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Abstract

The problem of learning a mapping between
input and structured, interdependent output
variables covers sequential, spatial, and re-
lational learning as well as predicting recur-
sive structures. Joint feature representations
of the input and output variables have paved
the way to leveraging discriminative learners
such as SVMs to this class of problems. We
address the problem of semi-supervised learn-
ing in joint input output spaces. The co-
training approach is based on the principle
of maximizing the consensus among multi-
ple independent hypotheses; we develop this
principle into a semi-supervised support vec-
tor learning algorithm for joint input out-
put spaces and arbitrary loss functions. Ex-
periments investigate the benefit of semi-
supervised structured models in terms of ac-
curacy and F1 score.

1. Introduction

Learning mappings between arbitrary structured and
interdependent input and output spaces is a funda-
mental problem in machine learning; it covers many
natural learning tasks and it challenges the stan-
dard model of learning a mapping from independently
drawn instances to a small set of labels. Applications
of the problem setting of learning with structured out-
put variables include named entity recognition and in-
formation extraction (sequential output), natural lan-
guage parsing (tree-structured output), classification
with a class taxonomy — here, the output is a node in
a tree —, and collective classification where the output
is a set of interdependent class variables.

When the input x and the desired output y are struc-
tures, it is not generally feasible to model each possible
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value of y as an individual class. In addition, not only
may there be dependencies between the components
of x (e.g., words of a sentence), but also between the
components of y (for instance, the class labels of hy-
perlinked web pages), and between the components of
x and y (the semantic annotation of a word may de-
pend on that word, as well as its neighbors). In order
to capture these dependencies it is helpful to repre-
sent input and output pairs in a joint feature repre-
sentation. The learning task is therefore rephrased as
finding a function f: X x Y — R such that

y = argmax f(x,y)
yey
is the desired output for any input x. Thus, f can be
a linear discriminator in a joint space ®(x,y) of in-
put and output variables and may depend on arbitrar-
ily defined joint features. Max-margin Markov mod-
els (Taskar et al., 2004), support vector machines for
structured output spaces (Tsochantaridis et al., 2005)
and other discriminative learners exploit this principle.

In many areas, labeled data are rare while unlabeled
examples are inexpensive and readily available. For
discriminative learning, the co-training principle has
proven to be an effective mechanism for utilizing un-
labeled data. It is based on the observation that the
rate of disagreement between independent hypotheses
upper-bounds their individual error rate (Dasgupta
et al., 2001). We contribute to the field by leverag-
ing this principle to general joint spaces of input and
output variables, and empirically studying it for multi-
class classification, sequential learning, and parsing.

The rest of our paper is structured as follows. After
reviewing related work in Section 2 and defining the
learning setting and feature representation in Section
3, Section 4 presents the co-support vector machine
for input output spaces. We report on experimental
results in Section 5. Section 6 concludes.

2. Related Work

In the last years, several discriminative algorithms
have been studied that utilize joint spaces of input and
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output variables; these include max-margin Markov
models (Taskar et al., 2004), kernel conditional ran-
dom fields (Lafferty et al., 2004), hidden Markov sup-
port vector machines (Altun et al., 2003), and sup-
port vector machines for structured output spaces
(Tsochantaridis et al., 2005). These methods utilize
kernels to compute the inner product in input output
space. Not only does this approach allow to capture
long-distance dependencies between inputs and out-
puts, but it is also sufficiently versatile to cover other
structures of outputs, such as (parse) trees, lattices, or
graphs. An application-specific learning method is con-
structed by defining appropriate features, and choos-
ing a decoding procedure that efficiently calculates the
argmax, exploiting the dependency structure of the
features.

Multi-view methods naturally allow the inclusion of
unlabeled examples in discriminative learning. The
co-training (Blum & Mitchell, 1998) and co-EM algo-
rithms (Nigam & Ghani, 2000) iteratively increment
the consensus of independent hypotheses by exchang-
ing conjectured labels for unlabeled data. Recently,
Hardoon et al. (2006) propose a fully supervised vari-
ant of a co-support vector machine that minimizes the
training error as well as the disagreement between two
views.

Dasgupta et al. (2001) give PAC bounds on the error
of co-training in terms of the disagreement rate of hy-
potheses on unlabeled data in two independent views.
A corollary of their results that holds under general
assumptions is the inequality

Pr(f' # £%) = max{Pr(err(f')), Pr(err(f*))}.

