
A Support Vector Machine Classifier for

Gene Name Recognition

Steffen Bickel, Ulf Brefeld, Lukas Faulstich,

Jörg Hakenberg, Ulf Leser, Conrad Plake, Tobias Scheffer

Humboldt-Universität zu Berlin, Department of Computer Science

Unter den Linden 6, 10099 Berlin Germany

Corresponding author: hakenberg@informatik.hu-berlin.de

Abstract

This summary describes our solution for task 1A of the BioCreAtIvE Challenge Cup 2003. Es-
sentially, we reduce the entity recognition problem to the problem of classifying single words using
a Support Vector Machine followed by a term expansion. Our research question is therefore to find
those types of features that eventually yield the highest precision and recall. We implemented and
evaluated different features and combinations of features, such as n-grams, neighborhood defined by a
sliding window, classification results of preceding words, appearance of special characters or digits, or
appearance of the word in a dictionary. Multi-word entity names are gathered in a context-sensitive
post-processing step. Our best set of features on the training set leads to a precision of 71.4% and a
recall of 72.8%, corresponding to an F-measure of 72.1%, for the closed division.

1 Introduction

Task 1A of the BioCreAtIvE challenge [4] is a named entity recognition problem where entities are gene
or protein names. Compared to named entity recognition problems in other domains, we observe three
characteristic difficulties: (a) Many gene names are “nondescript” or include nondescript terms, such as
“fat”, “it”, or “ca” that frequently occur outside gene names as well. (b) A substantial amount of gene
and protein names – mostly names that are derived from the chemical structure of the protein – occur
only once in the corpus. (c) Many gene and protein names are artificial names, such as “p50”, “31kD”,
or “D21P”.

We see the task as a problem of labeling elements wt (tokens) of sequences w1, . . . , wn (sentences) with
class values of yt = −1 (not a gene or protein) or yt = +1 (gene name). There can be strong dependencies
between two values yt and yt′ (in particular, when t′ is in close proximity to t, i.e., the words are co-
located), as well as between yt and all wt′ . Our solution is based on a sliding window approach. For
feature generation, we design a transformation f((w1, . . . , wn), t, yt−1) that maps a sentence w1, . . . , wn,
a token position t, and the class label yt−1 of the preceding token to the feature vector xt for word wt.
We create a training set 〈(x1, y1), . . . , (xT , yT )〉 by applying this transformation f to every token position
of every sentence of the annotated training corpus; the labels yt correspond to the annotation (+1 for
NEWGENE, −1 for untagged tokens).

2 A Suppport Vector Classifier

From the training set 〈(x1, y1), . . . , (xT , yT )〉, we learn a classifier c : x 7→ y with y = sign(wx + b), using
the Support Vector Machine [9, 3] SVMlight [5, 6] with linear kernel and default parameter settings to find
parameters w and b. Using a Support Vector Machine is a natural choice because the attribute vectors
are very high dimensional and sparse. The resulting sequence classifier is applied to new sentences by
iteratively applying, from left to right, f to each token position t, and invoking c to obtain yt. Our
system furthermore invokes a set of context-sensitive post-processing rules that label additional tokens
as genes. We focus our attention on engineering the transformation f – i.e., finding those features that
allow for the best classification. We tested a large number of different features. Results for other features
and their combinations will be described in the full paper.

Most features of xt depend only on tokens wt−λ, . . . , wt+λ within a window of width 2λ + 1 – hence,
the term “sliding window”. Context information is only contained in the feature yt−1, in the dictionary

1



feature, and in the special feature “distance to the nearest keyword”. The latter is not limited to the
window bounds. The post-processing step is also context-sensitive.

3 Feature Generation

Table 1: Feature classes used in the Vector Space Model representation of tokens. “*”: feature classes
used in the final system.

Feature Example Range Short name

Token * Sro7, where Token
Unseen token * {0, 1} UToken
n-grams of token * S, Sr, Sro, Sro7, ro, .. 2G, 3G, 4G
Previous & next tokens * PToken, NToken
n-grams of tokens in window 2PG/2NG/3PG..

