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Abstract. We study sequential prediction models in cases where only
fragments of the sequences are annotated with the ground-truth. The
task does not match the standard semi-supervised setting and is highly
relevant in areas such as natural language processing, where completely
labeled instances are expensive and require editorial data. We propose to
generalize the semi-supervised setting and devise a simple transductive
loss-augmented perceptron to learn from inexpensive partially annotated
sequences that could for instance be provided by laymen, the wisdom
of the crowd, or even automatically. Experiments on mono- and cross-
lingual named entity recognition tasks with automatically generated par-
tially annotated sentences from Wikipedia demonstrate the effectiveness
of the proposed approach. Our results show that learning from partially
labeled data is never worse than standard supervised and semi-supervised
approaches trained on data with the same ratio of labeled and unlabeled
tokens.

1 Introduction

The problem of labeling, annotating, and segmenting observation sequences
arises in many applications across various areas such as natural language process-
ing, information retrieval, and computational biology; exemplary applications
include named entity recognition, information extraction, and protein secondary
structure prediction.

Traditionally, sequence models such as hidden Markov models [26, 14] and
variants thereof have been applied to label sequence learning [9] tasks. Learning
procedures for generative models adjust the parameters such that the joint like-
lihood of training observations and label sequences is maximized. By contrast,
from an application point of view, the true benefit of a label sequence predictor
corresponds to its ability to find the correct label sequence given an observation
sequence. Thus, many variants of discriminative sequence models have been ex-
plored, including maximum entropy Markov models [20], perceptron re-ranking
[7, 8], conditional random fields [16, 17], structural support vector machines [2,
34], and max-margin Markov models [32].

Learning discriminative sequential prediction models requires ground-truth
annotations and compiling a corpus that allows for state-of-the-art performance



Table 1. Different interpretations for ”I saw her duck under the table" [15].

I saw [NP her] [VP duck under the table]. → She ducked under the table.
I [VP saw [NP her duck] [PP under the table]]. → The seeing is done under the table.
I saw [NP her duck [PP under the table]]. → The duck is under the table.

on a novel task is not only financially expensive but also in terms of the time it
takes to manually annotate the observations. Frequently, annotating data with
ground-truth cannot be left to laymen due to the complexity of the domain.
Instead trained editors need to deal with the pitfalls of the domain at hand such
as morphological, grammatical, and word sense disambiguation when dealing
with natural language. Table 1 shows an ambiguous sentence with three different
interpretations that cannot be resolved without additional context.

Semi-supervised learning approaches [6] aim at reducing the need for large
annotated corpora by incorporating unlabeled examples in the optimization; to
deal with the unlabeled data one assumes that the data meets certain crite-
ria. A common assumption exploits that similar examples are likely to have
similar labelings. This so-called cluster assumption can be incorporated into
semi-supervised structural prediction models by means of Laplacian priors [17,
1], entropy-based criterions [18], transduction [37], or SDP relaxations [35]. Al-
though these methods have been shown to improve over the performance of
purely supervised structured baselines, they do not reduce the amount of re-
quired labeled examples significantly as it is sometimes the case for univariate
semi-supervised learning. One of the key reasons is the variety and number of
possible annotations for the same observation sequence; there are |Σ|T different
annotations for a sequence of length T with tag set Σ and many of them are
similar in the sense that they differ only in a few labels.

In this paper, we extend the semi-supervised learning setting and study learn-
ing from partially annotated data. That is, in our setting only some of the ob-
served tokens are annotated with the ground-truth while the rest of the sequence
is unlabeled. The rational is as follows: If the target concept can be learned from
partially labeled sequences, annotation costs can be significantly reduced. Large
parts of an unlabeled corpus could for instance be labeled by laypeople using
the wisdom of the crowd via platforms like MechanicalTurk1 or CrowdFlower2.
Prospective workers could be asked to only annotate those parts of a sequence
they feel confident about and if two or more workers disagree on the labeling of
a sentence, the mismatches are simply ignored in the model generation. In the
example in Table 1, one could label the invariant token her=NP and leave the
ambiguous parts of the sentence unlabeled.

