and
other names. We use 3, 100 sentences of between 10
and 40 tokens, leading to ≈ 24, 000 distinct tokens in
the dictionary. Moreover, we extract surface clue fea-
tures, like capitalization features and others. We use
a window of size 3, centered around each token.

In each experiment we draw a specified number of la-
beled and unlabeled training and holdout data without
replacement at random in each iteration. We assure
that each label occurs at least once in the labeled train-
ing data; otherwise, we discard and draw again. We
compare ∇TSVM with 0/1 loss and Hamming loss to
the HM-SVM (Altun et al., 2003), trained by incre-
mentally solving quadratic programs over subspaces
associated with individual input examples. Figure 6
details the results for 10 labeled sequences.

∇SVM converges to better local optima than HM-
SVM due to global conjugate gradient based optimiza-

tion compared to solving local quadratic programs.
When unlabeled examples are included in the train-
ing process the error of the ∇TSVM decreases sig-
nificantly. ∇TSVMH with Hamming loss performs
slightly better than ∇TSVM0/1 using 0/1 loss.

6. Discussion

The TSVM criterion is non-convex and the maximiza-
tion can be difficult even for binary class variables.
In order to scale the TSVM to structured outputs, we
employ a technique that eliminates the discrete param-
eters and allows for a conjugate gradient descent in the
space of expansion coefficients α. Empirical compar-
isons of execution time show that the continuous ap-
proaches are more efficient than standard approaches
based on quadratic programming.

For the Cora text classification problem, transduc-
tive learning does not achieve a substantial benefit
over supervised learning. Worse yet, the combinato-
rial TSVM increases the error substantially, whereas
∇TSVM has negligible effect. In order to draw an un-
biased picture, we present this finding with as much
emphasis as any positive result. For the Spanish news
named entity recognition problem, we consistently ob-
serve small but significant improvements over purely
supervised learning.

One might intuitively expect transductive learning to
outperform supervised learning, because more infor-
mation is available. However these test instances intro-
duce non-convexity, and the local minimum retrieved
by the optimizer may be worse than the global mini-
mum of the convex supervised problem. Our experi-
ments indicate that this might occationally occur.

For the galaxy problem, the benefit of ∇TSVM over
∇SVM is marginal, and observable only for very few
labeled examples. By its design this problem is very
well suited for graph kernels, which reduce the error
rate by 50%. In the graph Laplacian approach (Sind-
hwani et al., 2005), an SVM is trained on the labeled
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Figure 6. Token error for the Spanish news wire data set
with 10 labeled instances.

data, but in addition to the standard kernel, the graph
Laplacian derived from labeled and unlabeled points
serves as regularizer. For binary classification, com-
bining TSVM and graph Laplacian yields the greatest
benefit (Chapelle & Zien, 2005). For structured vari-
ables, we observe a similar effect, though much weaker.

The presented ∇TSVM rests on a cluster assumption
for entire structures, while graph-based methods (Laf-
ferty et al., 2004; Altun et al., 2005) exploit the dis-
tribution of parts of structures. Both approaches im-
prove over supervised learning on some datasets and
fail to do so on others. This raises the question how to
determine which kind of assumptions are appropriate
for a given task at hand.

7. Conclusion

We devised a transductive support vector machine for
structured variables (∇TSVM). We transformed the
original combinatorial and constrained optimization
problem into a differentiable and unconstrained one.
The resulting optimization problem is still non-convex
but can be optimized efficiently, for instance via a con-
jugate gradient descent. A differentiable variant of the
SVM for structured variables (∇SVM) is obtained for
the special case of a fully labeled training set.

We applied both methods with various loss func-
tions to multi-class classification and sequence label-
ing problems. Due to our empirical findings, we can
rule out the hypothesis that ∇TSVM generally im-
proves learning with structured output variables over
purely supervised learning, as well as the hypothesis
that ∇TSVM never improves accuracy.

We conjecture that transductive structured output
learning could benefit from more research on (i) im-
proved non-convex optimization techniques and on (ii)
appropriate (cluster) assumptions.
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