That is, the probability that two independent hypothe-
ses disagree upper-bounds the error rate of either hy-
pothesis. Thus, the strategy of semi-supervised multi-
view learning can be stated as: Minimize the error for
labeled examples and maximize the agreement for un-
labeled examples.

Recently, two semi-supervised approaches to label se-
quence learning have been proposed. Altun et al.
(2006) integrate Laplacian priors into structured large
margin classifiers for pitch accent prediction. Brefeld
et al. (2005) study semi-supervised sequential learning
with 0/1 loss.

3. Learning in Input Output Spaces

Input examples x € X and output examples y € ) are
represented jointly by a feature map ®(x,y) that al-
lows to capture multiple-way dependencies between in-
puts and outputs. We apply a generalized linear model

f(x,y) = (w,®(x,y)) to decode the top scoring out-
put for a given input

¥ = argmax f(x, ). (1)
yey

We measure the quality of f by an appropriate, sym-
metric, nonnegative loss function A : Y xY — R(‘f that
details the distance between the true y and the predic-
tion argmax f(x,y); for instance, A may be the com-
mon 0/1 loss, given by A(y,y’) = [[y # ¥']], where we
introduce the indicator function [[z]] = 1 if z is true
and 0 otherwise. Thus, we can restate the optimiza-
tion problem as finding a function f that minimizes
the expected risk

Mﬂiéfwmm%ﬂmwﬂﬂw@w

where Py xy is the (unknown) distribution of inputs
and outputs. As in the classical classification setting,
we address this problem by searching a minimizer of
the empirical risk

n

Remp(f) = Z A (yi7 argmaxs f(xiu y)) )

=1

that is defined on a fixed iid sample from Pyxy. In
the following, we will refer to a sample of n labeled
pairs (x1,¥1),- - -, (Xn,¥n) and m unlabeled examples
Xp+1s- -« Xnt+m, Where in general m > n holds. The
x; € X denote the i-th input and y; € ) the corre-
sponding output for labeled examples. Each element in
Y is a composition of elements of the output alphabet
3.

In the co-learning setting that we discuss here the
available attributes ®(x,y) are decomposed into dis-
joint sets ®(x,y) and ®!(x,y). The spaces spanned
by &Y, v = 0,1, are called views; e.g., in hypertext
classification we have two natural views on a page, ei-
ther by the contained text or by the anchor text of its
inbound links. The representation in each view has to
be sufficient for the decoding.

The joint feature map ®(x,y) and the decoding have
to be adapted on the application at hand. We present
exemplary joint feature mappings and corresponding
decoding algorithms in the following sections and re-
port on empirical results in Section 5.

3.1. Multi-Class Classification

We begin with multi-class classification as an introduc-
tory example. Multi-class classification can be seen as
a special case of learning in joint input output space
where the output space equals the output alphabet;
i.e., Y =X (e.g., compare Crammer & Singer, 2001).
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We differentiate between an object (e.g., a text docu-
ment) x and its feature vector (e.g., its tf.idf vector)
1(x) and define the class-based feature representation

¢ (x,y) by
7 (x,y) = [[y = ol]¥(x), (2)

with o € ¥. The joint feature representation is given
by stacking up the class-based representations of all
classes o0 € &

o(x,y) = (.-, ¢7(xy),...). 3)
With this definition, the inner product in input output
space reduces to

((xi,yi), B(x5,¥5)) = [lys = yillk(xi x;),
for arbitrary k(x;,x;) = (¥(x;),%¥(x;)). Since the
number of classes is fixed we do not need an efficient
decoding strategy of Equation 1. Instead we compute
f(x,¥) explicitly for all § € Y and return the highest
scoring class.

3.2. Label Sequence Learning

In label sequence learning the task is to find a map-
ping from a sequential input x; = (z; 1,. .. ,xi,Ti> to a
sequential output y; = (y;1,...,¥i1,), Wwhere y; € X.
Each element of x is annotated with an element of X.

We follow Altun et al. (2003) and extract label-label
interactions ¢, - (¥|t) = [[yt—1 = o Ay = 7]] and label-
observation features ¢, ;(x,y[t) = [y = o]]v;(21),
with labels 0,7 € X. Here, 9;(z) extracts character-
istics of x e.g., ¥123(x) = 1 if = starts with a capital
letter and 0 otherwise. We will refer to the vector
Y(z) = (...,%;(x),...)T and denote the inner product

by means of k(x,Z) = (¢(x),¥(T)).
We define the joint feature representation ®(x,y) of a

sequence as the sum of all feature vectors ®(x,y|t) =

(s or(YIt), - s b0 (X,¥[t),...)T extracted at posi-
tion ¢

O(x,y) =Y B(x,ylt).