We devise a straight-forward transductive extension of the structured loss-
augmented perceptron that allows to include partially labeled sequences in the
training process. This extension contains the supervised and the semi-supervised
structured perceptron as special cases. To demonstrate that we can learn from
1 https://www.mturk.com
2 http://www.crowdflower.com



inexpensive data, we evaluate our method on named entity recognition tasks.
We show in a controlled experiment that learning with partially labeled data is
always on par or better than standard supervised and semi-supervised baselines
(trained on data with the same ratio of labeled and unlabeled tokens). Moreover,
we show that mono- and cross-lingual named entity recognition can significantly
be improved by using additional corpora that are automatically extracted from
Wikipedia3 at factually no costs at all.

The remainder is structured as follows. Section 2 reviews related work and
Section 3 introduces label sequence learning. We devise the transductive per-
ceptron in Section 4. Section 5 reports on the empirical results and Section 6
concludes.

2 Related Work

Learning from partially annotated sequences has been studied by [30] who extend
HMMs to explicitly exclude states for some observations in the estimation of the
models. [22] propose to incorporate domain-specific ontologies into HMMs to
provide labels for the unannotated parts of the sequences, [10] cast learning an
HMM for partially labeled data into a large-margin framework and [33] present
an extension of maximum entropy Markov models (MEMMs) and conditional
random fields (CRFs). The latent-SVM [36] allows for the incorporation of latent
variables in the underlying graphical structure; the additional variables implicitly
act as indicator variables and conditioning on their actual value eases model
adaptation because it serves as an internal clustering.

The generalized perceptron for structured output spaces is introduced by
[7, 8]. Altun et al. [2] leverage this approach to support vector machines and
explore label sequence learning tasks with implicit 0/1 loss. McAllester et al.
[19] propose to incorporate loss functions into the learning process of perceptron-
like algorithms. Transductive approaches for semi-supervised structured learning
are for instance studied in [17, 1, 35, 18, 37], where the latter is the closest to
our approach as the authors study transductive support vector machines with
completely labeled and unlabeled examples.

Generating fully annotated corpora from Wikipedia has been studied by [24,
27, 21]. While [21] focus on English and exploit the semi-structured content of
the info-boxes, [24] and [27] propose heuristics to assign tags to Wikipedia entries
by manually defined patterns.

3 Preliminaries

The task in label sequence learning [9] is to find a mapping from a sequential
input x = 〈x1, . . . , xT 〉 to a sequential output y = 〈y1, . . . , yT 〉, where yt ∈ Σ;
i.e., each element of x is annotated with an element of the output alphabet Σ
which denotes the set of tags. We denote the set of all possible labelings of x by
Y(x).
3 http://www.wikipedia.com
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Fig. 1. A Markov random field for label sequence learning. The xt denote observations
and the yi their corresponding hidden class variables.

The sequential learning task can be modeled in a natural way by a Markov
random field where we have edges between neighboring labels and between label-
observation pairs, see Figure 1. The conditional density p(y|x) factorizes across
the cliques [12] and different feature maps can be assigned to the different types
of cliques, φtrans for transitions and φobs for emissions [2, 16]. Finally, interde-
pendencies between x and y are captured by an aggregated joint feature map
φ : X × Y → Rd,

φ(x,y) =

(
T∑
t=2

φtrans(x, yt−1, yt)
>,

T∑
t=1

φobs(x, yt)
>

)>

which gives rise to log-linear models of the form

g(x,y;w) = w>φ(x,y).

