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Abstract

Discriminative learning techniques for sequen-
tial data have proven to be more effective than
generative models for named entity recognition,
information extraction, and other tasks of dis-
crimination. However, semi-supervised learning
mechanisms that utilize inexpensive unlabeled
sequences in addition to few labeled sequences
—such as the Baum-Welch algorithm — are avail-
able only for generative models. The multi-view
approach is based on the principle of maximizing
the consensus among multiple independent hy-
potheses; we develop this principle into a semi-
supervised hidden Markov perceptron algorithm.
Experiments reveal that the resulting procedure
utilizes unlabeled data effectively and discrimi-
nates more accurately than its purely supervised
counterparts.

Introduction

In the training process of generative sequence models,
additional inexpensive and readily available unlabeled se
guences can easily be utilized by employing Baum-Welch,
a variant of the EM algorithm. But since EM uses gener-
ative models, it cannot directly be applied to discrimina-
tive learning. Text sequences are often described by high-
dimensional attribute vectors that include, for instance,
word features, letter n-grams, orthographical and many
other features. These vectors can be split into two dis-
tinct, redundant views and thus the multi-view approach
can be followed. Multi-view algorithms such as co-training
[Blum and Mitchell, 1998learn two initially independent
hypotheses, and then minimize the disagreement of these
hypotheses regarding the correct labels of the unlabeled
datalde Sa, 199 Thereby, they minimize an upper bound
on the error ratgDasguptaet al., 2001.

The rest of our paper is structured as follows. Section
2 reports on related work and Section 3 reviews input out-
put spaces and provides some background on multi-view
learning. In Section 4 we present the dual multi-view hid-
den Markov kernel perceptron and report on experimental
results in Section 5. Section 6 concludes.

The problem of labeling observation sequences has appli-
cations tha.t range fro_m language processing tf’;\sks such 3 Related Work
named entity recognition, part-of-speech tagging, and in-
formation extraction to biological tasks in which the in- In a rapidly developing line of research, many variants of
stances are often DNA strings. Traditionally, sequencaliscriminative sequence models are being explored. Re-
models such as the hidden Markov model and variantsently studied variants include maximum entropy Markov
thereof have been applied to the label sequence learningodelMcCallumet al., 2004, conditional random fields
problem. Learning procedures for generative models adfLafferty et al, 2001, perceptron re-rankingCollins,
just the parameters such that the joint likelihood of tragni 2004, hidden Markov support vector machingdtun et
observations and label sequences is maximized. By coral., 20031, label sequence boostiihgltun et al, 20033,
trast, from the application point of view the true benefit of max-margin Markov model§Taskaret al, 2003, case-
a label sequence predictor corresponds to its ability to findactor diagram$McAllesteret al., 2004, sequential Gaus-
the correct label sequence given an observation sequenceian process modeldltun et al., 2004, kernel conditional

In the last years, conditional random fieldsafferty et random field§Lafferty et al, 2004 and support vector ma-
al., 2001; 2004, hidden Markov support vector machines chines for structured output spaddsochantaridiet al.,
[Altun et al,, 20038 and their variants have become popu-2004.
lar; their discriminative learning procedures minimize cr  De Sa[de Sa, 199K observes a relationship between
teria that are directly linked to their accuracy of retriev- consensus of multiple hypotheses and their error rate and
ing the correct label sequence. In addition, kernel condidevises a semi-supervised learning method by cascading
tional random fields and hidden Markov support vector ma-multi-view vector quantization and linear classificatiax.
chines utilize kernel functions which enables them to learrmulti-view approach to word sense disambiguation com-
in very high dimensional feature spaces. These featuresines a classifier that refers to the local context of a word
may also encode long-distance dependencies which cannwaith a second classifier that utilizes the document in which
adequately be handled by first-order Markov models. Exwords co-occurYarowsky, 1995 Blum and Mitchell
periments uniformly show that discriminative models have[Blum and Mitchell, 1998introduce the co-training algo-
advanced the accuracy that can be obtained for sequence lthm for semi-supervised learning that greedily augments
beling tasks; for instance, some of the top scoring systemthe training set of two classifiers. A version of the Ad-
in the BioCreative named entity recognition challenge use@Boost algorithm boosts the agreement between two views
conditional random fieldeMcDonald and Pereira, 2004  on unlabeled datiCollins and Singer, 1999