The inner product in input output space decomposes
into a label-label and a label-observation part,

<(I)(xia)’i)7(1)(xjvyj)> =
Z[[yi,s—l = Yjt—1 NVis = Yjel]

s,t
+ > MWis = yik(@is, w50).
s,t

Note that the described feature mapping exhibits a
first-order Markov property and as a result, decoding
can be performed by a Viterbi algorithm.

3.3. Natural Language Parsing

The goal in natural language parsing is to predict the
parse tree y that generates a given input sentence
x = (21,...,z7). Each node in the tree y is generated
by a rule of a weighted context-free grammar ¥ that
we assume to be in Chomsky normal form. Thus, the
output alphabet X consists of unary and binary pro-
duction rules. Binary rules are of the form A — BC,
where capital letters indicate non-terminal symbols.
An example for a binary rule is VP — V, NP that
substitutes a verb phrase VP by a verb V and a noun
phrase NP (compare Figure 1). The head of unary
production rules is either substituted by another non-
terminal symbol (e.g., NP — N, a noun phrase can be
substituted by a noun) or by a terminal symbol (e.g.,
N — cat).

According to Tsochantaridis et al. (2005) we extract
local features from each production rule o € ¥

P7(%y) = (- F (% y), ) (4)

Thus, the elements of ¢?(x,y) count for instance how
many times production rule ¢ occurs in the parse tree
y or how often this rule is at a border.

The joint feature map ®(x,y) = (...,¢°(x,y),...)"
is constructed by stacking up the production rule fea-
tures ¢?(x,y) for each production o € X. After the
learning process the entries of the weight vector may
be interpreted as scores that indicate how likely a cer-
tain production rule is to be applied given the local
context. This feature map gives rise to the following
inner product in input output space

(®(xi,y4), ®(x5,¥5)) = Y S7(xi,5:) - 67(x5, ).

o,k

Note that this feature map allows the use of the CKY
parser as efficient decoding procedure (Manning &
Schiitze, 1999).

4. Co-Support Vector Learning for
Structured Output Variables

In this section we present the co-support vector ma-
chines for structured output variables and arbitrary
loss functions. We briefly review the single-view vari-
ant (Tsochantaridis et al., 2005) and extend it to semi-
supervised learning.

4.1. Support Vector Learning for Structured
Output Variables

The goal in predicting structured output variables is
to learn a linear discriminant function f: X x Y — R
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Curiosity Kkills the cat
Figure 1. Example of a parse tree.

given by f(x,y) = (w, ®(x,y)) that correctly decodes
any output y; of the training sample (x;,y;) € D; i.e.,

yi = argmax f(x;, y).
yey

This is the case if there exists v > 0 such that

f(xi=Yi)_maXf(Xia)—’)27 (5)
Y#Yi
holds for all ¢ = 1,...,n. The scalar v is called the
functional margin. Support vector machines enforce
confident predictions by maximizing the geometrical
margin v/||w||; setting v = 1 leads us directly to the
following hard margin optimization problem.

Optimization Problem 1 Given n labeled exam-
ples; over all w minimize %HWHQ subject to the con-
straints Vi, Vy4y, (W, ®(x;,y:) — ®(x3,y)) > 1.

In general, we have to allow pointwise relaxations of
the hard margin constraints by slack variables. Each
slack variable &; is bound to an input example x;
(Crammer & Singer, 2001), leading to the following
soft-margin optimization problem.

Optimization Problem 2 Given n labeled exam-
ples, let C' > 0 andr = 1,2; over all w and &; minimize
Llw|2+ & 30 & subject to the constraints VI &; >
0 and VI Vyry, (W, ®(x;,y:) — (x5,¥)) > 1 —&.