The feature map exhibits a first-order Markov property and as a result, decoding
can be performed by a Viterbi algorithm [11, 31] in O(T |Σ|2) so that, once
optimal parameters w∗ have been found, these are used as plug-in estimates to
compute the prediction for a new and unseen sequence x′,

ŷ = f(x′;w∗) = argmax
ỹ∈Y(x′)

g(x′, ỹ;w∗). (1)

The optimal function f(·;w∗)minimizes the expected risk E [`(y, f(x;w∗)] where
` is a task-dependent, structural loss function. In the remainder, we will focus
on the 0/1- and the Hamming loss to compute the quality of predictions,

`0/1(y, ỹ) = 1[y 6=ỹ]; `h(y, ỹ) =

|y|∑
t=1

1[yt 6=ỹt] (2)

where the indicator function 1[u] = 1 if u is true and 0 otherwise.



4 Transductive Loss-Augmented Perceptrons

4.1 The Structured Perceptron

The structured perceptron [7, 2] is analogous to its univariate counterpart. Given
an infinite sequence (x1,y1), (x2,y2), . . . drawn i.i.d. from p(x,y), the struc-
tured perceptron generates a sequence of models w0 = 0,w1,w2, . . .. At time t,
an update is performed if the the prediction ŷt = f(xt;wt) does not coincide
with the true output yt; the update rule is given by

wt+1 ← wt + φ(xt,yt)− φ(xt, ŷt).

Note that in case ŷt = yt the model is not changed, that is wt+1 ← wt. After
an update, the model favors yt over ŷt for the input xt and a simple extension
of Novikoff’s theorem [25] shows that the structured perceptron is guaranteed to
converge to a zero loss solution (if one exists) in at most t ≤ ( rγ̃ )

2‖w∗‖2 steps,
where r is the radius of the smallest hypersphere enclosing the data points and
γ̃ is the functional margin of the data [8, 2].

4.2 Loss-augmented Perceptrons

The above update formula intrinsically minimizes the 0/1-loss which is generally
too coarse for differentiating the severity of erroneous annotations. To incorpo-
rate task-dependent loss functions into the perceptron, the structured hinge loss
of a margin-rescaled SVM [34, 19] can be used. The respective decoding problem
becomes

ŷ = argmax
ỹ∈Y(xt)

[
`(yt, ỹ)−w>t φ(xt,yt) +w>t φ(xt, ỹ)

]
= argmax

ỹ∈Y(xt)

[
`(yt, ỹ) +w>t φ(xt, ỹ)

]
.

Margin-rescaling can be intuitively motivated by recalling that the size of the
margin γ = γ̃/‖w‖ quantifies the confidence in rejecting an erroneously decoded
output ỹ. Re-weighting γ̃ with the current loss `(y, ỹ) leads to a weaker rejec-
tion confidence when y and ỹ are similar, while large deviations from the true
annotation imply a large rejection threshold. Rescaling the margin by the loss
implements the intuition that the confidence of rejecting a mistaken output is
proportional to its error.

Margin-rescaling can always be integrated into the decoding algorithm when
the loss function decomposes over the latent variables of the output structure as
it is the case for the Hamming loss in Eq. (2). The final model w∗ is a minimizer
of a convex-relaxation of the theoretical loss (the generalization error) and given
by

w∗ = argmin
w̃

E
[

max
ỹ∈Y(xt)

`(yt, ỹ)− w>t (φ(xt,yt)− φ(xt, ỹ))
]
.
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Fig. 2. The constrained Viterbi decoding (emissions are not shown). If time t is an-
notated with σ2, the light edges are removed before decoding to guarantee that the
optimal path passes through σ2.

4.3 Transductive Perceptrons for Partially Labeled Data

We derive a straight-forward transductive extension of the loss-augmented per-
ceptron that allows for dealing with partially annotated sequences. Instead of
the ground-truth annotation y of an observed sequence x, we are now given a
set z = {(tj , σj)}j=1,...,m with 1 ≤ tj ≤ T and σj ∈ Σ of token annotations such
that the time slices xtj of x are labeled with ytj = σj while the remaining parts
of the label sequence are unlabeled.