Special symbols * ICAM-1 Spec
Figures * p50, HSF1 Figure
Upper case letters * InlC, GUS Upper
Initial upper case * Msp Initial
Upper case (skip first) * MsPRP2 Upper2
All chars are upper case * MMTV AllUpper
Characters and figures * p50 CharFig
Long(est) consonant chain dpp, Crc2 LCC

Keyword distance * [0..1] KeyDist

Dictionary, case sensitive * [0..1] Dict
Dictionary, case insensitive [0..1] DictIgn
Dictionary, compound part [0..1] DictCP

Prev./next token is NEWGENE {0, 1} PTG, NTG
Prev./next POS-tags {NN,VB,JJ} PPN/PPV/PPJ..

We define and test different classes of features that comprise our attribute vector (see Table 1). In
the following, we describe the definitions of all classes.

Token and unseen token The attribute vector starts with all features from the class Token.
For every word that occurs in the corpus, a feature is reserved, plus an additional feature indicating an
unseen token (UToken). As every token in the training corpus is represented in the attribute vector, we
needed a possibility to deal with unseen tokens we might encounter in the test corpus. UToken is a single
boolean feature and states whether the current token was seen before or not. With a certain probability
identified by cross-validation using the training and test corpora, we replace a “false” with “true” when
computing the feature vectors for the training data. The system then finds some “unseen” tokens and
learns how to react to those.

n-gram of token Many entities – even those that occur in the corpus only once – can be identified
by considering properties of the name itself. Every possible letter n-gram is therefore an additional
feature (from the class nG) – up to n = 4. The n-grams of size five and above did not improve results of
the overall system. The value for each letter n-grams is determined by counting how frequently it occurs
within the current window. This term frequency is weighted by the inverse document frequency whose
definition we modified slightly to cover the frequency of letter combinations in words.

Previous and next token We triple the potential attribute vector space by defining features for
each token from the corpus occuring as a token preceding (PToken) or following (NToken) the current
token, respectively.

n-grams in window For all tokens in the window, we compute their respective weighted n-grams
and add them to the attibute vector space as new features (2WG, 3WG, 4WG).

Simple surface clues As many gene names contain numbers, upper case characters and combina-
tions of these, we define binary features for certain types of combinations. These are simple surface clues,
and we check whether they apply to the token or not. A token can contain special symbols (Spec), figures
(Figure), upper case letters (Upper), upper case letters not only at the beginning (Upper2), characters
and figures (CharFig), or start with an upper case letter (Initial), or a token can consist completely of
upper case letters (AllUpp). Additionally, we check for the longest consonant chain in a token (LCC), a
possible int on “uncommon” terms. For examples, see Table 1.

2



Keyword distance An additional feature (KeyDist) measures the distance to the nearest keyword
from a hand-crafted list of 25 terms, such as “receptor”, or “kinase”, deduced from the training corpus.
The weight of this features is 1/distance if a keyword was found, and zero otherwise.

Dictionaries - some gazetteer features For the closed division of task 1A, we build a dictionary
using all gene names occurring in the training and devtest corpora. For the open division, we added
additional gene names derived from synonym lists for four different frequently cited organisms (i.e.,
Homo sapiens, Mus musculus, Saccharomyces cerevisiae, and Drosophila melanogaster). Employing more
synonym lists yields a higher recall value, but precision drops significantly by predicting too much false
positives. Since all sentences of the training set contain only gene names that occur in the dictionary
(unlike sentences outside the training corpus), we set the dictionary feature to zero, with a probability
that we determined by cross validation, comparable to the “unseen” token feature. We use a suffix tree
indexing scheme to identify whether a token is contained in a compound name phrase that is listed
in the dictionary. Several dictionary features indicate the quality of a match, differing in their spelling
sensitivity and case sensitivity (Dict/DictIgn). An additional feature checks whether the complete phrase
a token appears in can be found in the dictionary (DictCP). As all dictionaries consist of lists of entities
only, we refer to them as gazetteers.

Tag of previous and next token We try to make use of the information if a preceding (PTG)
or following (NTG) token would be classified as a NEWGENE. In a first step, we classify a sentence token-
by-token just as before, and in a second step do the same including the information on each token’s
neighbors. To do so, we need two different classifiers, one that has learned to use this information, and
one that has not. Additional features store the default part-of-speech tag for the previous and next tokens
for nouns, verbs, and adjectives (e.g., PPN, PPV, NPV, NPJ).