The parameter r = 1,2 denotes a linear or quadratic
penalization of the error, respectively, C' > 0 deter-
mines the trade-off between margin maximization and
error minimization. The sum ), & upper-bounds the
empirical risk with common 0/1 loss. This, however,
might not be the best choice for several applications
(Joachims, 2005). Recently, two distinct ways of inte-
grating a loss function A into structured optimization
problems have been discussed; i.e., a margin rescaling
approach (Taskar et al., 2004) and a slack rescaling
approach (Tsochantaridis et al., 2005). We follow the
latter since rescaling the slack variables still allows the
sum Y &; to be interpreted as an upper bound on the

empirical risk which is not the case for rescaling the
margin. Note, that our approach is also easily gener-
alizable to the margin rescaling case. The extension
of Optimization Problem 2 to arbitrary loss functions
leads us to the following optimization problem.

Optimization Problem 3 Given n labeled exam-
ples, loss function A : Y x Y — RY, tradeoff C > 0,
and r = 1,2; over all w and & minimize §|wl* +
g Sor & subject to the constraints VI & > 0 and
V?:pv)"#yi<qu)(xia}’i) - (I)(Xivy» >1- %
Tsochantaridis et al. (2005) derive corresponding 1-
and 2-norm dual optimization problems and propose
an iterative optimization algorithm that is proven to
converge to the optimal solution in polynomial time.
If A is the 0/1 loss, Optimization Problems 2 and 3
are equivalent.

4.2. Semi-Supervised Support Vector Learning
for Structured Output Variables

In the co-learning setting that we discuss here we have
n labeled examples (x1,¥y1), ..., (Xn,¥n) € D! and m
unlabeled inputs X, 41, ..., Xn4+m € D*. The joint de-
cision function is given by the sum f(x,y) = f(x,y)+
fi(x,y), where each view fU(x,y) = (WY, ®’(x,y)),
v = 0,1 has its respective feature map. According
to the consensus maximizing principle, the co-support
vector machine now has to minimize the number of er-
rors for labeled examples and the disagreement for the
unlabeled examples.

For view v this is the case, if the labeled examples
fulfill Equation 5 while for the unlabeled examples

fv(xivyg)_mava(xivy):’72121 (6)

Y#Yi
holds for all i = n+1,...,n + m. The structure y?
denotes the prediction of the peer view v that is treated
as correct output for the i-th unlabeled input example.
In the following, we omit the superscript v and use the
superscript v to indicate variables of the peer view.
Optimization Problem 3 can be rephrased in the co-
learning setting as follows.

Optimization Problem 4 Given n labeled examples
and m unlabeled examples, loss function A, let C, C,, >
0, r=1,2, and v = 0,1; over all w and & minimize
Liwl? + (X0, & +Cu X, (min{7,1)€7)
subject to the constraints Y} E& > 0 and
V?:1avﬁﬁyi<qu)(xia}’i) - (I)(ley)> 2 1- 5

Yalyay)’
n-+m _ v o &
vi:mrlavsf;ﬁyv (W, ©(x;,y;)—P(x;,¥)) > I_W'
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Algorithm 1 CoSVM OPTIMIZATION ALGORITHM

Input: i-th unlabeled example x;, S?#, S;#, C, Cyu,
norm r, repetitions Tmaz-

1: Set SY =S5} =0,a), =aj,=0forally €Y
2: repeat
3: for each view v =0,1 do
4: y' = argmax (w", ®"(x;,y))
5: y' = argmaxy;éyv(l <W q’fy y>) ! A(y \Y)
6: & = maxyesy{(l - D7 50 W)/ AFY,Y)}
7: 7= (%) — Y (Xny )
8: endAf(')or . e
9: if [[y £y ii \ [[(W o) R y“> <1 W”’
v=0,1 then
10: for each view v = 0,1 do
11: Substitute former target y¥ = y°
12: if [§° # §']] then
13: Sy =87 U{y"}
14: else
15: Sy =87 U{y"}
16: end if
17: Optimize oy over S; with S7; fixed
18: Vy € §¥ with o3 = 0: S} = S“\{y}
19: end for
20: end if

21: until consensus or ry,qz repetitions

Output: Optimized o and o}, sets S? and S}

The balancing factor C, regularizes the influence of
the unlabeled data. Weights of min{~?, 1} to the slacks
Ent1, - - -5 Entm relate errors on unlabeled examples to
the confidence (i.e., margin) of the peer view’s pre-
diction. Thus, an unlabeled sequence that satisfies the
margin constraint has the same influence in the peer
view as a labeled example.

The sum of the slack variables now consists of an up-
per bound on the error for the labeled examples and
an upper bound on the disagreement weighted by the
confidence of the peer view’s prediction. Analogously
to the single-view case, the effective influence of the
loss function A can be adjusted by the trade-off C'.