Dasgupta et al[Dasguptaet al,, 2001 and Abney[Ab- Restricting the possible features to consecutive label-
ney, 2002 give PAC bounds on the error of co-training in label (Equation 2 withs = 1) and label-observation (Equa-
terms of the disagreement rate of hypotheses on unlabeldt®n 3 with s = 0) dependencies is essentially a first-order
data in two independentviews. This justifies the direct min-Markov assumption and as a result, decoding (Equation 1)
imization of the disagreement. The co-EM algorithm for can be performed by a Viterbi algorithm in tini¥7'|x|?),
semi-supervised learning probabilistically labels allasn  With transition matrixA = {a, - } and observation matrix
beled examples and iteratively exchanges those labels bdx = {bs.o(x)} given by
tween two viewdNigam and Ghani, 2000; Ghani, 24002

Muslea et al[Musleaet al,, 2003 extend co-EM for active Gor = Z () Y [ =onge=1]] (5
learning and Brefeld and ScheffiBrefeld and Scheffer, i K
2004 study a co-EM wrapper for the support vector ma- bso(x) = Z[[gt = ol]ai(3)k(xs, Tit). (6)
chine. ity

We utilize a kernel functionK((x,y), (X,y)) =

3 Background (P(x,y), P(x,y)) to compute the inner product of two ob-

In this section we review “input output spacd#ltun et  servation and label sequences in input output space. The
al., 2004 and the consensus maximization principle thatinner product decomposes into

underlies multi-view algorithms for the reader’s conve-

nience. In the remainder of our paper we adopt the clear (®(x,y), ®(x,¥)) Z[[ysfl =Gi—1 ANYs = 1]
notation proposed bjAltun et al., 20031.

3.1 Learning in Input Output Space

The setting of thelabel sequence learning probleis
as follows. The labeled sample consists of pairs

X1,¥1),---,(Xn,yn), Wherex; € X denotes the-th e ) ) _
b1, y1) (n ¥n) y In the multi-view setting that we discuss here the available

input or observation sequence of lendth i.e., x; = r / CUS 9
(i1, Tia,...,xim), andy; € Y the corresponding la- attributest are decomposed into disjoint sérél a;{r;d;g).
RDAYAl

bel sequence with; = (1, ..., yir,). We denote the set An example(x;,y;) is therefore viewed agx;,

of all labels byY; i.e.,y;; € . wherex; € X7, withv =1,2. _
In label sequence |earning,joint features of the input and A C.haracterlstlc of multi-view methods is the natural

the label sequence play a crucial rateq. “is the previous ~ inclusion of unlabeled examplesi,x7),. .., (X, %7,)

token labeled a named entity and both the previous and cutvhich leads directly to semi-supervised techniques. Das-

rent token start with a capital letter’?). Such joint featur 9gupta et al.[Dasgupteet al, 2001 have studied the rela-

of input and output cannot appropriately be modeled wherion between the consensus of two independent hypotheses

the hypothesis is assumed to be a function from input tqand thEI.I’ error rate. One of thelr resglts that holds under

output sequences. The intuition of the input output spac8ome mild assumptions is the inequality

is that the decision functiofi : X x ) — R operates on 1 2 1 2

a joint feature representatioh(x;,y;) of input sequence P (f 7 f ) > max{P (err(f )) P (err(f ))}' (8)

x; and output sequengg. Given an input, the classifier That is, the probability of a disagreement of two indepen-

retrieves the output sequence dent hypotheses upper bounds the error rate of either hy-

pothesis. Thus, the strategy of semi-supervised multirvie

+3 llys = 7llk(ze, 7). (7)

