Feature Selection for Density Level-Sets

Marius Kloft!, Shinichi NakajimaZ?, and Ulf Brefeld!

! Machine Learning Group, Technische Universitit Berlin, Berlin, Germany
{mkloft,brefeld}@cs.tu-berlin.de
2 Optical Research Laboratory, Nikon Corporation, Tokyo, Japan
nakajima.s@nikon.co. jp

Abstract. A frequent problem in density level-set estimation is the
choice of the right features that give rise to compact and concise rep-
resentations of the observed data. We present an efficient feature selec-
tion method for density level-set estimation where optimal kernel mixing
coefficients and model parameters are determined simultaneously. Our
approach generalizes one-class support vector machines and can be equiv-
alently expressed as a semi-infinite linear program that can be solved
with interleaved cutting plane algorithms. The experimental evaluation
of the new method on network intrusion detection and object recognition
tasks demonstrate that our approach not only attains competitive per-
formance but also spares practitioners from a priori decisions on feature
sets to be used.

1 Introduction

The set of points on which a function f exceeds a certain value p, e.g., D, = {x :
f(x) > p}, is called a level-set D,. Boundaries of such sets typically constitute
submanifolds in feature space whereas level-set approaches are frequently used
for function estimation and denoising.

For anomaly and outlier detection tasks, level-set methods are often observed
to outperform probability density estimators which have to be thresholded ac-
cordingly to act as detectors for unlikely and rare events. Statistical approaches
frequently focus on high density regions to capture the underlying probability
distribution. By contrast, density level-set estimators are specially tailored to
work well in low density regions which is a crucial property for detecting anoma-
lous events.

In this paper, we focus on level-set estimation for anomaly and outlier de-
tection [9/4], where a model of normality is devised from available observations.
Anomality of new objects is measured by their distance (in some metric space)
from the learned model of normality. Apart from theoretical observations, in
practice the effectiveness of density level-set estimation crucially depends on the
representation of the observations and thus on the choice of features.

However, characteristic traits of particular learning problems are often spread
across multiple features that capture various properties of data, giving rise to a
set of kernel matrices K1, ..., K,, that have to be combined appropriately. As
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a motivating example, consider network intrusion detection where various sets
of features have been deployed, including raw values of IP and TCP protocol
headers [I5/16], time and connection windows [13], byte histograms and n-grams
[29)28], and “bag-of-tokens” language models [21122]. While packet header based
features have been shown to be effective against probes and scans, other kinds of
attacks, e.g. remote buffer overflows, require more advanced payload processing
techniques. The right kind of features for a particular application has always
been considered as the matter of a judicious choice (or trial and error).

But what if this decision is really difficult to make? Given the choice of several
kinds of features, a poor a priori decision would lead to an inappropriate model
of normality being learned. A better strategy is to have a learning algorithm
itself decide which set of features is the best. The reason for that is that learning
algorithms find models with optimal generalization properties, i.e. the ones that
are valid not only for observed data but also for the data to be dealt with in the
future. The a priori choice of features may bias the learning process and lead to
worse detection performance. By leaving this choice to the learning algorithm,
the possibility of such bias is eliminated.

A natural way to address the kernel fusion problem is to learn a linear com-
bination K = 37", 0; K; with mixing coefficients @ together with model pa-
rameters, so as to maximize the generalization ability. To promote sparse so-
lutions in terms of the linear kernel mixture, one frequently employs 1-norm
simplex constraints on the mixing coefficients. This framework, known as multi-
ple kernel learning (MKL), was first introduced for binary classification by [12].
Recently, efficient optimization strategies have been proposed for semi-infinite
linear programming [25], second order approaches [3], and gradient-based opti-
mization [20]. Other variants of two-class MKL have been proposed in subsequent
work addressing practical algorithms for multi-class [T9/32] and multi-label [§]
problems.