Note that the joint objective function that is given
by the sum of the objective functions of both views
reduces to that of the transductive SVM (Joachims,
1999) in the case of identical views.

Similarly to the regular support vector machine, the
constraints of Optimization Problem 4 can be inte-
grated into the objective function by introducing non-
negative Lagrange multipiers a; y foralli =1,...,n+
m and every y € ). Taking the derivative of the La-
grangian with respect to the weight vector w leads to
its dual representation w = 3" D gty Yy Piyr g,
where we use ®; y- 3 shorthand for difference vectors

(I)i,y:,jl = (I)(Xi,y?) - (I)(Xlay)

v

with output variabley; =y7 if1 <i<nandy; =y;
for unlabeled examples with n 4+ 1 <1i <n 4+ m.

Given the derivative with respect to the &; and substi-
tuting all derivatives into the Lagrangian removes its
dependence on the primal variables and we resolve the
corresponding dual optimization problem that has to
be maximized with respect to the ;5. For r =1 we
derive the following 1-norm co-support vector machine
optimization problem.

Optimization Problem 5 Given n labeled and m
unlabeled examples, loss function A, C,Cy > 0; over
all o 5 mazimize

n+m ) n+m B B
> 2 iy —3 2 Y gy K ((x,Y),(x5,5))
i=1 yZy; ig=1 s

y'#y;

subject to the constraints VI, Zy#yi —A?;’_S’y) <
c, vitm, Zy#yl Tgli’) < (min{4?,1})C. C, and
Vi Yy zy, iy > 0.

The composite kernel K ((x;,¥),(x;,¥')) computes
the inner product of two difference vectors in input
output space and is given by

K ((Xi,}_’), (Xj7}_’/))
= (P(x;,y:) — 2(x:,¥), (I)(vayj) - (I)(va I)>
= (O(xi,yi), D(x5,y;)) — (B(xi,¥3), B(x;,5))
—(®(xi,¥), ®(x5, ;) + (2(xi,¥), 2(x;,¥"))-
The method by Brefeld et al. (2005) can be obtained

as a special case of Optimization Problem 5 for 0/1
loss and a sequential feature mapping.

<

For r = 2 we may drop the non-negativity constraints
51 >0 of Optimization Problem 4 since &; < 0 satisfies
(W, ®;5) > \/Aly;,y) — & and Y, £ guarantees the
objective to be posmve We derive the dual 2-norm
co-support vector machine optimization problem by
resubstituting the respective derivatives with respect
to w and &; into the Lagrangian.

Optimization Problem 6 Given n labeled and m
unlabeled examples, loss function A, C,C, > 0; over
all o 5 mazimize

n+m

n+m

YoOX iy —3 Y Yaiyag K'((x,5), (x5,¥))

i=1yAy P15
y yj

subject to the constraints V?:Jrlm Vysty. iy > 0.

Additional constraints are integrated into the ker-
nel K’ ((le ) (vay/)) = K((Xivy) (X77 )) + 61y7jy
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Table 1. Error rates for the Cora data set.

L:200 L:400
U:0 U:400 U:800 U:0 U:800 U:2000
SVM | 46.74 4+ 0.26 - - 38.39 £+ 0.22 - -
TSVM | 46.13+£0.41 | 48.544+0.28 | 50.84 +=0.30 | 37.65+0.25 | 39.31£0.45 | 42.72 4+ 0.60
coSVM | 41.94+0.30 | 42.51 +£0.33 | 41.52£0.26 | 32.80 £0.22 | 32.79 +0.21 | 32.72 £ 0.26

where ;5 ;5 equals (C\/A(y:,y)A(y;,y") ' if 1 <
i = j < n (ie, in case of a labeled example),
(min{~7, 11)Co O /Ay 9)A(y].5)) 7 i n 1 <
i =7 <mn+m (ie., in case of an unlabeled example),
and 0 otherwise.

4.3. Optimization Strategy

Since the dual variables o; y are tied to observations
X;, the dual optimization problem splits into n + m
disjoint subspaces spanned by «; gy with fixed values
for the Oty g-

In an outer loop, the co-support vector machine it-
erates over the examples and consecutively optimizes
the example’s parameters «; 3, using distinct working
set approaches for labeled (similar to Tsochantaridis
et al., 2005) and unlabeled (Algorithm 1) examples,
adding a new constraint in each iteration if necessary.