To learn from the partially annotated input stream (x1, z1), (x2, z2), . . ., we
perform a transductive step to extrapolate the fragmentary annotations to the
unlabeled tokens so that we obtain a reference labeling as a makeshift for the
missing ground-truth. Following the transductive principle, we use a constrained
Viterbi algorithm [5] to decode a pseudo ground-truth yp for the tuple (x, z),

yp = argmax
ỹ∈Y(x)

w>φ(x, ỹ) s.t. ∀(t, σ) ∈ z : ỹt = σ.

The constrained Viterbi decoding guarantees that the optimal path passes through
the already known labels by removing unwanted edges, see Figure 2. Assuming
that a labeled token is at position 1 < t < T , the number of removed edges
is precisely 2(k − 1)k, where k = |Σ|. Algorithmically, the constrained decod-
ing splits sequences at each labeled token in two halves which are then treated
independently of each other in the decoding process.

Given the pseudo labeling yp for an observation x, the update rule of the
loss-augmented perceptron can be used to complement the transductive percep-
tron. The inner loop of the resulting algorithm is shown in Table 2. Note that
augmenting the loss function into the computation of the argmax (step 2) gives
yp = ŷ if and only if the implicit loss-rescaled margin criterion is fulfilled for all
alternative output sequences ỹ.



Table 2. The transductive perceptron algorithm

Input: Partially labeled example (x,z), model w

1: yp ← argmaxỹ∈Y(x)

[
w>φ(x, ỹ)

]
s.t. ∀(t, σ) ∈ z : ỹt = σ.

2: ŷ ← argmaxỹ∈Y(x)

[
`h(yp, ỹ) +w>φ(x, ỹ)

]
3: w′ ← w + φ(x,yp)− φ(x, ŷ)

Output: Updated model w′

Kernelization Analogously to the regular perceptron algorithm, its transduc-
tive generalization can easily be kernelized. The weight vector at time t is given
by

wt = 0+

t−1∑
j=1

φ(xj ,y
p
j )− φ(xj , ŷj) (3)

=
∑

(x,yp,ŷ)

αx(yp, ŷ)
[
φ(x,yp)− φ(x, ŷ)

]
(4)

with appropriately chosen α’s that act as virtual counters, detailing how many
times the prediction ŷ has been decoded instead of the pseudo-output yp for
an observation x. Thus, the dual perceptron has virtually exponentially many
parameters, however, these are initialized with αx(y,y

′) = 0 for all triplets
(x,y,y′) so that the counters only need to be instantiated once the respective
triplet is actually seen. Using Eq. (4), the decision function depends only on
inner products of joint feature representations which can then be replaced by
appropriate kernel functions k(x,y,x′,y′) = φ(x,y)>φ(x′,y′).

Parameterization Anecdotal evidence shows that unlabeled examples often
harm the learning process when the model is weak as the unlabeled data out-
weigh the labeled part and hinder adaptation to the target concept. A remedy
is to differently weight the influence of labeled and unlabeled data or to in-
crease the influence of unlabeled examples during the learning process [13, 37].
In our experiments we parameterize the Hamming loss to account for labeled
and unlabeled tokens,

`h(yp, ŷ) =

|yp|∑
t=1

λ(z, t)1[ypt 6=ŷt]

where λ(z, t) = λL if t is a labeled time slice, that is (t, ·) ∈ z, and λ(z, t) = λU
otherwise. Appropriate values of λL and λU can be found using cross-validation
or using holdout data.



Discussion Trivially, the traditional supervised and semi-supervised counter-
parts of the perceptron are obtained as special cases. That is, if for all examples
|z| = |x| holds, we recover the traditional supervised learning setting and in
case either |z| = |x| or z = ∅ holds, we obtain the standard semi-supervised
setting. This observation allows us to design the experiments in the next section
simply by changing the data, that is the distribution of the annotations across
tokens, while keeping the algorithm fixed. For supervised and semi-supervised
scenarios, we only need to alter the label distribution so that it gives rise to
either completely labeled or unlabeled sequences.