4 Post-Processing for Name Expansion

Many gene names consist of multiple terms. We find that the SVM classifier recognizes these often
incompletely – frequently, unseen nouns and unseen or nondescript adjectives are missing in predicted
names. We employ a post-processing step in which we apply hand-crafted rules to expand names. Before
these rules are applied, we invoke an instance of the Brill part-of-speech tagger [1] that has been trained
on the training corpus to get the default POS tags. The rules refer to the tokens, their labels generated
by the SVM, and their POS tags. As a rule of thumb, when a noun phrase contains a gene name, then
the whole noun phrase is typically a gene name – except for a number of special nouns and adjectives
which are never or seldom part of a gene name. We gathered these nouns and adjectives from the tagged
training corpus by collocation analysis. Every word appearing more frequent as a part of a gene name
than preceding a gene name (and vice versa) is included in a NEWGENE phrase. This led to the application
of two exclusion lists for nouns - we expand a phrase, if the noun is none of 372 or 222 particular terms,
respectively, (see Table 2). We decided to use a negative list, as we found much more nouns included in
gene names than appearing directly before of after such a name. With adjectives, it is quite the opposite,
though. Adjectives may be parts of gene names or qualify a gene. We expand a phrase to include a
preceding or following adjective, on the other hand, if the latter appears in a list of 778 particular terms.

As an additional false positive filter, we remove 23 single words tagged as NEWGENE, that are seldom
gene names when occuring by themselves. Examples for such words are “alpha”, “gene”, “mRNA”, and
“subunit”.

Table 2: Rules used for the post-expansion step to switch certain part-of-speech tags to NEWGENE tags. We
excluded 372/222 nouns, and included only 778 particular adjectives in the expansion of noun phrases.
NN* includes nouns, proper nouns, plurals; CD: cardinal digit; JJ: adjective.

Former POS pattern Expanded pattern Limitation

NEWGENE NN* NEWGENE NEWGENE exclude 372 nouns
NN* NEWGENE NEWGENE NEWGENE exclude 222 nouns
JJ NEWGENE NEWGENE NEWGENE include only 778 adjectives
NEWGENE JJ NEWGENE NEWGENE dito
NEWGENE DT NN* NEWGENE NEWGENE NEWGENE

NEWGENE CD NEWGENE NEWGENE

NN* / NEWGENE NEWGENE NEWGENE NEWGENE

NEWGENE / NN* NEWGENE NEWGENE NEWGENE

3



5 Results

We tested all feature classes and varieties of combinations. The set of the feature classes used in the
final system is marked (*) in Table 1. Surprisingly, most features invoking context information could not
prove their presumed values. Even information on the (predicted) class of the neighboring tokens could
not improve results.

On the provided devtest corpus, our system is able to obtain a precision of 71.4% and a recall of
72.8%, corresponding to an F-measure of 72.1%, for the closed division. By altering the absolute position
of the learned discriminating hyperplane, we are able to shift precision or recall in either direction, see
Figure 1. A recall of 100% can never be achieved, though. As shown in the figure, the plot drops down
from 57%/81% to 30%/70% and then to 3%/0%. Shifting the hyperplane in the direction of the negative
samples at a certain point results in too many terms predicted as positive samples. These terms then
form gene phrases (at some point expanding over the whole sentence). The long phrase results in a false
positive hit, and at the same time we miss all true gene names.

Figure 1: Precision/recall-curve obtained by manually shifting the hyperplane.

Final results for four runs led to precisions and recalls as shown in Table 3.

Table 3: Final results for four runs of the BioCreAtIvE Challenge Cup 2003.

Description Precision Recall F-measure

Closed division, default settings 71.8% 70.6% 71.2%
Closed, manual hyperplane shift to increase precision 76.3% 61.8% 68.3%
Closed, invocation of dictionary lookup 69.8% 71.9% 70.8%
Open, dictionary consists of training data plus four
organism specific synonym lists 72.2% 72.7% 72.4%

6 Discussion

Future plans to enhance our system include the implementation of an organism-specific version. It should
reveal possible differences between usage of nomenclatures and syntactical rules given by them within the
communities researching a particular organism. For instance, the yeast nomenclature is very compact
and underlies a strict syntax (e.g., “YNL015W”). Gene names from the fruitfly, on the other hand, differ
to a much greater extend and often consist of common terms (“a”, “wingless”, or “little imaginal discs”).