Algorithm 1 computes the top scoring output (line 4)
and its best runner-up (line 5) for both views and re-
lates their difference to the current slack (line 6). In
case of a disagreement or if a margin violation is de-
tected in one of the views an update is performed (line
10-20). This optimization scheme leads to sparse mod-
els, since it suffices to store only those o,y explicitly
whose associated output y is decoded instead of the
true y;. Outputs y with a; 3 = 0 are removed in order
to speed up computation. When the loop reaches an
example for the second time, all former outputs a; 3 of
that example are removed since the errors or disagree-
ments that they used to correct in earlier iterations of
the main loop may have been resolved.

Since the cost factors upper-bound the growth of the
a3, consensus might not be established and we there-
fore integrate a user defined constant r;,4, that bounds
the number of iterations.

5. Empirical Results

We investigate our approach by applying the semi-
supervised support vector machine to multi-class clas-
sification, named entity recognition, and natural lan-
guage parsing. We explore the benefit of co-learning
and investigate its execution time. The baseline SVM
is described by Tsochantaridis et al. (2005).

In each setting, the influence of unlabeled examples is
determined by a smoothing strategy which exponen-
tially approaches C,, after a fixed number of epochs.
We first optimize parameter C, using resampling; we
then fix C), and present curves that show the average
error over distinct randomly drawn training and hold-
out sets. The baseline methods are trained on concate-
nated views. We initialize 7,4, = 10, C' = 1.

For all problems and sample sizes we conduct a one-
sided t-test at a 1% confidence level. Significant results
are indicated by entries in bold face in Tables 1-3.

5.1. Multi-Class Classification

Our multi-class classification experiments are based on
the Cora data set that contains 9,947 linked computer
science papers. We remove documents without a ref-
erence section and obtain 9,555 papers divided into 8
different classes.

We exploit the link structure and generate two natural
views of the documents: a term frequency view of the
document and an outlink view. In the latter we have
one feature for each document pair x, x’ that equals 1
if document x cites document x’ and is 0 otherwise.

We use the common 0/1 loss and the respective 2-norm
variant of both structured prediction methods and the
transductive SVM (Joachims, 1999) as an additional
baseline. Table 1 details error rates and standard er-
ror in percent for different numbers of labeled (L) and
unlabeled (U) training examples and 500 holdout ex-
amples. Results are averages over 100 repetitions with
distinct training and holdout sets. The performance
of the TSVM deteriorates when the number of unla-
beled instances is increased. The co-trained SVM sig-
nificantly outperforms its fully supervised counterpart
for all numbers of labeled and unlabeled examples.

5.2. Label Sequence Learning

We study the effectiveness of our approach on two
named entity recognition problems. We use the data
set provided for task 1A of the Biocreative challenge
and the Spanish news wire article corpus of the shared
task of CoNLL 2002.

The Biocreative data contains 7500 sentences from
biomedical papers; gene and protein names are to be
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Table 2. Token error for the Biocreative (BC) and Spanish news wire (SN) data sets.

L:5 L:10 L:20
U:0 U:25 U:0 U:50 U:0 U:100
HMM | 17.98 + 0.69 - 14.32 £ 0.53 - 12.31+£0.23 -
BC SVM | 10.27+£0.16 - 9.70 + 0.07 - 9.474+0.05 -
coSVM | 9.71+0.07 | 9.54+0.08 | 9.48+0.05 | 9.51 £0.05 9.440.05 | 9.37+£0.06
HMM | 23.59 4+ 2.00 - 20.04 +1.27 - 15.31 £ 0.78 -
SN SVM | 10.95+0.18 - 9.98 £ 0.09 - 8.97 £ 0.08 -
coSVM | 13.86 +0.78 | 10.28 £0.14 | 11.26 +0.13 | 9.60 £0.11 | 11.73 £ 0.43 | 8.99 +0.09
recognized. We discriminate tokens that are parts of 1200-
gene names against all other tokens. We utilize label-
observation features like the token itself, letter 2,3 and 1000
4-grams, and surface clues like capitalization, inclusion € s00/
of Greek symbols, numbers, and others. g sool
The CoNLL2002 data contains 9 label types which p
£ 400
distinguish person, organization, location, and other =
names. We use 3100 sentences of between 10 and 40 200y
tokens. The extracted label-observation features cover . -
0 20 40 60 80

the token itself and surface clues.