We translate the multiple kernel learning framework to density level-set esti-
mation to find a linear combination of features that realizes a minimal-volume
description of the data. Furthermore, we generalize the MKL simplex constraint
on the mixing coefficients to allow for arbitrary p-norms regularizations, where
p > 1, hence leading to non-sparse kernel mixtures. Our approach also gener-
alizes the one-class support vector machine [23] that is obtained as a special
case for learning with only a single kernel. The optimization problem of our new
method is efficiently solved by interleaved column generation and semi-infinite
programming. Empirically, we evaluate our approach on network intrusion de-
tection and object recognition tasks and compare its performance for different
norms with unweighted-sum kernel mixtures. We observe our approach to attain
higher predictive performances than baseline approaches.

The remainder of this paper is structured as follows. Section Pl briefly reviews
the one-class support vector machine and presents our main contribution to
density level-set estimation with multiple kernels. Section [B] reports on empirical
results and Section [ concludes.
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2 Multiple Kernel Learning for Density Level-Sets

2.1 Density Level-Sets

In this paper, we focus on one-class classification problems. That is, we are given
n data points @1, . .., x,, where x; lies in some input space X. The goal is to find
amodel f: X — R and a density level-set D, = {x : f(x) > p} that generalizes
well on new and unseen data such that the level-set encloses the normal data,
ie., x € D,, while for outliers ' ¢ D, holds. A common approach is to employ
linear models of the form

f(@) = w'd(x) (1)

together with a (possibly non-linear) feature mapping ¢ : X — H. A max-
margin approach leads to the (primal) one-class SVM optimization problem [23]
for v €]0, 1],

i lwwt ]
min w w —
w,p.& 2 vn L=r

st Vi:w'(z)>p—&, Vi:&>0. (2)

Once optimal parameters w* and p* are found, these are plugged into Equation
(), and new instances & are classified according to sign(f (&) — p*).

2.2 Density Level-Set Estimation with Multiple Kernels

When learning with multiple kernels, we are given m different feature mappings
¥1,...,%m in addition to the data points x1,...,x,. Every mapping ¢; : X —
‘H; gives rise to a reproducing kernel k; of H; such that

s (,@) = (1 (@), 15 (@),

The goal of one-class multiple kernel learning is to find a linear combination

Z;":I 0;K; of kernels and parameters w, &, and p simultaneously, such that the

resulting hypothesis f leads to a minimum-volume description of the normal
data. We incorporate the kernel mixture into the model in Equation () and

arrive at
fl@) = 0;wiv;(x) = wyie(x),
k=1

where the weight vector and the feature mapping have a block structure

we = (\/ejwj)jzl ..... my Ye(x;) = (\/ej%(wz‘))j:l ..... ms (3)

with mixing coeflicients 6; > 0.
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Incorporating (3] into ([2]) and imposing a general p-norm constraint ||@||, = 1
for p > 1 on the mixing coefficients leads to the following primal optimization
problem for v €]0,1], and p > 1.

1, 1
pmin, ywewe+ €] —p (3a)
st Vi woe(zi) Zp—&; £20; 0>0; [0],=1.  (3b)

The above optimization problem is non-convex because (i) the products 6;w; are
non-convex which, however, can be easily removed by a change of variables v; :=
0jw; (e.g. see [2]), and (ii) the set {0 : ||@]|, = 1} is not convex. As a remedy to
(ii), we relax the constraint on 8 to become an inequality constraint, i.e., |||, <
1. Treating the above optimization problem as interleaved minimization — over
0 and w, &, and p — it is easily verified that the optimal 8 in the 8-step always
fulfills [|6%[|, = 1 for all p > 1; essentially, we solve ming >, ¢;/0; s.t. €|, <1
which induces solutions 8" at the border [|0*]|, = 1. We thus arrive at the
following equivalent optimization problem, which now is convex.

