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Abstract

Convolution kernels for trees provide effective means for learning with tree­
structured data, such as parse trees of natural language sentences. Unfortunately,
the computation time of tree kernels is quadratic in the size of the trees as all pairs
of nodes need to be compared: large trees render convolution kernels inapplica­
ble. In this paper, we propose a simple but efficient approximation technique
for tree kernels. The approximate tree kernel (ATK) accelerates computation by
selecting a sparse and discriminative subset of subtrees using a linear program.
The kernel allows for incorporating domain knowledge and controlling the overall
computation time through additional constraints. Experiments on applications of
natural language processing and web spam detection demonstrate the efficiency
of the approximate kernels. We observe run­time improvements of two orders
of magnitude while preserving the discriminative expressiveness and classification
rates of regular convolution kernels.

1 Introduction

Tree­structured data arises naturally in many application areas such as natural language

processing, information retrieval, bioinformatics, and computational chemistry [e.g.

4, 5, 8, 17]. Examples for tree structures include parse trees of natural language,

web documents of HTML or XML, and protein structures. These trees carry important

hierarchical information which are often indispensable for learning accurate prediction

models. Shallow representations of trees such as flat feature vectors generally fail to

capture these hierarchical structures.

The prevalent tool for learning with structured data are kernel functions which

assess the pairwise similarity of structured objects and provide an interface to kernel­

based learning methods [13]. Kernels for structured data can be constructed using the

convolution of local kernel functions [7]. A typical example for such a convolution is

the parse tree kernel [5] which determines similarity of trees by counting the number of

shared subtrees. Parse tree kernels are computed using dynamic programming, where

a table of subtree counts for all pairs of tree nodes is maintained. While allocating

and updating such a table is feasible for small tree sizes (say less than 200 nodes [e.g.

4, 5, 12, 15]), large trees involve computations that easily exhaust available resources

in terms of memory and run­time. For example, computing a single kernel value for

two HTML documents comprising 10,000 nodes each, requires about 1.6 gigabytes of

memory and takes over 6 minutes on a state­of­the­art computer system. Given that
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kernel computations are performed millions of times in large­scale training processes,

it is evident that known tree kernels are an inappropriate choice in many relevant

learning tasks.

This paper contributes to the problem of learning with large tree data by proposing

an approximation of tree kernels. Based on a given learning task the kernel computa­

tion is narrowed to a sparse set of subtrees rooted at discriminative grammar symbols,

such that run­time and memory requirements are significantly improved. The corre­

sponding optimization problem can be phrased as a linear program and solved with

standard techniques. Our approach allows the inclusion of domain knowledge by

incorporating appropriate constraints. Experiments conducted with tree data from ap­

plications of natural language processing and web spam detection demonstrate the

discriminative expressiveness and efficiency of the proposed approximate kernels. For

instance, when the trees are large web documents, the approximate tree kernels per­

forms on par with regular convolution kernels and lead to speed­ups of two orders of

magnitude.

The remainder of this paper is organized as follows. Kernels for parse trees are

introduced in Section 2 and their approximation using linear programming is presented

in Section 3. We report on our empirical results in Section 4. Section 5 concludes.

2 Kernels for Parse Trees

Before presenting the approximation of tree kernels, we first introduce basic notation

and review related work. Let G = (S ,P, s) be a grammar with production rules P and

a start symbol s defined over a set S of non­terminal and terminal symbols. A tree

X is called a parse tree of G if every node x ∈ X is labeled with a symbol ℓ(x) ∈ S
and associated with a production rule. To navigate in a parse tree, we address the

i­th child of a node x by xi and denote the number of children by |x |. The number of

nodes in X is indicated by |X | and the set of all possible trees is given by X .

A kernel k : X × X → R is a symmetric and positive semi­definite function,

which implicitly computes an inner product in a reproducing kernel Hilbert space [13].

A generic technique for defining kernels over structured data is convolution of local

kernels defined over sub­structures [7].

Collins and Duffy [5] apply convolution kernels to parse trees by counting shared

subtrees. Given two parse trees X and Z , their parse tree kernel is defined as

k(X ,Z) =
∑

x∈X

∑

z∈Z

c(x , z) with c(x , z) = λ

|x|∏

i=1

(1 + c(xi , zi)) . (1)

where c determines the number of shared subtrees rooted in x and z recursively. The

base cases of c correspond to c(x , z) = 0 if x and z are not derived from the same

production and c(x , z) = λ if x and z are leaf nodes of the same production . The

parameter λ balances the respective contribution of small and large subtrees.

Several extensions of the parse tree kernel have been proposed. For example,

setting the constant term in the product of Equation (1) to zero restricts the count­

ing function to complete subtrees as proposed by Vishwanathan and Smola [12, 16].