We assure that each label occurs at least once in the
labeled training data; otherwise, we discard and draw
again. Each holdout set consists of 500 (Biocreative)
and 300 (Spanish news wire) sentences, respectively.

Table 2 shows the token error in percent for coSVM,
single-view SVM, and also for a supervised hidden
Markov model as an additional baseline for both data
sets. We utilize a distinct random split of the attributes
in two views for each repetition. Both support vector
algorithms beat the HMM significantly. The baseline
SVM that utilizes only labeled examples is clearly out-
performed by the semi-supervised SVM in all but one
settings and is never significantly better.

5.3. Natural Language Parsing

For our natural language parsing experiments we learn
an unlexicalized, weighted context-free grammar on
subsets of the Penn Treebank Wall Street Journal
corpus and the Negra corpus. Both are tagged with
part-of-speech and completely annotated with syntac-
tic structures.

We use the subsets 2-21 of the Wall Street Journal
corpus that contain 39,833 sentences. We extract sen-
tences of length of at most 15 words. From the an-
notations of the resulting 8,666 sentences we build a
context-free grammar of approximately 4,800 distinct
production rules.

The Negra corpus contains 20,602 sentences from a
German news paper archive. We extract sentences of
between 5 and 25 tokens. The resulting 14,137 sen-

number of unlabeled examples

Figure 2. Execution time.

tences contain more than 26,700 production rules in
Chomsky normal form.

The extracted local feature maps contain the rule it-
self and binarized border and span width features for
both corpora. Each result is averaged over 100 repe-
titions. In each repetition we use distinct, randomly
chosen feature splits and randomly drawn training and
holdout sets. The latter is of size 100. We use a mod-
ified variant of the CKY implementation by Johnson
(1999) for the decoding and apply 2-norm SVMs with
the loss A(y;,¥) =1— Fi(yi,y)-

Table 3 details F1 scores for different numbers of la-
beled (L) and unlabeled (U) training instances for
both corpora. Surprisingly, even for no unlabeled data
coSVM leads to better F1 scores than regular SVM
by simply averaging the predictions of the two views.
When we add unlabeled instances, the performance
of coSVM increases. Note, that additional unlabeled
examples (40+200) further improve F1 score.

5.4. Execution Time

The observed performance benefits of coSVM are at
the cost of significantly longer training processes. Fig-
ure 2 plots execution time against training set size for
4 labeled and different numbers of unlabeled examples.
Empirically, we observe that the execution time of co-
trained SVM scales between linearly and quadratically
in the number of unlabeled examples.
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Table 3. F1 scores for the wall street journal (WSJ) and the Negra (NEG) corpus.

L:4 L:40
U:0 U:80 U:0 U:80 U:200
WSJ SVM | 45.40 +0.61 - 71.73 £ 0.29 - -
coSVM | 47.92 £0.59 | 48.23 +0.55 | 73.85+0.24 | 74.07 = 0.25 | 75.01 £0.31
NEG SVM | 47.58 +0.37 - 63.70 £0.29 - -
coSVM | 48.81 £0.37 | 49.46 -0.33 | 64.94 +0.27 | 65.13 +£0.25 | 65.70 £ 0.25

5.5. Discussion

We observe that the co-trained support vector machine
with no unlabeled examples outperforms the baseline
methods in all tasks, significantly. We credit this find-
ing to averaging two independently trained hypothe-
ses. However, the prediction accuracy of coSVM can
be further increased by adding unlabeled examples in
the NER and parsing experiments.

6. Conclusion

We devised a semi-supervised variant of the support
vector machine for structured output variables and ar-
bitrary loss functions (coSVM). It is based on the co-
training framework and implements the principle of
consensus maximization between hypotheses. We de-
rived 1- and 2-norm optimization problems that allow
the use of arbitrary feature mappings and correspond-
ing decoding strategies. We presented exemplary fea-
ture maps and decodings for three problem classes.

We used various norms, loss functions, and feature
splits in our experiments. Empirical results for multi-
class classification, named entity recognition, and nat-
ural language parsing tasks showed that coSVM leads
to better models in terms of the chosen loss function
compared to the fully-supervised SVM. However, this
comes at the cost of a longer execution time. The semi-
supervised support vector machine benefits from the
inclusion of unlabeled examples into the training pro-
cess. We observed that coSVM outperforms its single-
view counterpart significantly in all tasks.
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