Using the results by Zinkevich et al. [38] the proposed transductive percep-
tron can easily be distributed on several machines. Note that the inner loop of
the algorithm, displayed in Table 2 depends only on the input (x, z) and the
actual model w. Consequentially, several models can be trained in parallel on
disjoint subsets of the data. A subsequent merging process aggregates the mod-
els where each model’s impact is proportional to the amount of data it has been
trained on.

5 Empirical Results

In this section, we will show that (i) one can effectively learn from partial annota-
tions and that (ii) our approach is superior to standard semi-supervised setting.
We thus compare the transductive loss-augmented perceptron to its supervised
and semi-supervised counterparts. Experiments with CoNLL data use the orig-
inal splits of the respective corpora into training, holdout, and test set, where
parameters are adjusted on the holdout sets. We report on averages of training
3 × 4 = 12 repetitions, involving 3 perceptrons and 4 data sets to account for
the random effects in the algorithm and data generation; error bars indicate
standard error.

Due to the different nature of the algorithms, we need to provide different
ground-truth annotations for the algorithms. While the transductive perceptron
is simply trained on arbitrarily (e.g., partially) labeled sequences, the supervised
baseline needs completely annotated sentences and the semi-supervised percep-
tron allows for the inclusion of additional unlabeled examples. In each setting, we
use the same observation sequences for all methods and only change the distri-
bution of the labels so that it meets the requirements of the respective methods;
however note that the number of labeled tokens is identical for all methods. We
describe the generation of the training sets in greater detail in the following
subsections. All perceptrons are trained for 100 epochs.

5.1 English CoNLL 2003

The first study is based on the CoNLL 2003 shared task [29], an English corpus
that includes annotations of four types of entities: person (PER), organization
(ORG), location (LOC), and miscellaneous (MISC). This corpus is assembled
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Fig. 3. Results for CoNLL.

from Reuters News stories and divided into three parts: 203,621 training, 51,362
development, and 46,435 test tokens.

We first study the impact of the ratio of labeled and unlabeled tokens in a
controlled setting. To generate the respective training sets for supervised and
semi-supervised settings, we proceed as follows. For each ratio, we draw sen-
tences at random until the amount of tokens matches (approximately) the re-
quired number of labeled examples. These sentences are then completely labeled
and form the training set for the supervised perceptron. The semi-supervised
perceptron additionally gets the remaining sentences from the original training
set as unlabeled examples. The partially labeled training data is generated by
randomly removing token annotations from the original training split until the
desired ratio of labeled/unlabeled tokens is obtained. Note that the underlying
assumptions on the annotations are much stronger for the completely annotated
data.

Figure 3 shows F1 scores for different ratios of labeled and unlabeled tokens.
Although the baselines are more likely to capture transitions well because the
labeled tokens form complete annotations, they are significantly outperformed
by the transductive perceptron in case only 10-50% of the tokens are labeled. For
60-100% all three algorithms perform equally well which is still notable because
the partial annotations are inexpensive and easier to obtain. By contrast, the
semi-supervised perceptron performs worst and is not able to benefit from many
unlabeled examples.

We now study the impact of the amount of additional labeled tokens. In
Figure 4, we fix the amount of completely annotated sentences at 20% (left fig-
ure) and 50% (right), respectively, and vary the amount of additional partially
annotated tokens. The supervised and semi-supervised baselines are constant as
they cannot deal with the additional data where the semi-supervised perceptron
treats the remaining 80% and 50% of the data as unlabeled sentences. Notice
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Fig. 4. Varying the amount of additional labeled tokens with 20% (left) and 50% (right)
completely labeled examples.

that the semi-supervised baseline performs poorly; as in the previous experiment,
the additional unlabeled data seemingly harm the training process. Similar ob-
servations have for instance been made by [4, 23] and particularly for structural
semi-supervised learning by [37]. By contrast, the transductive perceptron shows
in both figures an increasing performance for the partially labeled setting when
the amount of labeled tokens increases. The gain in predictive accuracy is highest
for settings with only a few completely labeled examples (Figure 4, left).