. 1 & v 1
— 4
Qi 2; 0, + €l = (4a)
st Vit Y vigi(@) >p—&; £€>0; 0>0; [0, <1.  (4b)
j=1

Several previous algorithms for two-class multiple kernel learning utilized a two-
step structure by alternating full SVM steps with 8 steps of different flavor
[32020030]. In contrast, we follow [25] and propose to alternate 0 steps with
minor iterations of SVM optimizers without running them to completion. We
chose SVM"8" [T0] as a basic solver, since its underlying chunking idea em-
ploys efficient ¢ minimization steps, making it well-suited for an interleaved
«a, 8 minimization. To solve the p-norm one-class MKL problem, we now devise
a semi-infinite programming (SIP) approach similar to [25].

The underlying idea is to interleave the optimization of the upper bound on
the objective of the SVM step and the 0 step. Fixing 8 € O, where © = {6 €
R*| 6 >0, |0, <1}, we build the partial Lagrangian with respect to
v, €, and p by introducing componentwise non-negative Lagrange multipliers
a,v € R" § € R. The partial Lagrangian is given by

1 m ’U/~’Uj 1 n n n m
P j9j Tun ;&_;%&_Zai(gv}¢j(wi)—p+£i) — dp.

j=1 i=1

Setting the partial derivatives with respect to the primal variables to zero yields
the relations 0 < ¢; < l}w Yo =1 and v; =, 05095(x;) for 1 <i < n
and 1 < j < p. The KKT conditions trivially hold and re-substitution into the
Lagrangian gives rise to the min-max formulation for v €]0,1] and p > 1,
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1 n m
mgn max - Z ooy Z 0ik;(x;, x;) (5a)
Q=1 j=1
1
st. 0<a< 1; Ta=1; 6>0; |0|,<1. (5b)
vn

The above optimization problem can be solved directly by gradient-based tech-
niques exploiting the smoothness of the objective [I]. Alternatively, we can trans-
late it into an equivalent semi-infinite program (SIP) as follows. Suppose a* is
optimal, then denoting the value of the target function by ¢(a, @), we have
t(a*,0) > t(a, 0) for all a and 0. Hence we can equivalently minimize an up-
per bound A on the optimal value. We thus arrive at the following optimization
problem,
1 m
rg\uan A ost. > —2a'ZHjKja (6)
j=1
forall @ €e R"® with 0 < a < ylnL 1'aa=1,and a > 0, as well as ||0]|, < 1 and
6 > 0. The optimization problem in Equation (@) generalizes the idea of [25] to
the case p > 1. Analogously, it can be optimized with interleaving cutting plane
algorithms, that is, the solution of a quadratic program (here a one-class SVM)
generates the most strongly violated constraint for the actual mixture 8. The

optimal (6%, \) however depends on the value of p. We differentiate between two
cases, p=1and p > 1.

Optimizing 6 for p = 1: for p = 1 is then identified by solving a linear
program with respect to set of active constraints.

Optimizing 0 for p > 1: For the general case p > 1, a non-linearity is intro-
duced by requiring /0], < 1. Such constraint is rather uncommon in standard
optimization toolboxes that often handle only linear and quadratic constraints.
As a remedy we propose to solve a sequence of quadratically constrained sub-
problems. To this end, we substitute the p-norm constraint by sequential second-
order Taylor approximations of the form

1617 ~ 1+ p(6] ") (6 — 67

+ p(p2_ 1) (0 _ gold)/diag((eold)p—Q)(e _ gold)

—1_ p(32_ p) _ Zp(p _ 2)(9;_)ld)p*1 9]

p(p—1) old\p—2 52
j

where 67 is defined element-wise, that is 87 := (67, ..., 67,). We use °'¢ = Llas

a starting point. Note that the quadratic term in the approximation is diagonal. As
a result the quadratically constrained problem can be solved very efficiently. For
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Algorithm 1. p-Norm MKL chunking-based training algorithm. It simultane-
ously optimizes a and the kernel weighting 8. The accuracy parameter ¢ and
the subproblem size @) are assumed to be given to the algorithm. For simplicity,
a few speed-up tricks are not shown: the removal of inactive constraints and
hot-starts.