Kashima et al. [8] extend the counting function to labeled ordered trees by considering

ordered subsets of child nodes and point out relations to tree edit distances [9]. Finally,

Suzuki and Isozaki [15] refine the parse tree kernel using statistical feature selection

incorporated into the recursion of the counting function.
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Computation of the parse tree kernel and all its extensions can be carried out

using dynamic programming by maintaining a table of subtree counts for all possible

node pairs [14]. The run­time and memory requirements for processing all pairs are

prohibitive if the considered trees comprise hundreds or thousands of nodes. As a first

step towards run­time improvement Moschitti [11] limits the computation to nodes

with matching symbols, yet this extension only affects run­time and does not alleviate

memory requirements. Moreover for larger trees with |X | ≫ |S | only a little speed­up

is gained as only a minor portion of node pairs is discarded.

3 Approximate Tree Kernels

It is apparent that computation of standard tree kernels using dynamic programming is

prohibitive for large tree structures. However, large trees often possess redundant sub­

structures that slow­down the computation unnecessarily. For example, when learn­

ing to detect web spam, HTML elements for referencing other web documents play

a salient role while the majority of formatting tags is irrelevant to the learning task.

We exploit this observation by restricting the kernel computation to a sparse set of

subtrees rooted at discriminative grammar symbols. The following section introduces

the approximate tree kernels formally and Section 3.2 exemplifies the incorporation of

prior domain knowledge.

3.1 Linear Programming for Approximate Tree Kernels

Given a set (X1, y1), ... , (Xn, yn) of parse trees with noise­free labels yi ∈ {−1,+1},

the aim of our approximation is determining a kernel k̂ , which enables good separa­

tion of the classes in y , while the number of considered subtrees in the computation

of k̂ is minimal. Since enumerating all possible subtrees is unfeasible, we introduce a

selection function γ : S → {0, 1}, which controls whether subtrees rooted at s ∈ S are

to be considered in the convolution or not. By means of γ, approximate tree kernels

are defined as follows.

Definition 1. The approximate tree kernel is defined as

k̂(X ,Z) =
∑

s∈S

γ(s)
∑

x∈X
ℓ(x)=s

∑

z∈Z
ℓ(z)=s

c(x , z), (2)

where γ(s) ∈ {0, 1} for all symbols s ∈ S and c is the counting function given in

Equation (1).

Note that the exact parse tree kernel from Equation (1) is obtained as a special

case of Equation (2) if γ(s) = 1 for all symbols s ∈ S .

We denote by K̂ the approximate kernel matrix with elements K̂ij = k̂(Xi ,Xj). In­

tuitively, we seek γ such that K̂ discriminates well between the classes in y , a property

that is realized by the outer product yyT. A simple way to adapt K̂ to yyT is obtained

using the Frobenius inner product,

〈yyT, K̂ 〉F =
∑

yi=yj

K̂ij −
∑

yi 6=yj

K̂ij . (3)

where 〈·, ·〉F denotes the Frobenius product between matrices and is defined as 〈A,B〉F =∑
ij aijbij = tr(AB). The right hand side of Equation (3) measures the within class (first
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term) and the between class (second term) similarity. Discriminative kernels k̂ realize

large values of 〈yyT, K̂〉F , hence maximizing Equation (3) suffices for finding appropri­

ate approximations. For the approximate tree kernel we arrive at the following integer

linear program that has to be maximized with respect to γ to align k̂ to the labels y ,

max
γ∈{0,1}|S|

n∑

i,j=1

yiyj k̂(Xi ,Xj). (4)

To solve Equation (4) efficiently and take care of the sparsity of γ — a crucial

requirement for the efficient computation of k̂ — we bound the number of selected

symbols in γ to N and obtain the following linear program

max
γ∈[0,1]|S|

n∑

i,j=1

yiyj
∑

s∈S

γ(s)
∑

x∈Xi
ℓ(x)=s

∑

z∈Xj
ℓ(z)=s

c(x , z)

s.t.
∑

s∈S

γ(s) = N.

(5)

Finally, it remains to show that k̂ is a valid kernel (Proposition 1) with restricted

run­time and memory requirements (Proposition 2).

Proposition 1. The approximate tree kernel is a kernel function.

Proof. Let φ(X ) be the vector of frequencies of all subtrees occurring in X as defined

in [5]. By definition, k̂ can be written as

k̂(X ,Z) = 〈Pφ(X ),Pφ(Z)〉,

where P projects the dimensions of φ(X ) on the subtrees rooted in symbols selected

by γ∗. The projection P is independent of concrete X and Z , and hence k̂ is a valid

kernel.

Proposition 2. The approximate tree kernel k̂(X ,Z) can be computed q times faster

than k(X ,Z).