5.2 Wikipedia – Mono-Lingual Experiment

We now present an experiment using automatically annotated real-world data
extracted from Wikipedia. To show that incorporating partially labeled exam-
ples improves performance, we proceed as follows: The training set consists of
completely labeled sentences which are taken from the English CoNLL data and
partially labeled data that is extracted automatically from Wikipedia. One of
the major goals in the data generation is to render human interaction unneces-
sary or at least as low as possible. In the following we briefly describe a simple
way to automatically annotate Wikipedia data using existing resources.

Atserias et al. [3] provide a tagged version of the English Wikipedia that
preserves the link structure. We collect the tagged entities in the text that are
linked to a Wikipedia article. In case the tagged entity does not perfectly match
the hyperlinked text we treat it as untagged. This gives us a distribution of
tags for each Wikipedia article as the tagging is noisy and depends highly on the
context.4 The linked entities referring to Wikipedia articles are now re-annotated
4 For instance, a school could be either tagged as a location or an organization, de-
pending on the context.



Table 3. An exemplary partially labeled sentence extracted fromWikipedia. The coun-
try Hungary is labeled as a location (LOC) due to the majority vote, while Bukkszek
could not be linked to a tagged article and remains unlabeled.

x = Bukkszek is a small village in the north of Hungary
| | | | | | | | | |

y = ? ? ? ? ? ? ? ? ? PER LOC ORG MISC O
7 10498 42 2288 374

with the most frequent tag of the referenced Wikipedia article. Table 3 shows
an example of an automatically annotated sentence. Words that are not linked
to a Wikipedia article (e.g., small) as well as words corresponding to Wikipedia
articles which have not yet been tagged (e.g., Bikkszek) remain unlabeled.

Table 4. Characteristics of the English data sets.

CoNLL Wikipedia
tokens 203,621 1,205,137,774

examples 14,041 58,640,083
tokens per example 14.5 20.55

entities 23,499 22,632,261
entities per example 1.67 0.38

MISC 14.63% 18.17%
PER 28.08% 19.71%
ORG 26.89% 30.98%
LOC 30.38% 31.14%

Table 4 shows some descriptive statistics of the extracted data. Since the
automatically generated data is only partially annotated, the average number of
entities in sentences is much lower compared to that of CoNLL. That is, there are
potentially many unidentified and missed entities in the data. By looking at the
numbers one could assume that particularly persons (PER) are underrepresented
in the Wikipedia data while organizations (ORG) and others (MISC) are slightly
overrepresented. Locations (LOC) are seemingly well captured.

The experimental setup is as follows. We use all sentences contained in the
CoNLL training set as completely labeled examples and add randomly drawn
partially labeled sentences that are automatically extracted from Wikipedia.
Figure 5 (left) shows F1 scores for varying numbers of additional data. The
leftmost point coincides with the supervised perceptron that only processes the
labeled CoNLL data. Adding partially labeled data shows a slight but significant
improvement over the supervised baseline. Interestingly, the observed improve-
ment increases with the number of partially labeled examples although these
come from a different distribution as shown in Table 4.
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5.3 Wikipedia – Cross-Lingual Experiment