3.2 The Consensus Maximization Principle

1)

y = argmax f(x;, y).

y

This step is referred to as decoding. Given the sample, th

learning problem is to find a discriminatgrthat correctly
decodes the examples. We utilize theparameterized lin-
ear modelf (x,y) = (w, ®(x,y)). The joint feature repre-
sentation®(x, y) allows capturing non-trivial interactions
of label-labepairs

bo,r (yilt) = [[Yit—s = 0 Nyir = T]], o, T €N, (2)

([[cond]] returns 1 ifcond is true and O otherwise) and
label-observatiopairs

Po,j (%5, ¥ilt) = [[yie = o]]v(wie—s), 3
where many featureg;(x;+—s) extract characteristics of
tokenz; ;_s; €.9, Yasa(x;1—s) May be 1 if tokenz; ;g
starts with a capital letter an@ otherwise. We will refer
to the vector)(z) = (..., %;(z),...)T and denote the dot
product by means of(x, z) = (¢¥(z), ¥ (Z)).

The feature representatidrix;, y;) of thei-th sequence
is defined as the sum of all feature vectdn&;, y;|t) =
(o os or (Yilt), - -y b0 (X, yilt),...)T extracted at time
t

T.
®(xi,yi) = Zfb(xi,yilt)-

t=1

.

(4)

learning is: Minimize the error for labeled examples and
@aximize the agreement for unlabeled examples.
In the following the sefD! containsn labeled examples

(x},x2,y:),i =1,...,n,andD" consists ofn unlabeled
sequence&},x?),i = n+1,...,n+m, wherein general
n < m holds.

4 Multi-View Hidden Markov Perceptrons

In this section we present the dual multi-view hid-
den Markov perceptron algorithm. For the reader’s
convenience, we briefly review the single-view hid-
den Markov perceptron[Collins and Duffy, 2002;
Altun et al, 20030 and extend it to semi-supervised
learning.

The Hidden Markov Perceptron
The goal is to learn a linear discriminant functin X x
Y — R given by

fxy) = (w,e(x,5)), )
that correctly decodes any example sequérgey;) € D;
ie.,

yi = argmax f(x;, ¥). (10)

y



Table 1: Dual Hidden Markov Perceptron Algorithm Table 2: Multi-view HM perceptron algorithm

Input: n labeled sequencds Input: n labeled sequencds’, m unlabeled sequences
D*, number of iterations,,, ;.

1. Initialize allo;(y) = 0.

2. Repeat Fori=1,...,n 1. Initialize allof(y) =0,v =1, 2.
3. Viterbi decoding: retrievg; (Eq. 10 and 11). 2. Fort=1,....,tmes: FOri=1,...,n+m
4. If y; # i then 3. Viterbi decoding: retrievg} andy? (Eq. 14).
5 aily:) = ai(ys) + 1 4 If i-th sequence is labeled agg # 37
6. i) = i) — 1 then updatea; (-) f;\cc. to Eq. 15y =1, 2.
7 End if. 5. Elseif i-th sequence is unlabeled apfl #~ y?
8. End for i: Until no more errors. then update both views according to Eq. 16.
6. Endif.
Output: Trained hypothesig(x,y) 7. End for &: End For .

. H i 1 2
Equation 9 can be transformed into its equivalent dual for- Output: Combined hypothesig(x", x", y).

mulation given by

X,y) = a; (Y)(D(x:,¥), D(x,y)), 11 labeled exampley; # y*), then the respective parameters
flx.y) zl:zy: @) @i, 7). 2(x¥)) ) are updated according to Equation 15.

where the relationw = 37,50 a;(7)®(x;,y) is used. af(yi)=a](yi)+1; o F)=aj(F")—1. (15)
The dual depends only on the inner product in input out- . . .
put space that can be computed efficiently by means of !iflthe views disagree on an unlabeled example — that is,

: ; i y2 — updates have to be performed that reduce the
kernel (Equation 7) and dual variablegy) € Z. The lat- 7 YT = U SO
ter weight the importance of sequengéor the prediction discord. Intuitively, each decision is swayed towards that

of observation;. of the peer view in Equation 16.