1: 95,i=0,6.=0,a; =0, 0; = {/1/m forj=1,....mandi=1,...,n

2: for t = 1,2,... and while SVM and MKL optimality conditions are not satisfied

do

3:  Select Q suboptimal variables «,, ..., a;, based on the gradient § and «; store
aold —

4:  Solve SVM dual with respect to the selected variables and update o

5. Update gradient g;; «— gj,; + Zqul(aiq — a.?éd)kj(afiq,wi) forall j =1,...,m
andi=1,...,n

6: forj=1,...,mdo

7 S; = ; ZZ g4,i0

8: end for

9: St = Zj 0,88

10: if[1— 5>

11: for £k =1,2,... and while MKL optimality conditions are not satisfied do

12: 07 =9

13: (6,)) — argmax A

14: wrt. 0 e R™, A eR

15: st. 0<60<1, ZjGjS;ZAforrzl,...,t

16: P S (0992 62 — Y, pp — 2)(6) 6, < PO

17: 0—06/|0|,

18: end for

19:  end if

20: gi:Zijgj,i for allizl,...,n

21: end for

the special case p = 2, the Taylor approximation is tight and hence the sequence
of quadratically constrained sub-problems converges after one iteration.

Optimization Algorithm. Algorithm [ outlines the interleaved o, MKL
training algorithm. Lines 3-5 are standard in chunking based SVM solvers and
carried out by SVM"8™. Lines 6-9 compute (parts of) SVM-objective values
for each kernel independently. Finally lines 11 to 18 solve a sequence of semi-
infinite programs with the p-norm constraint being approximated as a sequence
of second-order constraints. The algorithm terminates if the maximum KKT
violation (see [I0]) falls below a predetermined precision €4y, and for MKL if
the normalized maximal constraint violation |1 — 5: | < emki-

3 Empirical Results

In this section we study p-norm multiple kernel learning for density level-sets in
terms of efficiency and accuracy. We experiment on network intrusion detection
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and object recognition tasks and compare our approach to baseline one-class
SVMs with unweighted-sum kernels K = Z;’;l K; wich we refer to as co-norm
MKL. We choose this baseline because for two-class multiple kernel learning
approaches, unweighted-sum kernel mixtures have frequently been observed to
outperform sparse kernel mixtures in practical applications.

3.1 Network Intrusion Detection

For the intrusion detection experiments we use HT'TP traffic recorded at Fraun-
hofer Institute FIRST Berlin. The unsanitized data contains 2500 normal HTTP
requests drawn randomly from incoming traffic recorded over two months. Ma-
licious traffic is generated using the Metasploit framework [I8]. We generate 30
instances of 10 real attack classes from recent exploits, including buffer overflows
and PHP vulnerabilities. Every attack is recorded in different variants using vir-
tual network environments and decoy HTTP servers.

The malicious data are normalized to match frequent attributes of the normal
HTTP requests such that the payload provides the only indicator for separating
normal from attack data. We deploy 10 spectrum kernels [T4)24] for 1,2, ..., 10-
gram feature representations. All kernels are normalized according to Equation
([@) to avoid dependencies on the HTTP request length.

. K(z, )
VK (z,z)K(%,%)

We randomly split the normal data into 1000 training, 500 validation and 1000
test examples. The training partition is used as it is since centroid-based learners
assume uncorrupted training data. The validation and test partitions are mixed
with 15 attack instances that are randomly chosen from the malicious pool. We
make sure that attacks of the same class occur either in the holdout or in the test
data but not in both, hence reflecting the goal of anomaly detection to recognize
previously unknown attacks. We report on average areas under the ROC curve in
the false-positive interval [0,0.01] (AUCjg,o.01]) over 100 repetitions with distinct
training, holdout, and test sets.

Table [I shows the results for one-class multiple kernel learning with p €
{0, 1, g, 2,4}. Depending on the actual value of p, the performances are quite
different. The unweighted-sum kernel (co-norm MKL) outperforms most of the
one-class MKL approaches. However, employing a 2-norm constraint on the mix-
ing coefficients leads to better results than the co-norm mixture. Notice that the
2-norm mixture is about 10% better than its sparse 1-norm counterpart.