This experiment aims at studying whether we could enrich a small data set in
the target language (here: Spanish) by exploiting resources in a source language
(here: English). For the cross-language scenario we use the CoNLL’2002 corpus
[28] for evaluation. The corpus consists of Spanish news wire articles from the
EFE5 news agency and is annotated with four types of entities: person (PER),
organization (ORG), location (LOC), and miscellaneous (MISC). The additional
Wikipedia resource is generated automatically as described in the previous sec-
tion, however, we add an intermediate step to translate the English pages into
Spanish by exploiting Wikipedia language links. The automatic data generation
now consists of the following three steps: (1) Count the tagged entities that are
linked to an English Wikipedia article. (2) Translate the article into Spanish by
using the language links. In case such a link does not exist we ignore the article.
(3) Annotate mentions of the Spanish entity in the Spanish Wikipedia with the
most frequent tag of its English counterpart of step 1.

Table 5 shows some descriptive statistics of the extracted data from the
Spanish Wikipedia. The number of contained entities is again much lower than
in the CoNLL data. Compared to Table 4, the percentage of persons (PER)
matches that of the Spanish CoNLL, however locations (LOC) and other entities
(MISC) show large deviations. This is probably due to missing language links
between the Wikipedias (the Spanish Wikipedia is much smaller than the one
for English) and caused by differences in the respective languages.

Our experimental setup is identical to that of the previous section, except
that we now use the training set of the Spanish CoNLL together with the au-
tomatically extracted data from the Spanish Wikipedia. Figure 5 (right) shows
the results. A relatively small number of additional partially labeled examples

5 http://efe.com/



Table 5. Characteristics of the Spanish data sets.

CoNLL Wikipedia
tokens 264,715 257,736,886

examples 8,323 9,500,804
tokens per example 31.81 27.12

entities 18,798 8,520,454
entities per example 2.26 0.89

MISC 11.56% 27.64%
PER 22.99% 23.71%
ORG 39.31% 32.63%
LOC 26.14% 16.02%

does not have an impact on the performance of the transductive perceptron. We
credit this finding to noisy and probably weak annotations caused by the lan-
guage transfer. However, when we add more than 6 million automatically labeled
tokens, the generalized problem setting pays off and the performance increases,
slightly, but significantly.

5.4 Execution Time

Figure 6 reports on execution times on an Intel(R) Core(TM)2 Duo CPU (E8400
model) with 3.00GHz and 6 MB cache memory. We use the same experimental
setup as for Figure 4 (left). That is we use 20% of the English CoNLL sequences
as completely labeled examples and vary the number of additional annotations
on the remaining tokens. The figure shows that the execution time decreases for
an increasing number of labels because the decoding is less expensive until it
reaches the performance of the the standard loss-augmented perceptron which
is trained on the completely labeled training set of the CoNLL data. The results
also hold for the Wikipedia experiments. Using additional 0.1% of the English
Wikipedia (which is about 5 times the size of the CoNLL training set) takes
about 18 minutes. In sum, we observe a linear growing execution time in the size
of the corpus given a fixed ratio of labeled/unlabeled tokens.

6 Conclusion

In this paper, we showed that surprisingly simple methods, such as the devised
transductive perceptron, allow for learning from sparse and partial labelings.
Our empirical findings show that a few, randomly distributed labels often lead to
better models than the standard supervised and semi-supervised settings based
on completely labeled ground-truth; the transductive perceptron was observed
to be always better or on par as its counterparts trained on the same amount
of labeled data. Immediate consequences arise for the data collection: while the
standard semi-supervised approach requires completely labeled editorial data, we
can effectively learn from partial annotations that have been generated automat-
ically and without manual interaction; using additional, automatically labeled
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data from Wikipedia lead to a significant increase in performance in mono- and
cross-lingual named entity recognition tasks. We emphasize that these improve-
ments come at factually no additional labeling costs at all.

Future work will extend our study towards larger-scales. It will certainly be
of interest to extend the empirical evaluation to other sequential tasks, output
structures. As the developed transductive perceptron is a relatively simple algo-
rithm, more sophisticated ways for dealing with partially labeled data are also
interesting research areas.
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