The. dual _perceptron algorithm consecutively decoqles a;(yﬁ) = a;(yﬁ) + Cy;

each input in the training sample. When the decoding QU(y") = a¥(y?) = Cy, v=1,2. (16)
(Equation 11) yields an incorrectly labeled sequefider ! ’
the i-th example, instead of the correct sequepgethen  The parameted < C, < 1 determines the influence of
the corresponding; are updated according to a single unlabeled example. df, = 1 each example has

) A the same influence whether it is labeled or unlabeled. The

aiyi) = cilys) + 1 ai(y) = ea(y) — 1. (12) outputy of the joint decision function
Thus, after an error has occurred, the correct sequence e
receives more, the incorrect prediction receives less y = argmaxf(x’,x%,y) (17)
influence. Since all initiaty; = 0 it suffices to store only Y L1 9 o _
those sequences in memory that have been used for an = argmax [f'(x',y) + f2(x°,y)] (18)
update. The dual hidden Markov perceptron algorithm is Y
shown in Table 1. can be efficiently computed by a Viterbi decoding. Viterbi
needs a transition cost matrix that details the score of a la-

The Multi-View Hidden Markov Perceptron bel transition and an observation cost matrix that relates
We now have labeled examplés!, x?,y;) € D' and labels to observations. These quantities can be derived by
unlabeled examplegs;,x7) € D*, wherey'(z},) and  summing the scores of the corresponding single-view ma-

Y3 (z?,), t = 1,...,T;, live in distinct vector spaces. trices. The transition and observation matrices are giyen b
’ — 1 2 _ 1 2 v v

We have decision functions(x!,x2,y) = fi(x',y)+ A=A +A°andB = B" + B whered” = {a; .}

£2(x2,y) with is defined in Equation 5 anBl; = {b7 ,(x")} in Equation

6, v = 1,2, respectively. Table 2 shows the multi-view
hidden Markov perceptron algorithm.

n+m
Fy) =D ) ol (3@ (x!,y), 2" (x",y)), (13)
=ty 5 Empirical Results

We concentrate on named entity recognition (NER) prob-
ems. We use the data set provided for task 1A of the

ioCreative challenge and the Spanish news wire article
corpus of the shared task of CoNLL 2002.

The BioCreative data contains 7500 sentences from
biomedical papers; gene and protein names are to be rec-
ognized. View 1 consists of the token itself together with

y" = argmax f"(x;,y). (14)  letter 2, 3 and 4-grams; view 2 contains surface clues like
y capitalization, inclusion of Greek symbols, numbers, and

The hidden Markov perceptron update rule for labeled exothers as documented [iHakenberget al, 2004. The
amples remains unchanged; if viewnisclassifies the-th ~ CoNLL2002 data contains 9 label types which distinguish

wherev = 1,2. According to the consensus maximiza-
tion principle, the perceptron algorithm now has to min-
imize the number of errors for labeled examples and th
disagreement for unlabeled examples. Each view 1, 2
predicts the label sequence for an examplehether it is
labeled or unlabeled, analogously to the single-view hidde
Markov perceptron according to



BioCreative learning curve

error rate vs. unlabeled sample size
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Figure 1: Learning curves for BioCreative. Figure 3: Error depending on the unlabeled sample size for
BioCreative.

Spanish news wire learning curve
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Figure 2: Learning curves for Spanish news wire.

o ) Figure 4: Error for several splits of features into views for
person, organization, location, and other names. We usgpanish news wire.