Figure [ reports on the optimal kernel mixture coefficients @ for p €
{1, g, 2, 4}-norm MKL and the unweighted-sum kernel. The sparse 1-norm solu-
tion places all the weight into 1-grams that — although leading to concise repre-
sentations because of the low dimensional feature space — result in inappropriate
performances (see Table[D]). The higher the value of p, the less weight is placed on
the 1-gram kernel but spread across higher n-gram kernels. The 4-norm mixture
is similar to the trivial co-norm solution. The best solution (2-norm) still places

weight to 1-grams but incorporates all other n-gram kernels to some extend.

K(xz,z) (7)
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Table 1. Results for intrusion detection

MKL AUCy.01
oo-norm 89.4 £+ 0.7
1-norm 79.4 + 0.9
g-norm 85.7 £0.8
2-norm 90.7 £ 0.8

4-norm 88.9 £+ 0.9

1-norm 4/3—-norm 2-norm
1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4
£ 02 0.2 0.2
S
[
2 0 0 0

12345678910 12345678910 12345678910
k—-grams
4-norm c—norm
1 1 ||

0.8 0.8

0.6 0.6

0.4 0.4
£02 0.2
()]
ko)
2 0

0
12345678910 12345678910
k—grams

Fig. 1. Mixing coeflicients for the intrusion detection task

3.2 Multi-label Image Categorization

Besides anomaly and outlier detection, one-class learning techniques are fre-
quently applied to multi-class classification problems with temporally varying
numbers of categories such as event detection and object recognition tasks. Their
advantage lies in training a single model for every (new) category in contrast
to maintaining expensive multi-class classifiers that have to be re-trained once
a new category is included in the task.

To study one-class multiple kernel learning in this alternative scenario, we
apply our approach to the multi-label classification task of the VOC 2008 chal-
lenge [7]. The data set contains 8780 images, divided into 2113 training, 2227
validation, and 4340 test images. Images are annotated with a subset of 20 class
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labels such as aeroplane, bicycle, and bird. Since the ground-truth of the test set
is not yet disclosed by the challenge organizers, we focus on the training and
validation splits. From these two original sets, we draw 2111 training, 1111 val-
idation, and 1110 test images at random and report on average precisions (AP)
for all recall values over 10 runs with distinct training, holdout, and test sets.

We employ two sets of kernels inspired from the VOC 2007 winner (K12) [17]
and the VOC 2008 winner (K30) [26]. For both approaches, all basic features
are combined with the respective pyramid levels and translated into a y? kernel
[31], where the widths of the x? kernels are chosen according to a heuristic [T1].
The sets of kernels are obtained as follows.

K12. We extract 12 kernels based on four basic features: histograms of visual
words [B] in the grey (HOW-G) and in the hue color channel (HOW-H),
histogram of oriented gradient (HOG) [6], and histograms of the hue color
channel (HOCOL) [I7]. These representations are combined with a pyrami-
dal representation of level 2 to capture spatial dependencies, i.e., each image
is tiled into 1, 4, and 16 parts.

K30. We extract 30 kernels based on histograms of visual words with 2 different
sampling methods (dense and interest points), 5 different sets of colors (grey,
opponent color, normalized opponent color, normalized RG, and RGB) [27]
and 3 different tilings (level-0 and level-1 of the pyramid, and 1x3 tiling)
[26].

We compare the performance of the unweighted-sum kernel co, and 1- and 2-
norm MKL with the optimal p-norm MKL that maximizes the average precision
on the validation set for each class. For the latter approach, model selection is
not only performed for trade-off parameter v but extended to the MKL norm
p. Table ] shows the mean average precisions over 20 categories for the test
data. Bold faces indicate significant results, that is, the best method and ones
that are not comparably different from the best result according to a Wilcoxon
signed-ranks test using a 5% confidence-level.

For the K12 set of kernels, 1-norm MKL outperforms both, the unweighted-
sum kernel co-norm and a non-sparse 2-norm MKL, which perform equally well.
However, model selection over p for each class leads to comparable results as 1-
norm MKL. We do not display the optimal p* values for all 20 classes, however,
the respective mixtures are non-sparse (see also Figure 2 so that the sparse
1-norm approach denotes the best solution for K12 in terms of accuracy and
interpretability.