Assisting database curators with semi-automated systems would not in all cases require tagging each
multi-gene name completely. We evaluated our SVM approach with a less strict recognition requirement.
If we consider as hits even parts of compound names, our system reaches a precision (on the devtest

set) of 82.8% at 84.1% recall. Of course, other systems would probably benefit comparably from loosing
this requirement.

As our approach more or less neglects the context gene names appear in, we tried to evaluate whether
this approach can carry us any further or not. We therefore conducted an experiment. We sent seven

4



different biologists a randomly selected list of 50 false negatives and 50 false positives from the hits
generated by our classifier, asking each researcher to tag these pure (though possibly compound) names
as either gene/protein, none-gene/protein, or unknown. We found that in only 45% of the cases human
experts recognize the entity names as such, which is even worse than random drawing. This figure is
almost the same for false negative and false positive hits. We also estimated the inter-annotator agreement
and found that in only 11 out of 100 cases all annotators voted for the same answers.

This data gives us a slight evidence that our system already outperforms average biologists that are
neither trained annotators nor experts in a special field. The inter-annotator agreement gives an idea
on how good automated systems can or should become at all. Any method exceeding the degree of
inter-annotator agreement is apparently tuned towards the particular group of annotators – which can
be a good or a bad sign depending on the trust put into this group. However, our data can only give
hints and is not representative enough to allow for global conclusions.

Related work

The three most related projects to our approach are described in [2], [7], and [8].
GAPSCORE [2] scores single words based on a statistical model of gene and protein names that

quantifies their appearance, morphology and context. The authors compared näıve Bayes, maximum
entropy, and support vector machine classifiers, and found that the SVM outperforms the others slightly.
Detected gene name candidates are extended to preceding and following tokens based on POS information.
GAPSCORE achieved an F-measure of 57.6% on the Yapex corpus for exact matches, and 82.5% for
sloppy matches.

The system described in [7] uses so called surface clues to detect potential protein name fragments,
and additionally applies a false positive filter. A probabilitic model expands single names to compounds.
For exact matches, the system achieves an F-measure of 63.6% on the Yapex corpus, and 81.4% for the
sloppy evaluation.

[8] train a support vector machine on sets of different orthographic features to identify names belong-
ing to the classes protein, DNA, RNA, and source, respectively. The best combined-class performance
evaluated using a 10-fold cross-validation scored an F-measure of 74.23% on a corpus of 100 journal
abstracts.

Acknowledgements

This work is supported by the German Federal Ministry of Education and Reserach (BMBF) under grant
contract 0312705B and by the Deutsche Forschungsgemeinschaft (DFG), SCHE 540/10-1.

References

[1] Eric Brill. A simple rule-based part of speech tagger. In Proc Conf Applied Natural Language
Processing, ACL, Trento, Italy, 1992.

[2] Jeffrey T. Chang, Hinrich Schütze, and Russ B. Altman. Gapscore: finding gene and protein names
one word at a time. Bioinformatics, 20(2):216–225, 2004.

[3] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, Cambridge, 2000.

[4] BioCreAtIvE Challenge Cup, 2003. http://www.mitre.org/public/biocreative/.

[5] Thorsten Joachims. Text Categorization with Support Vector Machines: Learning with Many Rele-
vant Features. In Proc Europ Conf Mach Learn. Springer, 1998.

[6] Thorsten Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer, 2002. Disser-
tation.

[7] Kazuhiro Seki and Javed Mostafa. A Probablistic Model for Identifying Protein Names and their
Name Boundaries. In Proc Comp Sys Bioinf (CSB), 2003.

[8] Koichi Takeuchi and Nigel Collier. Bio-Medical Entity Extraction using Support Vector Machines.
In Proc ACL 2003 Workshop on NLP in Biomedicine, 2003.

[9] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

5