3100 sentences of between 10 and 40 tokens which we rep-

resent by a token view and a view of surface clues. construct a feature split in which view 1 contains all odd,
In each experiment we draw a specified number ofand view 2 all even features. Hence, each view contains

(labeled and unlabeled) training and holdout sentencegalf of the Boolean token features as well as half of the
without replacement at random in each iteration. We assurgyrface clues. Figure 4 shows that this split performs

that each label occurs at least once in the labeled trainingjightly but significantly better than the random split.
data; otherwise, we discard and draw again. Each holdoyyence, our experiments show that even though multi-view
set consists of 500 (BioCreative) and 300 (Spanish neWgearning using the split of token and-grams versus
wire) sentences, respectively. We first optimize parametegyrface clues leads to a substantial improvement over

Cy using resampling; we then fik', and present curves sjngle-view learning, a random or odd-even split lead to an
that show the average token-based error over 100 randomiysen better performance.

drawn training and holdout sets. The baseline methods —
hidden Markov model with Bernoulli distributed attribute

emission probabilities and single-view HM perceptron g, time against training set size. The performance bene-

— are trained on concatenated views; errorbars indicalfyq ore at the cost of significantly longer training processe
standard error. We want to answer the following questionsha multi-view HM perceptron scales linearly in the num-

ber of unlabeled sequences.

How costly is the training process?igure 5 plots execu-

Is the inclusion of unlabeled data beneficial for se-
guential learning? Figure 1 and 2 show learning curves
for HMM, single-view, and multi-view HM perceptron

. . execution time
for both data sets. Except for one point the multi-view 800

method always outperforms the single-view strawmen sig- 200 L " multi-view HM perceptron -;,|:+--- )
nificantly; the multi-view HM perceptron is the most accu- 2 500 | HM perceptfof}/ """ e
rate sequence learning method. 2
In Figure 3 we vary the number of unlabeled sequences  $ 500 1 ]
for the BioCreative data set. As the number of unlabeled 2 400 - }
data increases, the advantage of multi-view over single- @ 390 F L T
view sequence learning increases further. = 200 7 .
100 | -
Are there better ways of splitting the features into 0 * - X
5+25 10+50 20+100

views? We compare the feature split into the token itself
and lettern-grams versus surface clues to the average
of 100 random splits. Surprisingly, Figure 4 shows that
random splits work even (significantly) better. We also

number of labeled+unlabeled sequences

Figure 5: Execution time.



6 Conclusion [Lafferty et al, 2001 J. Lafferty, A. McCallum, and F. Pereira.

Starting from a discriminative sequence learning algarith Conditional random fields: probabilistic modesl for segtnen

— the hidden Markov perceptron — we constructed a semi- ing and labeling sequence data.Aroceedings of the Intema-
. . P P s o tional Conference on Machine Learnin2001.

supervised learning method by utilizing the principle of . I 4 8 N q _ |
consensus maximization between hypotheses. We deriVéHacoer:Ei)i/tieotnaa'l’ rzaa%o n;]'filéﬁjse-rrtgb r>¢(as gntl;tigrr: ar:gl <|:_Il|lcj1u e};ﬂgi
the multi-view HM perceptron. Our experiments show that ' : .

. - - In Proc. of the Int. Conf Machine L 2604.
this method utilizes unlabeled data effectively and outper n Froc. ot the nt. L-onference on Machine earn.| 9
forms its supervised counterpart, significantly; the multi [McAllesteretal, 2004 D. McAllester, M. Collins, and
view HM perceptron achieves the highest performance. F. Perfelra. Case-factpr diagrams for structured prOL‘Ehlbllll

We observed that random feature splits perform bet- modeling. InProceedings of the Conference on Uncertainty

o - - in Artificial Intelli 2004.

ter than splitting the features into a token view and a ' ArtciatInteTigence ]
view of surface clues. Nevertheless, the multi-view hid-[McCallumetal, 2000 A. McCallum, kD' Frsltlag,f ?”fd
den Markov perceptron outperforms the purely supervised fﬁaﬁggeg;racm)ix'g:“émsee”r;rgﬁétirggr (I?h\r/\o?e% d?ns Soéf 'tr;]gr'
methods even for the initial weak split. Our future work g ' g

. . . International Conference on Machine Learnjrg00.
will address the construction of good feature splits. ) )
[McDonald and Pereira, 2004R. McDonald and F. Pereira.
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