For the K30 set of kernels, the outcome is different. Here, the 1-norm MKL
performs significantly worse compared to its non-sparse counterparts. Although
model selection over p leads to the highest average precisions, the results are
not significantly different to 2-norm MKL and unweighted-sum kernel mixtures.
Our experiments show that the right choice of the value p depends highly on
the employed kernels. Vice versa, once a set of kernels is fixed, it is necessary
to include the norm parameter p in the model selection to find the best kernel
mixture.
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Table 2. Results for the VOC 2008 data set

l-norm p"-norm 2-norm oo-norm
mean AP (K12) 17.6+0.8 17.8+1.0 17.1+£0.8 17.0+0.6
mean AP (K30) 16.3+£0.5 17.1+£0.9 17.1+0.6 17.0£0.7

1-norm p-norm
1 1
0.8 0.8
0.6 0.6
0.4 0.4
£ 02 H 0.2
k=2
[}
ERN [l | 0
12345678 9101112 12345678 9101112
kernel
2-norm co—NOrm
1 1 e
0.8 0.8
0.6 0.6
0.4 0.4
£ o2 0.2
®
= 9 0
1234567 89101112 12345678 9101112
kernel

Fig. 2. Mixing coefficients for the multi-label image categorization experiment

Figure [2 shows the optimal mixing coefficients for the K12 task, averaged
over 10 repetitions. The 1-norm solution picks a sparse combination resulting in a
minimum volume description of the data. While a 2-norm solution distributes the
weights almost uniformly on the 12 kernels, the p-norm solution lies in between
and considers all kernels with non-zero mixing coefficients in the solution.

3.3 Execution Time

We show the efficiency of one-class MKL and compare the execution times for our
approach with p € {1,1.333,2,3,4, 00} to one-class SVMs using the unweighted
sum-kernel as implemented in [I0]. To show different aspects of our approach, we
draw a sample of size n from a 10-dimensional Gaussian distribution for various
values of n. Kernel matrices are computed using RBF-kernels with different
bandwidth parameters. We optimize the duality gap for all methods up to a
precision of 1073.

Figure [ (left) displays the results for varying sample sizes in a log-log plot;
errorbars indicate standard error over 5 repetitions. Unsurprisingly, the baseline
one-class SVM using the sum-kernel is the fastest method. The execution time of
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10° 10'
1
10 ¢
5 8 10°
= =
<} S
(5] o
[0 D
» 10 | »
c c
(0] ()
£ —e—1-norm £ 107" —e—1-norm
107k ——4/3-norm ——4/3-norm
2-norm 2-norm
——4-norm ——4-norm
. —%—co—nOrm . ——SVM
10° 10”
10° 10> 10* 10° 10' 10° 10°
sample size number of kernels

Fig. 3. Execution times for one-class MKL. Left: results for varying sample sizes. Right:
execution times for varying numbers of kernels.

non-sparse MKL depends on the value p. We observe longer computation times
for large values of p. However, all approaches scale similarly.

Figure[] (right) shows execution times for varying numbers of kernels and fixed
sample size n = 100. Again, the baseline one-class SVM with the unweighted-
sum kernel is the fastest method. All one-class MKL approaches show reasonable
run-times and converge quickly for 128 kernels.

4 Conclusion

We presented an efficient and accurate approach to multiple kernel learning for
density level-set estimation. Our approach generalizes the standard setting of
multiple kernel learning by allowing for arbitrary norms for the kernel mixture.
This enabled us to study sparse and non-sparse kernel mixtures. Our method
contains the one-class SVM as a special case for training with only a single kernel.
Our optimization strategy is based on interleaved semi-infinite programming
and chunking based SVM training. Empirical results proved the efficiency and
accuracy of our methods compared to baseline approaches. We observed one-
class MKL to be robust in situations where unweighted-sum kernels are prone
to fail.
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