Proof. Let τ(s ,X ) denote the occurrences of nodes x ∈ X with ℓ(x) = s . Then the

speed­up q realized by k̂ is lower bounded by

q ≥

∑
s∈S τ(s ,X )τ(s ,Z)∑

s∈S γ(s)τ(s ,X )τ(s ,Z)
(6)

as all nodes with identical symbols in X and Z are paired. For the trivial case where

all elements γ(s) = 1, the factor q equals 1 and the run­time is identical to the parse

tree kernel. In all other cases q > 1 holds as at least one symbol is discarded from the

denominator in Equation (6).

3.2 Extensions of the Approximate Tree Kernel

In practice it might be of interest to refine the approximation process, e.g. by fixing

the amount of selected symbols or by arranging similar symbols in groups. We now

provide extensions of the approximate kernel for trees.

Bounding the expected run­time. To upper bound the run­time of the kernel com­

putation we introduce a function σ(s) which measures the average frequency of the
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symbol s in the considered corpus of parse trees. Using σ we can bound the expected

run­time by a constant b2 using the following constraint

∑

s∈S

γ(s)σ(s) ≤ b.

In the average­case b2 node pairs will be considered during the computation of k̂ ,

since the expected amount of selected nodes is bounded by b.

Conjunction and disjunction of symbols. Dependencies in the symbols of a gram­

mar can be modeled using conjunctions and disjunctions. In case the activation of

symbol sj requires the activation of sj+1, the constraint γ(sj) − γ(sj+1) = 0 can be

included in Equation (5). A conjunction of m symbols can be efficiently encoded by

m − 1 additional constraints as

∀m−1
j=1 γ(sj)− γ(sj+1) = 0.

For a disjunction of symbols sj , ... , sj+m the following constraint guarantees that at

least one representative of the group is active in the solution

γ(sj) + γ(sj+1) + ... + γ(sj+m) ≥ 1.

Alternatively, the above constraint can be modified to an exclusive disjunction of sym­

bols by requiring equality to 1.

Extension to multi­class problems. The approximate tree kernel can be easily

adapted to multi­class problems. Given labels y with yi ∈ N, the product yiyj in

Equation (5) is exchanged with the term [[yi = yj ]], where the indicator [[E ]] returns +1

if the expression E holds and −1 otherwise.

4 Experiments and Results

After defining approximate kernels for trees and their extensions, we present an em­

pirical evaluation of their expressiveness and run­time performance. We conduct our

experiments on tree data of two real­world applications, namely question classification

and web spam detection.

Question Classification. Question classification is a preprocessing procedure in in­

formation retrieval. The task is to categorize a user­supplied question into predefined

semantic categories. We employ the data collection by Li and Roth [10] consisting of

6,000 English questions assigned to six classes (abbreviation, entity, description, hu­

man, location, numeric value). Each question is transformed to a respective parse tree

using the MEI Parser1 [3], which extracts up to 70 grammatical symbols. For simplic­

ity we restrict the setting to learning a discrimination between the category “entity”

(1,339 instances) and all other categories.

Web Spam Detection. Web spam aims at obtaining high search ranks through

massive amounts of bogus links. Detection of web spam is essential for providing

proper search results. For our experiments we use the web spam data as described

in [1]. The collection consists of HTML documents from normal and spam websites in

the UK, totaling 15 gigabytes of compressed data. All sites are examined by humans

and manually annotated. From the top 20 sites of both classes we sample 5,000

documents (974 spam, 4,026 normal). We use a fault­tolerant HTML parser2 to obtain

1Maximum­Entropy­Inspired Parser, see ftp://ftp.cs.brown.edu/pub/nlparser
2Beautiful Soup Parser, see http://www.crummy.com/software/BeautifulSoup
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parse trees from the HTML documents comprising up to 91 different symbols. To

compute results using the exact parse tree kernel in reasonable time, we reduce the

maximum tree size to 1,500 nodes.

For each data set we perform the following experimental procedure: 3,000 parse

trees are randomly drawn and split into equally sized training, validation and testing

partitions. An SVM classifier [2] is applied to the training data and its performance is

determined using the area under the ROC curve (AUC). Model selection is performed

on the validation set for the SVM regularization parameter and the tree kernel param­

eter. Reported results are obtained on the testing data using the best model on the

validation set. The procedure is repeated 5 times and the results are averaged.

4.1 Classification Accuracy

For the first experiment we examine the expressiveness of the approximate tree kernel

and the exact parse tree kernel on the considered learning tasks. We vary the number

of selected symbols for the approximate kernel to observe their impact on the achieved

classification accuracy.
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Figure 1: Classification performance of the approximate tree kernel (ATK) with varying

number of selected symbols and the exact parse tree kernel (PTK).

Figure 1 presents the classification performance of the two tree kernels. The ratio

of selected symbols for the approximate kernel is given on the x­axis and the mea­

sured AUC is shown on the y­axis. On both data sets the approximate kernel is on

par with the exact kernel if more than 10% of the available symbols are selected. In

particular for the web spam data less than 2% (2 symbols) suffice to achieve competi­

tive results with the approximate kernel. Both, the approximate and exact tree kernel,

yield an AUC of 73% on the question classification task and 97% AUC for web spam

detection.

4.2 Approximation Stability

The previous experiment demonstrates the ability of our approximation to select dis­

criminative symbols, yet it is not clear if such selection is stable for varying sample

sizes. To examine this issue we repeat the previous experiment with a fixed number

of selected symbols (8 for question classification and 2 for web spam detection) and

varied the amount of data supplied for determining the selection function γ.
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Figure 2 displays the assignments of the selection function γ, where the size of

the provided data is given on the x­axis and the symbols are listed on the y­axis.

The intensity of each point reflects how often the symbol has been chosen during 5

experimental runs.
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Figure 2: Stability of the approximate tree kernel on the question classification data

set with 8 selected symbols and the web spam data set with 2 selected symbols.

For the question classification given in Figure 2(a) the selection shows a stable

pattern if more than 150 parse trees are provided for approximation. The following

symbols are consistently chosen: NP, PP, VP, S1, SBARQ, SQ, TERM and DOT. The symbols

NP, PP and VP capture the coarse semantic of the considered text, while SBARQ and

SQ correspond to typical structure in questions. The symbols TERM (reflecting the

class of all terminal symbols) and DOT (corresponding to punctuation) finally match

the concrete text of questions. Note that some questions end using a full stop, e.g.,

“Define cosmology.”.

Figure 2(b) reports on the selection stability for the web spam detection task. The

selection stabilizes at 120 provided parse trees. To our surprise, the approximation

picks the tags HTML and BODY. We credit this finding to the usage of templates in spam

websites, which induce a strict order of high­level tags in the documents. Especially,

header and meta tags beneath the HTML tag are effective for discriminating spam

templates from normal web pages.

4.3 Performance Evaluation

To study the usage of run­time and memory resources we compare the approximate

tree kernel to a standard implementation of the parse tree kernel (PTK1) [14] and an

improved variant (PTK2) proposed by Moschitti [12]. We first estimate the average

memory requirements by computing kernels between reference trees and 100 ran­

domly drawn trees. For a worst­case scenario, the kernels are computed between

identical parse trees, thus realizing the maximal number of matching node pairs. Fig­

ure 3 reports on the average and worst­case memory requirements for the web spam

data set.

Figure 3(a) details the average memory consumption of the respective algorithms.

The curve for the approximate kernel is significantly below the variants of the parse

tree kernel. For the worst­case estimation in Figure 3(b), the memory consumption

of the exact kernel scales quadratically in the number of involved nodes while the

approximate tree kernel scales almost linearly in the number of nodes due to the fact
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Figure 3: Memory requirements of the approximate tree kernel (ATK) and implemen­

tations of the exact parse tree kernel (PTK1, PTK2) on the web spam data set.

that only 2 symbols were selected by the approximate kernel.

For the last experiment we focus on the run­time of tree kernels. Figure 4 illustrates

the results for the exact kernels and the approximate tree kernel obtained using the

same setup as used for the memory experiments.
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Figure 4: Running time of the approximate tree kernel (ATK) and implementations of

the exact parse tree kernel (PTK1, PTK2) on the web spam data set.

Figure 4(a) shows the average run­times in terms of the size of the trees. Although

the improved variant proposed by Moschitti is significantly faster than a standard im­

plementation, neither of the two show a reasonable run­time on the web spam detec­

tion data. By contrast, the approximate tree kernel computes similarities between trees

almost two orders of magnitude faster. A similar picture is drawn by the worst­case

analysis in Figure 4(b). The exact methods scale quadratically while the approximate

tree kernel is computed in almost linear time in the number of tree nodes.
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5 Conclusions

In this paper we studied an approximation of tree kernels. Classical parse tree ker­

nels are not tractable for large tree structures, such as HTML or XML documents, as

they may spend several minutes for a single kernel computation. We devised an ap­

proximation that accelerates computation by identifying a sparse set of discriminative

subtrees. As a result, the run­time as well as memory requirements are significantly

reduced. Moreover, our approach allows the incorporation of domain knowledge and

fine­grained control of the approximation process.

Empirically, we did not find significant differences in terms of expressiveness be­

tween the approximate and exact tree kernels. However, we observed a substantial

improvement in terms of memory requirements and run­time in favor of the approx­

imate kernels. We monitored run­time improvements of two orders of magnitude

for web spam detection. This efficiency denotes a valuable improvement in regard

to large­scale application for tree kernels. Future research will exploit the use of our

novel tree kernels for analysis of large DNA and protein structures in bioinformatics.
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